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Motion in Two and 
Three Dimensions

How You’ll Use It
■ Skills and knowledge that you 

develop in this chapter will serve you 
throughout your study of physics.

■ You’ll be able to express quantitative 
answers to physics problems in 
scientific notation, with the correct 
units and the appropriate uncertainty 
expressed through significant figures.

■ Being able to make quick estimates 
will help you gauge the sizes of 
physical effects and will help you 
recognize whether your quantitative 
answers make sense.

■ The problem-solving strategy you’ll 
learn here will serve you in the many 
physics problems that you’ll work in 
order to really learn physics.

1
Doing Physics

What You Know
■ You’re coming to this course with 

a solid background in algebra, 
geometry, and trigonometry.

■ You may have had calculus, or you’ll 
be starting it concurrently.

■ You don’t need to have taken physics 
to get a full understanding from this 
book.

You slip a DVD into your player and settle in to watch a movie. The DVD spins, and a pre-
cisely focused laser beam “reads” its content. Electronic circuitry processes the informa-

tion, sending it to your video display and to loudspeakers that turn electrical signals into 
sound waves. Every step of the way, principles of physics govern the delivery of the movie 
from DVD to you.

1.1 Realms of Physics
That DVD player is a metaphor for all of physics—the science that describes the fun-
damental workings of physical reality. Physics explains natural phenomena ranging 
from the behavior of atoms and molecules to thunderstorms and rainbows and on to 
the evolution of stars, galaxies, and the universe itself. Technological applications of 
physics are the basis for everything from microelectronics to medical imaging to cars, 
airplanes, and space flight.

At its most fundamental, physics provides a nearly unified description of all 
physical phenomena. However, it’s convenient to divide physics into distinct realms 
(Fig. 1.1). Your DVD player encompasses essentially all those realms. Mechanics, the 
branch of physics that deals with motion, describes the spinning disc. Mechanics also 
explains the motion of a car, the orbits of the planets, and the stability of a skyscraper. 
Part 1 of this book deals with the basic ideas of mechanics.

What You’re Learning
■ This chapter gives you an overview 

of physics and its subfields, which 
together describe the entire physical 
universe.

■ You’ll learn the basis of the SI system 
of measurement units.

■ You’ll learn to express and manipulate 
numbers used in quantitative science.

■ You’ll learn to deal with precision and 
uncertainty.

■ You’ll develop a skill for making quick 
estimates.

■ You’ll learn how to extract information 
from experimental data.

■ You’ll see a strategy for solving physics 
problems.

Which realms of physics are involved in the 
workings of your DVD player?
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2 Chapter 1 Doing Physics

Those sound waves coming from your loudspeakers represent wave motion. Other 
examples include the ocean waves that pound Earth’s coastlines, the wave of standing 
spectators that sweeps through a football stadium, and the undulations of Earth’s crust 
that spread the energy of an earthquake. Part 2 of this book covers wave motion and other 
phenomena involving the motion of fluids like air and water.

When you burn your own DVD, the high temperature produced by an intensely fo-
cused laser beam alters the material properties of a writable DVD, thus storing video or 
computer information. That’s an example of thermodynamics—the study of heat and its 
effects on matter. Thermodynamics also describes the delicate balance of energy-transfer 
processes that keeps our planet at a habitable temperature and puts serious constraints on 
our ability to meet the burgeoning energy demands of modern society. Part 3 comprises 
four chapters on thermodynamics.

An electric motor spins your DVD, converting electrical energy to the energy of mo-
tion. Electric motors are ubiquitous in modern society, running everything from subway 
trains and hybrid cars, to elevators and washing machines, to insulin pumps and artificial 
hearts. Conversely, electric generators convert the energy of motion to electricity, provid-
ing virtually all of our electrical energy. Motors and generators are two applications of 
electromagnetism in modern technology. Others include computers, audiovisual electron-
ics, microwave ovens, digital watches, and even the humble lightbulb; without these elec-
tromagnetic technologies our lives would be very different. Equally electromagnetic are 
all the wireless technologies that enable modern communications, from satellite TV to cell 
phones to wireless computer networks, mice, and keyboards. And even light itself is an 
electromagnetic phenomenon. Part 4 presents the principles of electromagnetism and their 
many applications.

The precise focusing of laser light in your DVD player allows hours of video to fit on a 
small plastic disc. The details and limitations of that focusing are governed by the princi-
ples of optics, the study of light and its behavior. Applications of optics range from simple 
magnifiers to contact lenses to sophisticated instruments such as microscopes,  telescopes, 
and spectrometers. Optical fibers carry your e-mail, web pages, and music downloads 
over the global Internet. Natural optical systems include your eye and the raindrops that 
deflect sunlight to form rainbows. Part 5 of the book explores optical principles and their 
applications.

That laser light in your DVD player is an example of an electromagnetic wave, but an 
atomic-level look at the light’s interaction with matter reveals particle-like “bundles” of 
electromagnetic energy. This is the realm of quantum physics, which deals with the of-
ten counterintuitive behavior of matter and energy at the atomic level. Quantum phenom-
ena also explain how that DVD laser works and, more profoundly, the structure of atoms 
and the periodic arrangement of the elements that is the basis of all chemistry. Quantum 
physics is one of the two great developments of modern physics. The other is Einstein’s 
theory of relativity. Relativity and quantum physics arose during the 20th century, and 
together they’ve radically altered our commonsense notions of time, space, and causality. 
Part 6 of the book surveys the ideas of modern physics, ending with what we do—and 
don’t—know about the history, future, and composition of the entire universe.

Figure 1.1 Realms of physics.

Mechanics

Thermodynamics Electromagnetism

Optics

Oscillations, waves,
and �uids

Modern
physics

Physics

Name some systems in your car that exemplify the different realms 
of physics.

