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Mechanics

Part One Overview

Awilderness hiker uses the Global Positioning System to follow her chosen route. 
A farmer plows a field with centimeter-scale precision, guided by GPS and sav-

ing precious fuel as a result. One scientist uses GPS to track endangered elephants, 
another to study the accelerated flow of glaciers as Earth’s climate warms. Our deep 
understanding of motion is what lets us use a constellation of satellites, 20,000 km up 
and moving faster than 10,000 km/h, to find positions on Earth so precisely.

Motion occurs at all scales, from the intricate dance of molecules at the heart of life’s 
cellular mechanics, to the everyday motion of cars, baseballs, and our own  bodies, to 
the trajectories of GPS and TV satellites and of spacecraft exploring the distant  planets, 
to the stately motions of the celestial bodies themselves and the overall expansion 
of the universe. The study of motion is called mechanics. The 11  chapters of Part 1 
introduce the physics of motion, first for individual bodies and then for  complicated 
systems whose constituent parts move relative to one another.

We explore motion here from the viewpoint of Newtonian mechanics, which 
 applies accurately in all cases except the subatomic realm and when relative speeds 
approach that of light. The Newtonian mechanics of Part 1 provides the groundwork 
for much of the material in subsequent parts, until, in the book’s final chapters, we 
extend mechanics into the subatomic and high-speed realms.

A hiker checks her position using signals 
from GPS satellites.
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1
Doing Physics

3
Motion in Two and 
Three Dimensions

4
Force and Motion

Motion in a Straight Line

2

What You Know
■ You’ve learned the units for basic 

physical quantities.

■ You understand the SI unit system, 
especially units for length, time, and 
mass.

■ You can express numbers in scientific 
notation and using SI prefixes.

■ You can handle precision and 
accuracy through significant figures.

■ You can make order-of-magnitude 
estimates.

■ You’ve learned the IDEA   
problem-solving strategy.

Electrons swarming around atomic nuclei, cars speeding along a highway, blood coursing 
through your veins, galaxies rushing apart in the expanding universe—all these are exam-

ples of matter in motion. The study of motion without regard to its cause is called  kinematics 
(from the Greek “kinema,” or motion, as in motion pictures). This chapter deals with the sim-
plest case: a single object moving in a straight line. Later, we generalize to motion in more 
dimensions and with more complicated objects. But the basic concepts and mathematical 
techniques we develop here continue to apply.

2.1 Average Motion
You drive 15 minutes to a pizza place 10 km away, grab your pizza, and return home 
in another 15 minutes. You’ve traveled a total distance of 20 km, and the trip took half 
an hour, so your average speed—distance divided by time—was 40 kilometers per 
hour. To describe your motion more precisely, we introduce the quantity x that gives 
your position at any time t. We then define displacement, ∆x, as the net change in 

What You’re Learning
■ You’ll learn the fundamental concepts 

used to describe motion: position, 
velocity, and acceleration—restricted 
in this chapter to motion in one 
dimension.

■ You’ll learn to distinguish average 
from instantaneous values.

■ You’ll see how calculus is used to 
establish instantaneous values.

■ You’ll learn to describe motion 
resulting from constant acceleration, 
including the important case of 
objects moving under the influence of 
gravity near Earth’s surface.

How You’ll Use It
■ One-dimensional motion will be your 

stepping stone to richer and more 
complex motion in two and three 
dimensions, which you’ll see in Chapter 3.

■ Your understanding of acceleration 
will help you adopt the Newtonian 
view of motion, introduced in Chapter 
4 and elaborated in Chapter 5.

■ You’ll encounter analogies to Chapter 
2’s motion concepts in Chapter 10’s 
treatment of rotational motion.

■ You’ll apply motion concepts to 
systems of particles in Chapter 9.

■ You’ll continue to encounter motion 
concepts throughout the book, even 
beyond Part 1.

The server tosses the tennis ball straight up and hits it on its way down. Right at its peak height, the ball 
has zero velocity, but what’s its acceleration?
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16 Chapter 2 Motion in a Straight Line

position: ∆x = x2 - x1, where x1 and x2 are your starting and ending positions, respec-
tively. Your average velocity, v, is displacement divided by the time interval:

 v =
∆x

∆t
  1average velocity2 (2.1)

where ∆t = t2 - t1 is the interval between your ending and starting times. The bar in v 
indicates an average quantity (and is read “v bar”). The symbol ∆ (capital Greek delta) 
stands for “the change in.” For the round trip to the pizza place, your overall displacement 
was zero and therefore your average velocity was also zero—even though your average 
speed was not (Fig. 2.1).

