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Information flow dynamics and timing patterns in the arrival of email viruses
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Analysis of the timing of the arrival of email viruses at different computers provides a way of probing the
structural and dynamical properties of the Internet. We found that the intervalst between the arrival of four
different strains of email viruses have a power law distribution proportional tot2d, where 1.5<d<3.2 and that
there are positive correlations between these intervals. Salient features of the data were reproduced with a
model having subnetwork units of different size where the structural components and the dynamical compo-
nents all have power law scaling relationships with the size of the units. This is an assumption, that we hope
will encourage empirical evaluation of these relationships.
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Many social, biological, engineering, and communicati
systems may be modeled as complex networks. Becaus
the widespread connectivity of the Internet, much attent
has been given to the organization and transmission of in
mation on large finite networks, particularly with respect
virus attacks@1,2#. One such example is the small-world ne
work @3#, where a regular network is combined with a fe
random interconnections. Similar models have generated
tistical cluster analysis based on percolation@4#, scaling laws
@5#, and control of information@6#. Recent work on Interne
connectivity has shown that with the right scaling law, t
Internet is robust when computer attacks remove cer
nodes@7#. Moreover, percolation theories have been used
model the propagation of an epidemic probabilistically@8#.
By examining properties of epidemic outbreaks on networ
theories of control have been modeled as well@9–11#. Al-
though epidemic modeling on networks has generated p
ability models of control, most of the previous scaling la
models do not consider the dynamics of the rate of inform
tion sent from different cluster sizes, which we argue is i
portant in understanding rates of transmission laws@12#. In
this paper, we show from data and a model that the arr
times of email viruses at different computers depend on b
the structural and dynamical properties of the Internet.

Data for email virus receipt have been collected by a p
vider in the UK @13#. The provider is a monitoring nod
~MN! that monitors the emails passing from Internet serv
providers to their client computers. Their software dete
emails infected with viruses and deletes the viruses. It m
tains records of the arrival dates and times as well as ass
ing a unique integer to each IP address. The number o
rival times analyzed for four common viruses@14,15#
AnnaKournikova, Magistr.b, Klez.e, and Sircam.a, resp
tively, are 20 883, 153 518, 413 182, and 781 626. Th
were recorded, respectively, over 57.249 days~starting 12
February 2001 13:21 UT!, 288.875 days~starting 4 Septem-
ber 2001 12:49 UT!, 154.629 days~starting 16 January 200
18:47 UT!, and 338.109 days~starting 17 July 2001 7:27
UT!. For each virus, we determined the probability dens
function and the Hurst rescaled range analysis of the tim
between the reported arrivals of the virus.
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The probability density function~PDF! P(t)5N(t,t
1dt)/(NTdt), whereN(t,t1dt) is the number of timest
between the arrival of viruses within the interval (t,t1dt#
and NT is the total number of times. The usual method
evaluate the PDF is to form a histogram ofN(t,t1dt) with
a fixed bin sizedt. The problems with the method are th
following: ~1! If the bin sizedt is chosen to be small, the
there are few times in the bins at larget; ~2! if the bin sizedt
is chosen to be large to capture more times in the bins
large t, then good resolution at smallt is lost. We overcome
these limitations by using a multihistogram method th
combines PDFs generated from histograms of bins of dif
ent size, and is more accurate in forming the PDFs from
known test data of several different functional forms inclu
ing single exponential and power law distributions@16#.

Figure 1 illustrates the PDFP(t) of two of the four vi-
ruses, which are all approximately straight lines on a plot
ln(P) vs ln(t), wheret is the time interval~in days! between
the arrival of the viruses. Thus, the PDF has the power
form that P(t) is proportional tot2d. The exponentsd de-
termined from the slope of the best least squares fit of lnP)
vs ln(t) were 1.51 for AnnaKournikova, 3.19 for Magistr.b
2.40 for Klez.e, and 2.69 for Sircam.a.

The Hurst rescaled range method analyzes the de
dency of the range of the fluctuations as a function of
window size over which they are measured@17,18#. The
rangeR in each window is measured as the difference
tween the maxima and minima of the running sum of t
data values minus the mean and is then divided by the s
dard deviationS in that window. The size of the windows i
called the lag,t. This method is good at determining if ther
are long range self-similar correlations present in the d
from a plot of ln(R/S) vs ln(t).