EvaluatE Mechanics is easy; the car is fundamentally a mechanical 
system whose purpose is motion. Details include starting, stopping, 
cornering, as well as a host of other motions within mechanical sub-
systems. Your car’s springs and shock absorbers constitute an oscilla-
tory system engineered to give a comfortable ride. The car’s engine is 
a prime example of a thermodynamic system, converting the energy 

of burning gasoline into the car’s motion. Electromagnetic systems 
range from the starter motor and spark plugs to sophisticated elec-
tronic devices that monitor and optimize engine performance. Optical 
principles govern rear- and side-view mirrors and headlights. Increas-
ingly, optical fibers transmit information to critical safety systems. 
Modern physics is less obvious in your car, but ultimately, everything 
from the chemical reactions of burning gasoline to the atomic-scale 
operation of automotive electronics is governed by its principles.

ConCePtUaL examPLe 1.1 Car Physics
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1.2 Measurements and Units 3

1.2 measurements and Units
“A long way” means different things to a sedentary person, a marathon runner, a pilot, 
and an astronaut. We need to quantify our measurements. Science uses the metric system, 
with fundamental quantities length, mass, and time measured in meters, kilograms, and 
seconds, respectively. The modern version of the metric system is SI, for Système Interna-
tional d’Unités (International System of Units), which incorporates scientifically precise 
definitions of the fundamental quantities.

The three fundamental quantities were originally defined in reference to nature: the 
meter in terms of Earth’s size, the kilogram as an amount of water, and the second by the 
length of the day. For length and mass, these were later replaced by specific artifacts— 
a bar whose length was defined as 1 meter and a cylinder whose mass defined the kilo-
gram. But natural standards like the day’s length can change, as can the properties of 
artifacts. So early SI definitions gave way to operational definitions, which are meas-
urement standards based on laboratory procedures. Such standards have the advantage 
that scientists anywhere can reproduce them. By the late 20th century, two of the three 
fundamental units—the meter and the second—had operational definitions, but the kilo-
gram did not.

A special type of operational definition involves giving an exact value to a particular 
constant of nature—a quantity formerly subject to experimental determination and with a 
stated uncertainty in its value. As described below, the meter was the first such unit to be 
defined in this way. By the early 21st century, it was clear that defining units in terms of 
fundamental, invariant physical constants was the best way to ensure long-term stability 
of the SI unit system. Currently, SI is undergoing a sweeping revision, which will result in 
redefining the kilogram and three of the four remaining so-called base units with defini-
tions that lock in exact values of fundamental constants. These so-called explicit-constant 
definitions will have similar wording, making explicit that the unit in question follows 
from the defined value of the particular physical constant.

Length
The meter was first defined as one ten-millionth of the distance from Earth’s equator to 
the North Pole. In 1889 a standard meter was fabricated to replace the Earth-based unit, 
and in 1960 that gave way to a standard based on the wavelength of light. By the 1970s, 
the speed of light had become one of the most precisely determined quantities. As a result, 
the meter was redefined in 1983 as the distance light travels in vacuum in 1/299,792,458 
of a second. The effect of this definition is to make the speed of light a defined quantity: 
299,792,458 m/s. Thus, the meter became the first SI unit to be based on a defined value 
for a fundamental constant. The new SI definitions won’t change the meter but will reword 
its definition to make it of the explicit-constant type:

The meter, symbol m, is the unit of length; its magnitude is set by fixing the nu-
merical value of the speed of light in vacuum to be equal to exactly 299,792,458 
when it is expressed in the SI unit m/s.

time
The second used to be defined by Earth’s rotation, but that’s not constant, so it was later 
redefined as a specific fraction of the year 1900. An operational definition followed in 
1967, associating the second with the radiation emitted by a particular atomic process. 
The new definition will keep the essence of that operational definition but reworded in the 
explicit-constant style:

The second, symbol s, is the unit of time; its magnitude is set by fixing the nu-
merical value of the ground-state hyperfine splitting frequency of the cesium-133 
atom, at rest and at a temperature of 0 K, to be exactly 9,192,631,770 when it is 
expressed in the SI unit s-1, which is equal to Hz.

aPPLICatIon  Units matter: a 
Bad Day on mars

In September 1999, the Mars Climate Orbiter 
was destroyed when the spacecraft passed 
through Mars’s atmosphere and experienced 
stresses and heating it was not designed to tol-
erate. Why did this $125-million craft enter the 
Martian atmosphere when it was supposed to re-
main in the vacuum of space? NASA identified 
the root cause as a failure to convert the English 
units one team used to specify rocket thrust to 
the SI units another team expected. Units matter!
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4 Chapter 1 Doing Physics

The device that implements this definition—which will seem less obscure once you’ve 
studied some atomic physics—is called an atomic clock. Here the phrase “equal to Hz” 
introduces the unit hertz (Hz) for frequency—the number of cycles of a repeating process 
that occur each second.

mass
Since 1889, the kilogram has been defined as the mass of a single artifact—the interna-
tional prototype kilogram, a platinum–iridium cylinder kept in a vault at the International 
Bureau of Weights and Measures in Sèvres, France. Not only is this artifact-based standard 
awkward to access, but comparison measurements have revealed tiny yet growing mass 
discrepancies between the international prototype kilogram and secondary mass standards 
based on it.