Directions and Coordinate Systems
It matters whether you go north or south, east or west. Displacement therefore includes not 
only how far but also in what direction. For motion in a straight line, we can describe both 
properties by taking position coordinates x to be positive going in one direction from some 
origin, and negative in the other. This gives us a one-dimensional coordinate system. The 
choice of coordinate system—both of origin and of which direction is positive—is entirely 
up to you. The coordinate system isn’t physically real; it’s just a convenience we create to 
help in the mathematical description of motion.

Figure 2.2 shows some Midwestern cities that lie on a north–south line. We’ve estab-
lished a coordinate system with northward direction positive and origin at Kansas City. Ar-
rows show displacements from Houston to Des Moines and from International Falls to Des 
Moines; the former is approximately +1300 km, and the latter is approximately -750 km, 
with the minus sign indicating a southward direction. Suppose the Houston-to-Des Moines 
trip takes 2.6 hours by plane; then the average velocity is 11300 km2/12.6 h2 = 500 km/h. 
If the International Falls-to-Des Moines trip takes 10 h by car, then the average velocity is 
1-750 km2/110 h2 = -75 km/h; again, the minus sign indicates southward.

In calculating average velocity, all that matters is the overall displacement. Maybe that 
trip from Houston to Des Moines was a nonstop flight going 500 km/h. Or maybe it involved 
a faster plane that stopped for half an hour in Kansas City. Maybe the plane even went first 
to Minneapolis, then backtracked to Des Moines. No matter: The displacement remains 1300 
km and, as long as the total time is 2.6 h, the average velocity remains 500 km/h.

GOT IT? 2.1 We just described three trips from Houston to Des Moines: (a) direct; 
(b) with a stop in Kansas City; and (c) via Minneapolis. For which of these trips is the 
average speed the same as the average velocity? Where the two differ, which is greater?
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At time t1 = 0, your
position is x1 = 0.

Now your position is x2 = 0,
so  your displacement is
∆x = x2 - x1 = 0,
and your average 

velocity v =        = 0.

But, your average speed was
40 km>h.

∆x
∆t

Figure 2.1 Position versus time for the pizza trip.
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Figure 2.2 Describing motion in the central 
United States.
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2.2 Instantaneous Velocity 17

2.2 Instantaneous Velocity
Geologists determine the velocity of a lava flow by dropping a stick into the lava and 
timing how long it takes the stick to go a known distance (Fig. 2.3a). Dividing the 
distance by the time then gives the average velocity. But did the lava flow faster at the 
beginning of the interval? Or did it speed up and slow down again? To understand mo-
tion fully, including how it changes with time, we need to know the velocity at each 
instant.

Geologists could explore that detail with a series of observations taken over 
smaller intervals of time and distance (Fig. 2.3b). As the size of the intervals shrinks, 
a more detailed picture of the motion emerges. In the limit of very small intervals, 
we’re measuring the velocity at a single instant. This is the instantaneous velocity, or 
 simply the velocity. The magnitude of the instantaneous velocity is the instantaneous 
speed.

To get a cheap flight from Houston to Kansas City—a distance of 
1000 km—you have to connect in Minneapolis, 700 km north of 
 Kansas City. The flight to Minneapolis takes 2.2 h, then you have a 
30-min layover, and then a 1.3-h flight to Kansas City. What are your 
average velocity and your average speed on this trip?

Interpret We interpret this as a one-dimensional kinematics prob-
lem involving the distinction between velocity and speed, and we 
identify three distinct travel segments: the two flights and the layover. 
We identify the key concepts as speed and velocity; their distinction is 
clear from our pizza example.