As shown in Fig. 2, the Hurst rescaled range plots
ln(R/S) vs ln(t), the viruses can be fit with straight lines, wit
H.0.5, indicating that there are significant correlations
the times between the arrival of the viruses. The values oH
determined from the slope of the best least squares fi
ln(R/S) vs ln(t) were 0.80 for AnnaKournikova, 0.80 fo
Magistr.b, 0.82 for Klez.e, and 0.86 for Sircam.a. Howev
there are also significant deviations from the simpl
©2003 The American Physical Society01-1
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FIG. 1. The probability density
function P(t) of the intervalst ~in
days! between the arrivals of the
email viruses is a power law dis
tribution, as illustrated here for
two of the four email viruses.
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straight line fit. SinceH.0.5, there are persistent, positiv
correlations between the arrival times of the viruses but
deviations from linearity mean that these correlations are
so simple as exactly self-similar ones.

Values of the slopeH.0.5 on the plots of ln(R/S) vs ln(t)
can also result from short term as well as long term corre
tions @19#. However, sinceH.0.5, whether caused by sho
term or long term processes, these are persistent, pos
correlations. It is surprising, and perhaps counterintuiti
that viruses transmitted by different independent sources
rive at their receiving computers strongly correlated in tim

It is known that both the structural and dynamical pro
erties of the Internet display power law scaling relationshi
For example, in structure, the number of nodes that requik
links to reach another node is proportional tok2v, wherev
characterizes the scaling pattern of spatial connecti
@20,21#. In dynamics, the distribution of the transfer tim
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for files, the number of files with transfer timet, is propor-
tional to t2w, wherew characterizes the scaling pattern
temporal behavior@23,22#. To combine structural and dy
namical properties into one model, we assume that sub
works of the Internet are grouped into the units of sizek. The
viruses sent from any of thek computers within each uni
will first pass through its local area network and then throu
the gateway which connects that unit to the rest of the In
net.

The MN receives emails from these units on their w
toward the receiving computers of the Internet service p
vider. As shown in Fig. 3, we picture emails transmitted fro
different numbers of units of different sizek. We assume tha
there aren(k) units of sizek. We further assume that onl
one unit transmits at a time@25#. During each transmission, i
sendse(k) viruses each separated by a constant timet. We
assume that the structural properties,n(k), and the dynami-
f

-

FIG. 2. The Hurst rescaled
range analysis of the intervalst
between the arrivals of each o
two of four email viruses. The
rangeR, normalized by the stan-
dard deviationS, within a window
is plotted vs the size of that win
dow (t). The slope of ln(R/S) vs
ln(t), the Hurst exponentH, is
0.80,H,0.86.
1-2
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FIG. 3. ~Color! We model the email viruses as transmitted fro
the units ofk computers. There aren(k)5k2a units of sizek. At
each event, one unit sendse(k)5kb viruses separated by a tim
t(k)5k2c.
or-

01710
cal properties,e(k) and t(k), all have power law scaling
relationships with the number of computersk in each unit.
Thus,n(k) is proportional tok2a, e(k) is proportional tokb,
and t(k) is proportional tok2c.

The relative number of viruses received from units of s
k is n(k)e(k)5kb2a. We now use the relationship betwee
the time between the arrival of the viruses, namelyt(k) pro-
portional tok2c, to determine the relative number of viruse
received from units of sizek in terms of the timet. Namely,
sincek is proportional tot21/c, thenn(k) is proportional to
ta/c ande(k) is proportional tot2b/c. Thus, the relative num-
ber of viruses received from units of sizek, n(k)e(k)
5ta/c2b/c.

The number of times that the time,t, between the arrival
of the viruses is in the range (t,t1dt# depends on the rela
tive number of virusesn(k)e(k). If n(k)e(k) is proportional
to t2r , then ln@n(k)e(k)# is proportional to2r ln(t), and its
associated distribution with respect to ln(t), Px(x)5exp
(2rx) where x5 ln(t). The relationship betweenPx(x) and
P(t) is given by Px(x)dx5P(t)dt. Thus, P(t)
5Px(x)udx/dtu. Since dx/dt51/t and Px(x5 ln(t))5t2r,
P(t) is proportional to t2(11r ). Since, n(k)e(k)5t2r ,
where r 52a/c1b/c, this means thatP(t) is proportional
to t2(12a/c1b/c). The PDF of all four viruses has the form
that the P(t) is proportional to t2d. Hence d512a/c
1b/c.