In the current SI revision, the kilogram will become the last of the SI base units to 
be defined operationally, with a new explicit-constant definition resulting from fixing the 
value of Planck’s constant, h, a fundamental constant of nature related to the “graininess” 
of physical quantities at the atomic and subatomic levels. The units of Planck’s constant 
involve seconds, meters, and kilograms, and giving h an exact value actually sets the 
value of 1 s-1 # m2 # kg. But with the meter and second already defined, fixing the unit 
s-1 # m2 # kg then determines the kilogram. A device that implements this definition is the 
watt balance, which balances an unknown mass against forces resulting from electrical 
effects whose magnitude, in turn, can be related to Planck’s constant. The new formal defi-
nition of the kilogram will be similar to the explicit-constant definitions of the meter and 
second, but the exact value of Planck’s constant is yet to be established.

other SI Units
The SI includes seven independent base units: In addition to the meter, second, and kilo-
gram, there are the ampere (A) for electric current, the kelvin (K) for temperature, the mole 
(mol) for the amount of a substance, and the candela (cd) for luminosity. We’ll introduce 
these units later, as needed. In the ongoing SI revision these will be given new, explicit-
constant definitions; for all but the candela, this involves fixing the values of fundamental 
physical constants. In addition to the seven physical base units, two supplementary units 
define geometrical measures of angle: the radian (rad) for ordinary angles (Fig. 1.2) and 
the steradian (sr) for solid angles. Units for all other physical quantities are derived from 
the base units.

SI Prefixes
You could specify the length of a bacterium (e.g., 0.00001 m) or the distance to the next 
city (e.g., 58,000 m) in meters, but the results are unwieldy—too small in the first case 
and too large in the latter. So we use prefixes to indicate multiples of the SI base units. 
For example, the prefix k (for “kilo”) means 1000; 1 km is 1000 m, and the distance 
to the next city is 58 km. Similarly, the prefix m (the lowercase Greek “mu”) means 
“ micro,” or 10-6. So our bacterium is 10 µm long. The SI prefixes are listed in Table 1.1, 
which is repeated inside the front cover. We’ll use the prefixes routinely in examples and 
 problems, and we’ll often express answers using SI prefixes, without doing an explicit 
unit conversion.

When two units are used together, a hyphen appears between them—for example, 
newton-meter. Each unit has a symbol, such as m for meter or N for newton (the SI unit 
of force). Symbols are ordinarily lowercase, but those named after people are uppercase. 
Thus “newton” is written with a small “n” but its symbol is a capital N. The exception is 
the unit of volume, the liter; since the lowercase “l” is easily confused with the number 1, 
the symbol for liter is a capital L. When two units are multiplied, their symbols are sepa-
rated by a centered dot: N # m for newton-meter. Division of units is expressed by using 
the slash 1>2 or writing with the denominator unit raised to the -1 power. Thus the SI unit 
of speed is the meter per second, written m/s or m # s-1.

Figure 1.2 The radian is the SI unit of angle.

u

The angle u in radians
is de�ned as the ratio
of the subtended arc
length s to the radius
r :  u =    .

r

s

s
r

Table 1.1 SI Prefixes

Prefix Symbol Power

yotta Y 1024

zetta Z 1021

exa E 1018

peta P 1015

tera T 1012

giga G 109

mega M 106

kilo k 103

hecto h 102

deca da 101

— — 100

deci d 10-1

centi c 10-2

milli m 10-3

micro µ 10-6

nano n 10-9

pico p 10-12

femto f 10-15

atto a 10-18

zepto z 10-21

yocto y 10-24
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1.3 Working with Numbers 5

other Unit Systems
The inches, feet, yards, miles, and pounds of the so-called English system still dominate 
measurement in the United States. Other non-SI units such as the hour are often mixed 
with English or SI units, as with speed limits in miles per hour or kilometers per hour. In 
some areas of physics there are good reasons for using non-SI units. We’ll discuss these 
as the need arises and will occasionally use non-SI units in examples and problems. We’ll 
also often find it convenient to use degrees rather than radians for angles. The vast major-
ity of examples and problems in this book, however, use strictly SI units.

Changing Units
Sometimes we need to change from one unit system to another—for example, from Eng-
lish to SI. Appendix C contains tables for converting among unit systems; you should 
familiarize yourself with this and the other appendices and refer to them often.

For example, Appendix C shows that 1 ft = 0.3048 m. Since 1 ft and 0.3048 m rep-
resent the same physical distance, multiplying any distance by their ratio will change 
the units but not the actual physical distance. Thus the height of Dubai’s Burj Khalifa 
(Fig. 1.3)—the world’s tallest structure—is 2717 ft or

12717 ft2 a0.3048 m

1 ft
b = 828.1 m

Often you’ll need to change several units in the same expression. Keeping track of the 
units through a chain of multiplications helps prevent you from carelessly inverting any 
of the conversion factors. A numerical answer cannot be correct unless it has the right 
units!

Got It? 1.1 A Canadian speed limit of 50 km/h is closest to which U.S. limit ex-
pressed in miles per hour? (a) 60 mph; (b) 45 mph; (c) 30 mph

Figure 1.3 Dubai’s Burj Khalifa is the world’s 
tallest  structure.

828 m
2717 ft

Express a 65 mi/h speed limit in meters per second.

EvaluatE According to Appendix C, 1 mi = 1609 m, so we can 
multiply miles by the ratio 1609 m/mi to get meters. Similarly, we use 

the conversion factor 3600 s/h to convert hours to seconds. Combin-
ing these two conversions gives

65 mi/h = a65 mi

h
ba1609 m

mi
ba 1 h

3600 s
b = 29 m/s

 ■

examPLe 1.1 Changing Units: Speed Limits

1.3 Working with numbers
Scientific notation
The range of measured quantities in the universe is enormous; lengths alone go from about 
1/1,000,000,000,000,000 m for the radius of a proton to 1,000,000,000,000,000,000,000 m  
for the size of a galaxy; our telescopes see 100,000 times farther still. Therefore, we 
frequently express numbers in scientific notation, where a reasonable-size number is 
 multiplied by a power of 10. For example, 4185 is 4.185 * 103 and 0.00012 is 1.2 * 10-4. 
Table 1.2 suggests the vast range of measurements for the fundamental quantities of length, 
time, and mass. Take a minute (about 102 heartbeats, or 3 * 10-8 of a typical  human lifes-
pan) to peruse this table along with Fig. 1.4.
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6 Chapter 1 Doing Physics

Figure 1.4 Large and small.