Develop Figure 2.2 is our drawing. We determine that Equation 2.1, 
v = ∆x/∆t, will give the average velocity, and that the average 
speed is the total distance divided by the total time. We develop our 
plan: Find the displacement and the total time, and use those values to 
get the average velocity; then find the total distance traveled and use 
that along with the total time to get the average speed.

evaluate You start in Houston and end up in Kansas City, 
for a displacement of 1000 km—regardless of how far you 
actually traveled. The total time for the three segments is 
∆t = 2.2 h + 0.50 h + 1.3 h = 4.0 h. Then the average velocity, 
from Equation 2.1, is

v =
∆x

∆t
=

1000 km

4.0 h
= 250 km/h

However, that Minneapolis connection means you’ve gone an extra 
2 * 700 km, for a total distance of 2400 km in 4 hours. Thus your av-
erage speed is 12400 km2/14.0 h2 = 600 km/h, more than twice your 
average velocity.

assess Make sense? Average velocity depends only on the net dis-
placement between the starting and ending points. Average speed 
takes into account the actual distance you travel—which can be a lot 
longer on a circuitous trip like this one. So it’s entirely reasonable that 
the average speed should be greater. ■

ExAMpLE 2.1  Speed and Velocity: Flying with a Connection

The average velocity as the stick 
goes from A to B is v = ∆x>∆t.

Using shorter distance intervals gives details 
about how the velocity changes.

(a)

(b)

∆t

A B
∆x

∆t1 = 5 s ∆t2 = 10 s

∆t3 = 15 s ∆t4 = 10 s

∆x1 ∆x2 ∆x3 ∆x4
A B

Figure 2.3 Determining the velocity of a lava flow.
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18 Chapter 2 Motion in a Straight Line

You might object that it’s impossible to achieve that limit of an arbitrarily small time 
interval. With observational measurements that’s true, but calculus lets us go there. Figure 
2.4a is a plot of position versus time for the stick in the lava flow shown in Fig. 2.3. Where 
the curve is steep, the position changes rapidly with time—so the velocity is greater. 
Where the curve is flatter, the velocity is lower. Study the clocks in Fig. 2.3b and you’ll 
see that the stick starts out moving rapidly, then slows, and then speeds up a bit at the end. 
The curve in Fig. 2.4a reflects this behavior.

Suppose we want the instantaneous velocity at the time marked t1 in Fig. 2.4a. We can 
approximate this quantity by measuring the displacement ∆x over the interval ∆t between 
t1 and some later time t2: the ratio ∆x/∆t is then the average velocity over this interval. 
Note that this ratio is the slope of a line drawn through points on the curve that mark the 
ends of the interval.

Figure 2.4b shows what happens as we make the time interval ∆t arbitrarily small: 
Eventually, the line between the two points becomes indistinguishable from the tangent 
line to the curve. That tangent line has the same slope as the curve right at the point we’re 
interested in, and therefore it defines the instantaneous velocity at that point. We write this 
mathematically by saying that the instantaneous velocity is the limit, as the time interval 
∆t becomes arbitrarily close to zero, of the ratio of displacement ∆x to ∆t:

 v = lim
∆tS0

 
∆x

∆t
 (2.2a)

You can imagine making the interval ∆t as close to zero as you like, getting ever better 
approximations to the instantaneous velocity. Given a graph of position versus time, an 
easy approach is to “eyeball” the tangent line to the graph at a point you’re interested in; 
its slope is the instantaneous velocity (Fig. 2.5).

GOT IT? 2.2 The figures show position-versus-time graphs for four objects. Which 
object is moving with constant speed? Which reverses direction? Which starts slowly and 
then speeds up?

t

x

t

x

(a)

t

x

(c)(b)

t

(d)

x

Given position as a mathematical function of time, calculus provides a quick way to 
find instantaneous velocity. In calculus, the result of the limiting process described in 
Equation 2.2a is called the derivative of x with respect to t and is given the symbol dx/dt:

dx

dt
= lim

∆tS0
 
∆x

∆t

The quantities dx and dt are called infinitesimals; they represent vanishingly small 
 quantities that result from the limiting process. We can then write Equation 2.2a as

 v =
dx

dt
  1instantaneous velocity2 (2.2b)

Given position x as a function of time t, calculus shows how to find the velocity v = dx/dt. 
Consult Tactics 2.1 if you haven’t yet seen derivatives in your calculus class or if you need 
a refresher.

Figure 2.4 Position-versus-time graph for the 
motion in Fig. 2.3.

Average velocity is the
slope of this line.

As the interval gets
shorter, average 
velocity approaches 
instantaneous
velocity at time t1.