This relationship for the PDF is confirmed in the results
numerical simulations computed inMATLAB shown in Fig. 4.
We simulated a network with units ranging in size from 1
1000 elements over 200 equally spaced logarithmic ste
First, a unit was chosen at random with probability prop
ical

e of
m

FIG. 4. ~a! The probability density functionP(t) of the intervalst ~in days! between the arrivals of viruses computed from a numer
simulation of the model where the parametersa52, b52, andc52. The PDF has a power law distributiont2d, like the data in Fig. 1. The
value of d computed from this numerical simulation was 1.04, compared to 1 determined analytically from this model. The valud
depends on the parametersa, b, andc. ~b! The Hurst rescaled range analysis of the intervalst between the arrivals of viruses computed fro
a numerical simulation of the model where the parametersa52, b52, andc52. The slope of ln(R/S) vs ln(t), the Hurst exponent, is
H50.72.
1-3
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tional to n(k). It then generatede(k) viruses att(k) inter-
vals between the viruses. A total of at least 1 048 576 (1M )
virus arrival times were computed. The multihistogra
method was then used to computeP(t) and the sloped de-
termined from best least squares fit of ln(P) vs ln(t). Numeri-
cal simulations were computed for the cases wherea5b
5c52; and a50 and b5c52. The numerical resultsd
51.04 andd52.04 compare favorably with the analytic re
sults thatd51 andd52, respectively.

Some interesting conclusions can be drawn from the r
tionshipd512a/c1b/c, which relates the structural prop
erties~a! and dynamical properties (b, c, andd) of the In-
ternet. First, the relative number of viruses received from
the units of sizek is proportional tokb2a. The exponent (b
2a)5c(d21).0 when d.1. That is, whend.1 rela-
tively more viruses are received from the larger units th
from the smaller units. Whend,1, the situation is reverse
and and relatively more viruses are received from the sma
units. Sinced.1 for all four viruses studied here, more v
ruses are received from the larger units. If a virus was fou
whoseP(t) was proportional tot2d, whered,1, this would
indicate that more viruses were being received from sma
units instead. Thus, the critical value ofd51 may be useful
in diagnosing different transmission scenarios.

Second, the time between the receipt of viruses from
unit of size k is proportional tot2c where c5(b2a)/(d
21). Sinced.1 for all the four viruses studied here, th
means that whenb.a, the rate of receiving viruses is large
from the larger units, and whenb,a, the rate of receiving
viruses is larger from the smaller units.

We computed the Hurst rescaled range numerically fr
this model for the cases wherea5b5c52; anda50 and
b5c52. The ln(R/S) vs ln(t) plot computed from the nu
-
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merical simulations have overall slopes ofH50.74 andH
50.72. SinceH.0.5, there are persistent, positive corre
tions between the arrival times of the viruses. It is interest
that these time correlations, which are seen in the experim
tal data, are also generated by this simple model. The m
also deviates from linearity in the ln(R/S) vs ln(t) plot. The
asymptotically horizontal line at small lags is due to the fa
that the times between the arrivals of the consecutive viru
from the same unit are equally spaced and so as the ranR
and the standard deviationSboth approach zero, the limit o
R/S approaches 1. It is also interesting that some of th
same trends, although less pronounced, are seen in the
perimental data, namely, the ln(R/S) plot first falls below the
linear trend and then meets it or rises above it.

The analysis of the statistical properties of the arriv
times of email viruses provides a way to probe the inter
tions between the structural and dynamical properties of
Internet. These properties can be simulated with a sim
model with units of different sizes where the number of un
and the numbers and rates at which they send viruses sca
a power law of the size of the units. This model well repr
duces the distribution of the timest between the arrival of
viruses, P(t), and approximately reproduces some of t
correlation properties present in the experimental data. It a
provides some insight into the fact that the PDF is prop
tional to t2d. For the virus data analyzed here, where 1
<d<3.2, the model implies that more viruses are receiv
from larger units. However, if the data from a virus hadd
,1, then that would mean that more viruses were recei
from the smaller units.

This work was supported by the Office of Naval R
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