This galaxy is 1021 m across and
has a mass of ∼ 1042 kg.

Your movie is stored on a DVD in “pits”
only 4 * 10-7 m in size.

1021 m

Table 1.2 Distances, Times, and Masses (rounded to 
one significant figure)

Radius of observable universe 1 * 1026 m

Earth’s radius 6 * 106 m

Tallest mountain 9 * 103 m

Height of person 2 m

Diameter of red blood cell 1 * 10-5 m

Size of proton 1 * 10-15 m

Age of universe 4 * 1017 s

Earth’s orbital period (1 year) 3 * 107 s

Human heartbeat 1 s

Wave period, microwave oven 5 * 10-10 s

Time for light to cross a proton 3 * 10-24 s

Mass of Milky Way galaxy 1 * 1042 kg

Mass of mountain 1 * 1018 kg

Mass of human 70 kg

Mass of red blood cell 1 * 10-13 kg

Mass of uranium atom 4 * 10-25 kg

Mass of electron 1 * 10-30 kg

Earthquake-generated tsunamis are so devastating because the entire 
ocean, from surface to bottom, participates in the wave motion. The 
speed of such waves is given by v = 1gh, where g = 9.8 m/s2 is the 
gravitational acceleration and h is the depth in meters. Determine a 
tsunami’s speed in 3.0-km-deep water.

EvaluatE That 3.0-km depth is 3.0 * 103 m, so we have

v = 1gh = 319.8 m/s2213.0 * 103 m241>2 = 129.4 * 103 m2/s221>2

 = 12.94 * 104 m2/s221>2 = 12.94 * 102 m/s = 1.7 * 102 m/s

examPLe 1.2 Scientific notation: tsunami Warnings

Scientific calculators handle numbers in scientific notation. But straightforward rules 
allow you to manipulate scientific notation if you don’t have such a calculator handy.

tactics 1.1 Using Scientific notation

addition/Subtraction
To add (or subtract) numbers in scientific notation, first give them the same exponent and then add (or 
subtract):

3.75 * 106 + 5.2 * 105 = 3.75 * 106 + 0.52 * 106 = 4.27 * 106

multiplication/Division
To multiply (or divide) numbers in scientific notation, multiply (or divide) the digits and add (or subtract) 
the exponents:

13.0 * 108 m/s212.1 * 10-10 s2 = 13.0212.12 * 108 + 1- 102 m = 6.3 * 10-2 m

Powers/Roots
To raise numbers in scientific notation to any power, raise the digits to the given power and multiply the 
exponent by the power:

 213.61 * 10423 = 23.613 * 10142132 = 147.04 * 101221>2

 = 247.04 * 10112211>22 = 6.86 * 106

where we wrote 29.4 * 103 m2/s2 as 2.94 * 104 m2/s2 in the second line 
in order to calculate the square root more easily. Converting the speed 
to km/h gives

 1.7 * 102 m/s = a1.7 * 102 m

s
ba 1 km

1.0 * 103 m
ba3.6 * 103 s

h
b

 = 6.1 * 102 km/h

This speed—about 600 km/h—shows why even distant coastlines 
have little time to prepare for the arrival of a tsunami. ■
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1.3 Working with Numbers 7

Significant Figures
How precise is that 1.7 * 102 m/s we calculated in Example 1.2? The two significant 
 figures in this number imply that the value is closer to 1.7 than to 1.6 or 1.8. The fewer 
significant figures, the less precisely we can claim to know a given quantity.

In Example 1.2 we were, in fact, given two significant figures for both quantities. The 
mere act of calculating can’t add precision, so we rounded our answer to two significant 
figures as well. Calculators and computers often give numbers with many figures, but 
most of those are usually meaningless.

What’s Earth’s circumference? It’s 2pRE, and p is approximately 3.14159. cBut 
if you only know Earth’s radius as 6.37 * 106 m, knowing p to more significant figures 
doesn’t mean you can claim to know the circumference any more precisely. This example 
suggests a rule for handling calculations involving numbers with different  precisions:

In multiplication and division, the answer should have the same number of signifi-
cant figures as the least precise of the quantities entering the calculation.

You’re engineering an access ramp to a bridge whose main span is 1.248 km long. The 
ramp will be 65.4 m long. What will be the overall length? A simple calculation gives 
1.248 km + 0.0654 km = 1.3134 km. How should you round this? You know the bridge 
length to {0.001 km, so an addition this small is significant. Therefore, your answer 
should have three digits to the right of the decimal point, giving 1.313 km. Thus:

In addition and subtraction, the answer should have the same number of digits 
to the right of the decimal point as the term in the sum or difference that has the 
smallest number of digits to the right of the decimal point.

In subtraction, this rule can quickly lead to loss of precision, as Example 1.3 illustrates.

A uranium fuel rod is 3.241 m long before it’s inserted in a nuclear 
reactor. After insertion, heat from the nuclear reaction has increased 
its length to 3.249 m. What’s the increase in its length?

EvaluatE Subtraction gives 3.249 m - 3.241 m = 0.008 m or  
8 mm. Should this be 8 mm or 8.000 mm? Just 8 mm. Subtraction 
 affected only the last digit of the four-significant-figure lengths, leav-
ing only one significant figure in the answer. ■

examPLe 1.3 Significant Figures: nuclear Fuel

✓tIP Intermediate Results

Although it’s important that your final answer reflect the precision of the numbers that 
went into it, any intermediate results should have at least one extra significant figure. 
Otherwise, rounding of intermediate results could alter your answer.