(a)

(b)

Time, t
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tio
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Figure 2.5 The instantaneous velocity is the 
slope of the tangent line.

The slopes of 3 tangent
lines give the instantaneous
velocity at 3 different times.
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2.3 Acceleration 19

2.3 Acceleration
When velocity changes, as in Example 2.2, an object is said to undergo acceleration. Quan-
titatively, we define acceleration as the rate of change of velocity, just as we defined velocity 
as the rate of change of position. The average acceleration over a time interval ∆t is

 a =
∆v

∆t
  1average acceleration2 (2.4)

where ∆v is the change in velocity and the bar on a indicates that this is an average value. 
Just as we defined instantaneous velocity through a limiting procedure, we define instan-
taneous acceleration as

 a = lim
∆tS0

 
∆v

∆t
=

dv

dt
  1instantaneous acceleration2 (2.5)

As we did with velocity, we also use the term acceleration alone to mean instantaneous 
acceleration.

In one-dimensional motion, acceleration is either in the direction of the velocity or 
opposite it. In the former case the accelerating object speeds up, whereas in the latter it 
slows (Fig. 2.6). Although slowing is sometimes called deceleration, it’s simpler to use 

TacTics 2.1 Taking Derivatives

You don’t have to go through an elaborate limiting process every time you want to find an instantaneous 
velocity. That’s because calculus provides formulas for the derivatives of common functions. For example, 
any function of the form x = btn, where b and n are constants, has the derivative

 
dx

dt
= nbtn-1 (2.3)

Appendix A lists derivatives of other common functions.

The altitude of a rocket in the first half-minute of its ascent is given by 
x = bt2, where the constant b is 2.90 m/s2. Find a general expression 
for the rocket’s velocity as a function of time and from it the instan-
taneous velocity at t = 20 s. Also find an expression for the average 
velocity, and compare your two velocity expressions.

inTerpreT We interpret this as a problem involving the comparison 
of two distinct but related concepts: instantaneous velocity and av-
erage velocity. We identify the rocket as the object whose velocities 
we’re interested in.

Develop Equation 2.2b, v = dx/dt, gives the instantaneous velocity 
and Equation 2.1, v = ∆x/∆t, gives the average velocity. Our plan 
is to use Equation 2.3, dx/dt = nbtn-1, to evaluate the derivative that 
gives the instantaneous velocity. Then we can use Equation 2.1 for the 
average velocity, but first we’ll need to determine the displacement 
from the equation we’re given for the rocket’s position.

evaluaTe Applying Equation 2.2b with position given by x = bt2 
and using Equation 2.3 to evaluate the derivative, we have

v =
dx

dt
=

d1bt22
dt

= 2bt

for the instantaneous velocity. Evaluating at t = 20 s with b = 2.90 m/s2 
gives v = 116 m/s. For the average velocity we need the total  

displacement at 20 s. Since x = bt2, Equation 2.1 gives

v =
∆x

∆t
=

bt2

t
= bt

where we’ve used x = bt2 for ∆x and t for ∆t because both position 
and time are taken to be zero at liftoff. Comparison with our earlier re-
sult shows that the average velocity from liftoff to any particular time 
is exactly half the instantaneous velocity at that time.

assess Make sense? Yes: The rocket’s speed is always increasing, 
so its velocity at the end of any time interval is greater than the aver-
age velocity over that interval. The fact that the average velocity is 
exactly half the instantaneous velocity results from the quadratic 1t22 
dependence of position on time.

✓Tip Language

Language often holds clues to the meaning of physical concepts. In 
this example we speak of the instantaneous velocity at a particular 
time. That wording should remind you of the limiting process that 
focuses on a single instant. In contrast, we speak of the average 
velocity over a time interval, since averaging explicitly involves a 
range of times.

ExAmplE 2.2  instantaneous Velocity: A Rocket Ascends

When a and v have the
same direction, the 
car speeds up.

When a is opposite
v, the car slows.

(a)

(b)

v

a

v

a

Figure 2.6 Acceleration and velocity.

■

PheT: Calculus Grapher
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20 Chapter 2 Motion in a Straight Line

acceleration to describe the time rate of change of velocity no matter what’s happening. 
With two-dimensional motion, we’ll find much richer relationships between the directions 
of velocity and acceleration.