Got It? 1.2 Rank the numbers according to (1) their size and (2) the number of 
significant figures. Some may be of equal rank. 0.0008, 3.14 * 107, 2.998 * 10-9, 55 * 106, 
0.041 * 109

What about whole numbers ending in zero, like 60, 300, or 410? How many significant 
figures do they have? Strictly speaking, 60 and 300 have only one significant figure, while 
410 has two. If you want to express the number 60 to two significant figures, you should 
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8 Chapter 1 Doing Physics

write 6.0 * 101; similarly, 300 to three significant figures would be 3.00 * 102, and 410 to 
three significant figures would be 4.10 * 102.

Working with Data
In physics, in other sciences, and even in nonscience fields, you’ll find yourself working 
with data—numbers that come from real-world measurements. One important use of data 
in the sciences is to confirm hypotheses about relations between physical quantities. Sci-
entific hypotheses can generally be described quantitatively using equations, which often 
give or can be manipulated to give a linear relationship between quantities. Plotting such 
data and fitting a line through the data points—using procedures such as regression analy-
sis, least-squares fitting, or even “eyeballing” a best-fit line—can confirm the hypothesis 
and give useful information about the phenomena under study. You’ll probably have op-
portunities to do such data fitting in your physics lab and in other science courses. Because 
it’s so important in experimental science, we’ve included at least one data problem with 
each chapter. Example 1.4 shows a typical example of fitting data to a straight line.

As you’ll see in Chapter 2, the distance fallen by an object dropped 
from rest should increase in proportion to the square of the time since 
it was dropped; the proportionality should be half the acceleration due 
to gravity. The table shows actual data from measurements on a fall-
ing ball. Determine a quantity such that, when you plot fall distance 
y against it, you should get a straight line. Make the plot, fit a straight 
line, and from its slope determine an approximate value for the gravi-
tational acceleration.

EvaluatE We’re told that the fall distance y should be proportional 
to the square of the time; thus we choose to plot y versus t2. So we’ve 
added a row to the table, listing the values of t2. Figure 1.5 is our plot. 
Although we did this one by hand, on graph paper, you could use a 
spreadsheet or other program to make your plot. A spreadsheet pro-
gram would offer the option to draw a best-fit line and give its slope, 
but a hand-drawn line, “eyeballed” to catch the general trend of the 
data points, works surprisingly well. We’ve indicated such a line, and 
the figure shows that its slope is very nearly 5.0 m/s2.

assEss The fact that our data points lie very nearly on a straight line 
confirms the hypothesis that fall distance should be proportional to 
time squared. Real data almost never lie exactly on a theoretically pre-
dicted line or curve. A more sophisticated analysis would show error 
bars, indicating the measurement uncertainty in each data point. Be-
cause our line’s measured slope is supposed to be half the gravitational 
acceleration, our analysis suggests a gravitational acceleration of 
about 10 m/s2. This is close to the commonly used value of 9.8 m/s2.

examPLe 1.4 Data analysis: a Falling Ball

Time (s)

Distance (m)

0.500

1.12

1.00

5.30

1.50

12.2

2.00

18.5

2.50

34.1

3.00

43.6

Best-�t line

Figure 1.5 Our graph for Example 1.4. We “eyeballed” the best-fit line using 
a ruler; note that it doesn’t go through particular points but tries to capture 
the average trend of all the data points.

■

estimation
Some problems in physics and engineering call for precise numerical answers. We need 
to know exactly how long to fire a rocket to put a space probe on course toward a distant 
planet, or exactly what size to cut the tiny quartz crystal whose vibrations set the pulse of 
a digital watch. But for many other purposes, we need only a rough idea of the size of a 
physical effect. And rough estimates help check whether the results of more difficult cal-
culations make sense.

PheT: Estimation
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1.4 Strategies for Learning Physics 9

1.4 Strategies for Learning Physics
You can learn about physics, and you can learn to do physics. This book is for science 
and engineering students, so it emphasizes both. Learning about physics will help you 
appreciate the role of this fundamental science in explaining both natural and techno-
logical phenomena. Learning to do physics will make you adept at solving quantitative 
 problems—finding answers to questions about how the natural world works and about 
how we forge the technologies at the heart of modern society.

Physics: Challenge and Simplicity
Physics problems can be challenging, calling for clever insight and mathematical agility. 
That challenge is what gives physics a reputation as a difficult subject. But underlying all 
of physics is only a handful of basic principles. Because physics is so fundamental, it’s 
also inherently simple. There are only a few basic ideas to learn; if you really understand 
those, you can apply them in a wide variety of situations. These ideas and their applica-
tions are all connected, and we’ll emphasize those connections and the underlying simplic-
ity of physics by reminding you how the many examples, applications, and problems are 
manifestations of the same few basic principles. If you approach physics as a hodgepodge 
of unrelated laws and equations, you’ll miss the point and make things difficult. But if you 
look for the basic principles, for connections among seemingly unrelated phenomena and 
problems, then you’ll discover the underlying simplicity that reflects the scope and power 
of physics—the fundamental science.

Problem Solving: the IDea Strategy
Solving a quantitative physics problem always starts with basic principles or concepts and 
ends with a precise answer expressed as either a numerical quantity or an algebraic expres-
sion. Whatever the principle, whatever the realm of physics, and whatever the specific 
situation, the path from principle to answer follows four simple steps—steps that make up 
a comprehensive strategy for approaching all problems in physics. Their acronym, IDEA, 
will help you remember these steps, and they’ll be reinforced as we apply them over and 
over again in worked examples throughout the book. We’ll generally write all four steps 

Estimate the mass of your brain and the number of cells it contains.