Since acceleration is the rate of change of velocity, its units are (distance per time) per 
time, or distance/time2. In SI, that’s m/s2. Sometimes acceleration is given in mixed units; 
for example, a car going from 0 to 60 mi/h in 10 s has an average acceleration of 6 mi/h/s.

position, Velocity, and Acceleration
Figure 2.7 shows graphs of position, velocity, and acceleration for an object undergo-
ing one-dimensional motion. In Fig. 2.7a, the rise and fall of the position-versus-time 
curve shows that the object first moves away from the origin, reverses, then reaches 
the origin again at t = 4 s. It then continues moving into the region x 6 0. Veloc-
ity, shown in Fig. 2.7b, is the slope of the position-versus-time curve in Fig. 2.7a.  
Note that the magnitude of the velocity (that is, the speed) is large where the curve in 
Fig. 2.7a is steep—that is, where position is changing most rapidly. At the peak of the 
 position curve, the object is momentarily at rest as it reverses, so there the position 
curve is flat and the velocity is zero. After the object reverses, at about 2.7 s, it’s head-
ing in the negative x-direction and so its velocity is negative.

Just as velocity is the slope of the position-versus-time curve, acceleration is the slope 
of the velocity-versus-time curve. Initially that slope is positive—velocity is increasing—
but eventually it peaks at the point of maximum velocity and zero acceleration and then it 
decreases. That velocity decrease corresponds to a negative acceleration, as shown clearly 
in the region of Fig. 2.7c beyond about 1.3 s.

Figure 2.7 (a) Position, (b) velocity, and 
(c) acceleration versus time.

Here the position
reaches a maxi-
mum, so the 
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Here the velocity
peaks, so the 
acceleration is zero.
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COnCEpTUAL ExAMpLE 2.1 Acceleration Without Velocity?

Figure 2.8 Our sketch for Conceptual Example 2.1.

At the peak 
of its �ight, 
the ball is 
instantaneously 
at rest.

Just before the peak,
v is positive;  just
after, it’s negative.

Since v is steadily decreasing, the 
acceleration is constant and negative.

(a)

(b)

(c)

Can an object be accelerating even though it’s not moving?

evaluate Figure 2.7 shows that velocity is the slope of the posi-
tion curve—and the slope depends on how the position is chang-
ing, not on its actual value. Similarly, acceleration depends only 
on the rate of change of velocity, not on velocity itself. So there’s 
no intrinsic reason why there can’t be acceleration at an instant 
when velocity is zero.

assess Figure 2.8, which shows a ball thrown straight up, is a case 
in point. Right at the peak of its flight, the ball’s velocity is instanta-
neously zero. But just before the peak it’s moving upward, and just 
after it’s moving downward. No matter how small a time interval you 
consider, the velocity is always changing. Therefore, the ball is accel-
erating, even right at the instant its velocity is zero.

MakIng the connectIon Just 0.010 s before it peaks, the ball in 
Fig. 2.8 is moving upward at 0.098 m/s; 0.010 s after it peaks, it’s 
moving downward with the same speed. What’s its average accelera-
tion over this 0.02-s interval?

evaluate Equation 2.4 gives the average acceleration: a = ∆v/∆t 
=  1-0.098 m/s - 0.098 m/s2/10.020 s2 = -9.8 m/s2.  Here  we’ve  
 implicitly chosen a coordinate system with a positive upward direc-
tion, so both the final velocity and the acceleration are negative. The 
time interval is so small that our result must be close to the instan-
taneous acceleration right at the peak—when the velocity is zero. 
You might recognize 9.8 m/s2 as the acceleration due to the Earth’s 
gravity.
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2.4 Constant Acceleration 21

Acceleration is the rate of change of velocity, and velocity is the rate of change of 
position. That makes acceleration the rate of change of the rate of change of position. 
Mathematically, acceleration is the second derivative of position with respect to time. 
Symbolically, we write the second derivative as d2x/dt2; this is just a symbol and doesn’t 
mean that anything is actually squared. Then the relationship among acceleration, velocity, 
and position can be written

 a =
dv

dt
=

d

dt
 adx

dt
b =

d2x

dt2  (2.6)

Equation 2.6 expresses acceleration in terms of position through the calculus operation of 
taking the second derivative. If you’ve studied integrals in calculus, you can see that it should 
be possible to go the opposite way, finding position as a function of time given acceleration as 
a function of time. In Section 2.4 we’ll do this for the special case of constant acceleration, al-
though there we’ll take an algebra-based approach; Problem 87 obtains the same results using 
calculus. We’ll take a quick look at nonconstant acceleration in Section 2.6. The Application on 
this page provides an important technology that finds an object’s position from its acceleration.

GOT IT? 2.3 An elevator is going up at constant speed, slows to a stop, then starts 
down and soon reaches the same constant speed it had going up. Is the elevator’s aver-
age acceleration between its upward and downward constant-speed motions (a) zero,  
(b) downward, (c) first upward and then downward, or (d) first downward and then upward?

2.4 Constant Acceleration
The description of motion has an especially simple form when acceleration is constant. 
Suppose an object starts at time t = 0 with some initial velocity v0 and constant accelera-
tion a. Later, at some time t, it has velocity v. Because the acceleration doesn’t change, its 
average and instantaneous values are identical, so we can write

a = a =
∆v

∆t
=

v - v0

t - 0

or, rearranging,

 v = v0 + at  1for constant acceleration only2 (2.7)

This equation says that the velocity changes from its initial value by an amount that is 
the product of acceleration and time.

✓TIp Know Your Limits

Many equations we develop are special cases of more general laws, and they’re limited 
to special circumstances. Equation 2.7 is a case in point: It applies only when accelera-
tion is constant.

Having determined velocity as a function of time, we now consider position. With con-
stant acceleration, velocity increases steadily—and thus the average velocity over an interval 
is the average of the velocities at the beginning and the end of that interval. So we can write

 v = 1
21v0 + v2 (2.8)

for the average velocity over the interval from t = 0 to some later time when the velocity 
is v. We can also write the average velocity as the change in position divided by the time 
interval. Suppose that at time 0 our object was at position x0. Then its average velocity 
over a time interval from 0 to time t is

v =
∆x

∆t
=

x - x0

t - 0

AppLICATIOn  Inertial 
Guidance

Given an object’s initial position and velocity, 
and its subsequent acceleration—which may 
vary with time—it’s possible to invert Equation 
2.6 and solve for position (more on the math-
ematics of this inversion in Section 2.6). Inertial 
guidance systems, also called inertial navigation 
systems, exploit this principle to allow subma-
rines, ships, and airplanes to keep track of their 
locations based solely on internal measurements 
of their own acceleration. This frees them from 
the need for external positioning references such 
as the Global Positioning System (GPS), radar, 
or direct observation. Inertial guidance is espe-
cially important for submarines, which usually 
can’t access external sources for information 
about their positions. In the one-dimensional 
motion of this chapter, an inertial guidance 
system would consist of a single accelerometer 
whose reading is tracked continually. In practi-
cal systems, three accelerometers at right angles 
track acceleration in all three dimensions. In-
formation from on-board gyroscopes registers 
orientation, so the system “knows” the changing 
directions of the three accelerations.

Early inertial guidance systems were heavy 
and expensive, but the miniaturization of accel-
erometers and gyroscopes—so that they’re now 
in every smartphone—has enabled smaller and 
less expensive inertial guidance systems. The 
photo shows a complete inertial navigation sys-
tem developed by the U.S. Defense Advanced 
Research Projects Agency (DARPA) for use in 
locations where GPS signals aren’t available; 
it’s so small that it fits within the Lincoln Me-
morial on a penny!
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22 Chapter 2 Motion in a Straight Line

where x is the object’s position at time t. Equating this expression for v with the expression 
in Equation 2.8 gives

 x = x0 + vt = x0 + 1
21v0 + v2t (2.9)

But we already found the instantaneous velocity v that appears in this expression; it’s given 
by Equation 2.7. Substituting and simplifying then give the position as a function of time:

 x = x0 + v0 t + 1
2 at2  1for constant acceleration only2 (2.10)

Does Equation 2.10 make sense? With no acceleration 1a = 02, position would in-
crease linearly with time, at a rate given by the initial velocity v0. With constant accelera-
tion, the additional term 1

2 at2 describes the effect of the ever-changing velocity; time is 
squared because the longer the object travels, the faster it moves, so the more distance it 
covers in a given time. Figure 2.9 shows the meaning of the terms in Equation 2.10.