EvaluatE My head is about 6 in. or 15 cm wide, but there’s a lot 
of skull bone in there, so maybe my brain is about 10 cm or 0.1 m 
across. I don’t know its exact shape, but for estimating, I’ll take it 
to be a cube. Then its volume is 110 cm23 = 1000 cm3, or 10-3 m3. 
I’m mostly water, and water’s density is 1 gram per cubic centimeter 
11 g/cm32, so my 1000@cm3 brain has a mass of about 1 kg.

How big is a brain cell? I don’t know, but Table 1.2 lists 
the diameter of a red blood cell as about 10-5 m. If brain cells are 
roughly the same size, then each cell has a volume of approximately 
110-5 m23 = 10-15 m3. Then the number of cells in my 10-3@m3 brain 
is roughly

N =
10-3 m3/brain

10-15 m3/cell
= 1012 cells/brain

Crude though they are, these estimates aren’t bad. The average adult 
brain’s mass is about 1.3 kg, and it contains at least 1011 cells (Fig. 1.6).

examPLe 1.5 estimation: Counting Brain Cells

■

Figure 1.6 The average human brain contains more than 1011 cells.
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10 Chapter 1 Doing Physics

separately, although the examples in this chapter cut right to the EVALUATE phase. And 
in some chapters we’ll introduce versions of this strategy tailored to specific material.

The IDEA strategy isn’t a “cookbook” formula for working physics problems. Rather, 
it’s a tool for organizing your thoughts, clarifying your conceptual understanding, devel-
oping and executing plans for solving problems, and assessing your answers. Here’s the 
big IDEA:

ProblEm-solving stratEgy 1.1 Physics Problems

InteRPRet The first step is to interpret the problem to be sure you know what it’s asking. Then 
identify the applicable concepts and principles—Newton’s laws of motion, conservation of en-
ergy, the first law of thermodynamics, Gauss’s law, and so forth. Also identify the players in the 
situation—the object whose motion you’re asked to describe, the forces acting, the thermody-
namic system you’re to analyze, the charges that produce an electric field, the components in an 
electric circuit, the light rays that will help you locate an image, and so on.

DeveLoP The second step is to develop a plan for solving the problem. It’s always helpful and 
often essential to draw a diagram showing the situation. Your drawing should indicate objects, 
forces, and other physical entities. Labeling masses, positions, forces, velocities, heat flows, 
electric or magnetic fields, and other quantities will be a big help. Next, determine the relevant 
mathematical formulas—namely, those that contain the quantities you’re given in the problem 
as well as the unknown(s) you’re solving for. Don’t just grab equations—rather, think about 
how each reflects the underlying concepts and principles that you’ve identified as applying to 
this problem. The plan you develop might include calculating intermediate quantities, finding 
values in a table or in one of this text’s several appendices, or even solving a preliminary prob-
lem whose answer you need in order to get your final result.

evaLUate Physics problems have numerical or symbolic answers, and you need to evaluate 
your answer. In this step you execute your plan, going in sequence through the steps you’ve 
outlined. Here’s where your math skills come in. Use algebra, trig, or calculus, as needed, to 
solve your equations. It’s a good idea to keep all numerical quantities, whether known or not, 
in symbolic form as you work through the solution of your problem. At the end you can plug in 
numbers and work the arithmetic to evaluate the numerical answer, if the problem calls for one.

aSSeSS Don’t be satisfied with your answer until you assess whether it makes sense! Are the 
units correct? Do the numbers sound reasonable? Does the algebraic form of your answer work 
in obvious special cases, like perhaps “turning off” gravity or making an object’s mass zero or 
infinite? Checking special cases not only helps you decide whether your answer makes sense 
but also can give you insights into the underlying physics. In worked examples, we’ll often use 
this step to enhance your knowledge of physics by relating the example to other applications of 
physics.

Don’t memorize the IDEA problem-solving strategy. Instead, grow to understand it as 
you see it applied in examples and as you apply it yourself in working end-of-chapter 
problems. This book has a number of additional features and supplements, discussed in 
the Preface, to help you develop your problem-solving skills.
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Chapter 1 Summary
Big Idea

Physics is the fundamental science. It’s convenient to consider several realms of physics, which 
together describe all that’s known about physical reality:

Key Concepts and equations

Numbers describing physical quantities must have units. The SI unit system comprises seven fundamental units:

applications

The IDEA strategy for solving physics problems consists of four steps: Interpret, Develop, Evaluate, and Assess.
Estimation and data analysis are additional skills that help with physics.

Mechanics

Thermodynamics Electromagnetism

Optics

Oscillations, waves,
and �uids

Modern
physics

Physics

Length: meter (m)

Mass: kilogram (kg) Temperature: kelvin (K)

Amount: mole (mol)

Luminosity: candela (cd)

Electric current: ampere (A)

Time: second (s)

SI

In addition, physics uses geometric measures of angle.

Numbers are often written with prefixes or in scientific notation to express powers of 10. Precision 
is shown by the number of significant figures:

6.37 Mm

 Power of 10

Earth>s radius 6.37 * 106 m = 6.37 Mm

Three significant figures SI prefix for *106

N =  = 1012 cells>brain
10-3 m3>brain

10-15 m3>cell
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12 Chapter 1 Doing Physics

For homework assigned on MasteringPhysics, go to www.masteringphysics.com

BIO Biology and/or medicine-related problems DATA Data problems ENV Environmental problems CH Challenge problems Comp Computer problems

For thought and Discussion
 1. Explain why measurement standards based on laboratory proce-

dures are preferable to those based on specific objects such as the 
international prototype kilogram.

 2. When a computer that carries seven significant figures adds 
1.000000 and 2.5 * 10-15, what’s its answer? Why?

 3. Why doesn’t Earth’s rotation provide a suitable time standard?
 4. To raise a power of 10 to another power, you multiply the expo-

nent by the power. Explain why this works.
 5. What facts might a scientist use in estimating Earth’s age?
 6. How would you determine the length of a curved line?
 7. Write 1/x as x to some power.
 8. Emissions of carbon dioxide from fossil-fuel combustion are of-

ten expressed in gigatonnes per year, where 1 tonne = 1000 kg. 
But sometimes CO2 emissions are given in petagrams per year. 
How are the two units related?

 9. In Chapter 3, you’ll learn that the range of a projectile launched 
over level ground is given by x = v0

2 sin 2u/g, where v0 is the ini-
tial speed, u is the launch angle, and g is the acceleration of grav-
ity. If you did an experiment that involved launching projectiles 
with the same speed v0 but different launch angles, what quantity 
would you plot the range x against in order to get a straight line 
and thus verify this relationship?

 10. What is meant by an explicit-constant definition of a unit?
11. You’re asked to make a rough estimate of the total mass of 

all the students in your university. You report your answer as 
1.16 * 106 kg. Why isn’t this an appropriate answer?

exercises and problems
exercises

Section 1.2 Measurements and Units
12. The power output of a typical large power plant is 1000 mega-

watts (MW). Express this result in (a) W, (b) kW, and (c) GW.
13. The diameter of a hydrogen atom is about 0.1 nm, and the di-

ameter of a proton is about 1 fm. How many times bigger than a 
proton is a hydrogen atom?

14. Use the definition of the meter to determine how far light travels 
in 1 ns.

15. In nanoseconds, how long is the period of the cesium-133 radia-
tion used to define the second?

16. Lake Baikal in Siberia holds the world’s largest quantity of fresh 
water, about 14 Eg. How many kilograms is that?

17. A hydrogen atom is about 0.1 nm in diameter. How many hydro-
gen atoms lined up side by side would make a line 1 cm long?

18. How long a piece of wire would you need to form a circular arc 
subtending an angle of 1.4 rad, if the radius of the arc is 8.1 cm?

19. Making a turn, a jetliner flies 2.1 km on a circular path of radius 
3.4 km. Through what angle does it turn?

20. A car is moving at 35.0 mi/h. Express its speed in (a) m/s and  
(b) ft/s.

21. You have postage for a 1-oz letter but only a metric scale. What’s 
the maximum mass your letter can have, in grams?

22. A year is very nearly p * 107 s. By what percentage is this figure 
in error?

23. How many cubic centimeters are in a cubic meter?

24. Since the start of the industrial era, humankind has emitted about 
half an exagram of carbon to the atmosphere. What’s that in 
tonnes 1t, where 1 t = 1000 kg2?

25. A gallon of paint covers 350 ft2. What’s its coverage in m2/L?
26. Highways in Canada have speed limits of 100 km/h. How does 

this compare with the 65 mi/h speed limit common in the United 
States?

27. One m/s is how many km/h?
28. A 3.0-lb box of grass seed will seed 2100 ft2 of lawn. Express 

this coverage in m2/kg.
29. A radian is how many degrees?
30. Convert the following to SI units: (a) 55 mi/h; (b) 40.0 km/h;  

(c) 1 week (take that 1 as an exact number); (d) the period of Mars’s 
orbit (consult Appendix E).

31. The distance to the Andromeda galaxy, the nearest large neigh-
bor galaxy of our Milky Way, is about 2.4 * 1022 m. Express this 
more succinctly using SI prefixes.

Section 1.3 Working with Numbers
32. Add 3.63105 m and 2.13103 km.
33. Divide 4.23103 m/s by 0.57 ms, and express your answer in m/s2.
34. Add 5.131022 cm and 6.83103 mm, and multiply the result by 

1.83104 N (N is the SI unit of force).
35. Find the cube root of 6.4 * 1019 without a calculator.
36. Add 1.46 m and 2.3 cm.
37. You’re asked to specify the length of an updated aircraft model 

for a sales brochure. The original plane was 41 m long; the new 
model has a 3.6-cm-long radio antenna added to its nose. What 
length do you put in the brochure?

38. Repeat the preceding exercise, this time using 41.05 m as the air-
plane’s original length.

Problems
39. To see why it’s important to carry more digits in intermediate 

calculations, determine 11323 to three significant figures in two 
ways: (a) Find 13 and round to three significant figures, then 
cube and again round; and (b) find 13 to four significant figures, 
then cube and round to three significant figures.

40. You’ve been hired as an environmental watchdog for a big-city 
newspaper. You’re asked to estimate the number of trees that  
go into one day’s printing, given that half the newsprint comes 
from recycling, the rest from new wood pulp. What do you 
 report?

41. The average dairy cow produces about 104 kg of milk per year. 
Estimate the number of dairy cows needed to keep the United 
States supplied with milk.

42. How many Earths would fit inside the Sun?
43. The average American uses electrical energy at the rate of about 

1.5 kilowatts (kW). Solar energy reaches Earth’s surface at an 
average rate of about 300 watts on every square meter (a value 
that accounts for night and clouds). What fraction of the United 
States’ land area would have to be covered with 20% efficient 
solar cells to provide all of our electrical energy?

44. You’re writing a biography of the physicist Enrico Fermi, who 
was fond of estimation problems. Here’s one problem Fermi 
posed: What’s the number of piano tuners in Chicago? Give your 
estimate, and explain to your readers how you got it.

45. (a) Estimate the volume of water going over Niagara Falls each 
second. (b) The falls provides the outlet for Lake Erie; if the 
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Answers to Chapter Questions 13

62. You’re shopping for a new computer, and a salesperson claims 
the microprocessor chip in the model you’re looking at contains 
50 billion electronic components. The chip measures 5 mm on 
a side and uses 14-nm technology, meaning each component is  
14 nm across. Is the salesperson right?

63. Café Milagro sells coffee online. A half-kilogram bag of cof-
fee costs $8.95, excluding shipping. If you order six bags, the 
shipping costs $6.90. What’s the cost per bag when you include 
 shipping?

64. The world consumes energy at the rate of about 500 EJ per year, 
where the joule (J) is the SI energy unit. Convert this figure to 
watts (W), where 1 W = 1 J/s, and then estimate the average per 
capita energy consumption rate in watts.

65. The volume of a sphere is given by V = 4
3pr3, where r is the 

sphere’s radius. For solid spheres with the same density—made, 
for example, from the same material—mass is proportional to 
volume. The table below lists measures of diameter and mass for 
different steel balls. (a) Determine a quantity which, when you 
plot mass against it, should yield a straight line. (b) Make your 
plot, establish a best-fit line, and determine its slope (which in 
this case is proportional to the spheres’ density).

Diameter (cm) 0.75 1.00 1.54 2.16 2.54

Mass (g) 1.81 3.95 15.8 38.6 68.2

Passage Problems
The human body contains about 1014 cells, and the diameter of a typi-
cal cell is about 10 µm Like all ordinary matter, cells are made of at-
oms; a typical atomic diameter is 0.1 nm.
66. How does the number of atoms in a cell compare with the num-

ber of cells in the body?
a. greater
b. smaller
c. about the same

67. The volume of a cell is about
a. 10-10 m3.
b. 10-15 m3.
c. 10-20 m3.
d. 10-30 m3.

68. The mass of a cell is about
a. 10-10 kg.
b. 10-12 kg.
c. 10-14 kg.
d. 10-16 kg.

69. The number of atoms in the body is closest to
a. 1014.
b. 1020.
c. 1030.
d. 1040.

answers to Chapter Questions
answer to Chapter opening Question
 All of them!

answers to Got It? Questions
1.1 (c)
1.2 (1) 2.998 * 10-9, 0.0008, 3.14 * 107, 0.041 * 109, 55 * 106

  (2)  0.0008, 0.041 * 109 and 55 * 106 (with two significant figures 
each), 3.14 * 107, 2.998 * 10-9

DATA

BIO

falls were shut off, estimate how long it would take Lake Erie to  
rise 1 m.

46. Estimate the number of air molecules in your dorm room.
47. A human hair is about 100 µm across. Estimate the number of 

hairs in a typical braid.
48. You’re working in the fraud protection division of a credit-card 

company, and you’re asked to estimate the chances that a 16-digit 
number chosen at random will be a valid credit-card number. 
What do you answer?

49. Bubble gum’s density is about 1 g/cm3. You blow an 8-g wad of 
gum into a bubble 10 cm in diameter. What’s the bubble’s thick-
ness? (Hint: Think about spreading the bubble into a flat sheet. 
The surface area of a sphere is 4pr2.)

50. The Moon barely covers the Sun during a solar eclipse. Given 
that Moon and Sun are, respectively, 4 * 105 km and 1.5 * 108 km 
from Earth, determine how much bigger the Sun’s diameter is than 
the Moon’s. If the Moon’s radius is 1800 km, how big is the Sun?

51. The semiconductor chip at the heart of a personal computer is a 
square 4 mm on a side and contains 1010 electronic components. 
(a) What’s the size of each component, assuming they’re square? 
(b) If a calculation requires that electrical impulses traverse 104 
components on the chip, each a million times, how many such 
calculations can the computer perform each second? (Hint: The 
maximum speed of an electrical impulse is about two-thirds the 
speed of light.)

52. Estimate the number of (a) atoms and (b) cells in your body.
53. When we write the number 3.6 as typical of a number with 

two significant figures, we’re saying that the actual value is 
closer to 3.6 than to 3.5 or 3.7; that is, the actual value lies be-
tween 3.55 and 3.65. Show that the percent uncertainty implied  
by such two-significant-figure precision varies with the value of 
the number, being the lowest for numbers beginning with 9 and 
the highest for numbers beginning with 1. In particular, what is the  
 percent uncertainty implied by the numbers (a) 1.1, (b) 5.0, and 
(c) 9.9?

54. Continental drift occurs at about the rate your fingernails grow. 
Estimate the age of the Atlantic Ocean, given that the eastern and 
western hemispheres have been drifting apart.

55. You’re driving into Canada and trying to decide whether to fill 
your gas tank before or after crossing the border. Gas in the United 
States costs $3.67/gallon, in Canada it’s $1.32/L, and the Canadian 
dollar is worth 95¢ in U.S. currency. Where should you fill up?

56. In the 1908 London Olympics, the intended 26-mile marathon 
was extended 385 yards to put the end in front of the royal re-
viewing stand. This distance subsequently became standard. 
What’s the marathon distance in kilometers, to the nearest  meter?

57.  An environmental group is lobbying to shut down a coal-burning 
power plant that produces electrical energy at the rate of 1 GW (a 
watt, W, is a unit of power—the rate of energy production or con-
sumption). They suggest replacing the plant with wind turbines 
that can produce 1.5 MW each but that, due to intermittent wind, 
average only 30% of that power. Estimate the number of wind 
turbines needed.

58. If you’re working from the print version of this book, estimate 
the thickness of each page.

59. Estimate the area of skin on your body.
60. Estimate the mass of water in the world’s oceans, and express it 

with SI prefixes.
61. Express the following with appropriate units and significant fig-

ures: (a) 1.0 m plus 1 mm, (b) 1.0 m times 1 mm, (c) 1.0 m minus 
999 mm, and (d) 1.0 m divided by 999 mm.

env
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