How much runway do I need to land a jetliner, given touchdown speed and a constant 
acceleration? A question like this involves position, velocity, and acceleration without ex-
plicit mention of time. So we solve Equation 2.7 for time, t = 1v - v02/a, and substitute 
this expression for t in Equation 2.9 to write

x - x0 = 1
2 
1v0 + v21v - v02

a

or, since 1a + b21a - b2 = a2 - b2,

 v2 = v0
2 + 2a1x - x02 (2.11)

Equations 2.7, 2.9, 2.10, and 2.11 link all possible combinations of position, veloc-
ity, and acceleration for motion with constant acceleration. We summarize them in 
Table 2.1, and remind you that they apply only in the case of constant acceleration.

Although we derived these equations algebraically, we could instead have used  
calculus. Problem 87 takes this approach in getting from Equation 2.7 to Equation 2.10.

Using the Equations of Motion
The equations in Table 2.1 fully describe motion under constant acceleration. Don’t re-
gard them as separate laws, but recognize them as complementary descriptions of a single 
underlying phenomenon—one-dimensional motion with constant acceleration. Having 
several equations provides convenient starting points for approaching problems. Don’t 
memorize these equations, but grow familiar with them as you work problems. We now 
offer a strategy for solving problems about one-dimensional motion with constant accel-
eration using these equations.

Table 2.1 Equations of Motion for Constant 
Acceleration

equation Contains Number

v = v0 + at v, a, t; no x 2.7 

x = x0 + 1
21v0 + v2t x, v, t; no a 2.9 

x = x0 + v0t + 1
2 at2 x, a, t; no v 2.10

v2 = v0
2 + 2a1x - x02 x, v, a; no t 2.11

probleM-solvIng strategy 2.1 Motion with Constant Acceleration

InTERpRET Interpret the problem to be sure it asks about motion with constant acceleration. 
Next, identify the object(s) whose motion you’re interested in.

DEVELOp Draw a diagram with appropriate labels, and choose a coordinate system. For in-
stance, sketch the initial and final physical situations, or draw a position-versus-time graph. 
Then determine which equations of motion from Table 2.1 contain the quantities you’re given 
and will be easiest to solve for the unknown(s).

EVALUATE Solve the equations in symbolic form and then evaluate numerical quantities.

ASSESS Does your answer make sense? Are the units correct? Do the numbers sound reason-
able? What happens in special cases—for example, when a distance, velocity, acceleration, or 
time becomes very large or very small?

Figure 2.9 Meaning of the terms in Equation 2.10.

The next two examples are typical of problems involving constant acceleration. Ex-
ample 2.3 is a straightforward application of the equations we’ve just derived to a single 
object. Example 2.4 involves two objects, in which case we need to write equations de-
scribing the motions of both objects.

1
2

Acceleration causes the
position–time graph to
curve upward.

With no
acceleration,

position changes
at a steady rate.

With v = 0 and a = 0, position doesn’t change.

x

tTime, t

Po
si

tio
n,

 x

x0

v0t
x0

Slope = v0

at2

M02_WOLF3724_03_SE_C02.indd   22 21/10/14   4:59 PM



2.4 Constant Acceleration 23

A jetliner touches down at 270 km/h. The plane then decelerates (i.e., 
undergoes acceleration directed opposite its velocity) at 4.5 m/s2. 
What’s the minimum runway length on which this aircraft can land?

Interpret We interpret this as a problem involving one-dimensional 
motion with constant acceleration and identify the airplane as the ob-
ject of interest.

Develop We determine that Equation 2.11, v2 = v0
2 + 2a1x - x02, 

relates distance, velocity, and acceleration; so our plan is to solve that 
equation for the minimum runway length. We want the airplane to 
come to a stop, so the final velocity v is 0, and v0 is the initial touch-
down velocity. If x0 is the touchdown point, then the quantity x - x0 
is the distance we’re interested in; we’ll call this ∆x.

evaluate Setting v = 0 and solving Equation 2.11 then give

∆x =
-v0

2

2a
=

- 31270 km/h211000 m/km211/3600 h/s242

1221-4.5 m/s22 = 625 m

Note that we used a negative value for the acceleration because the 
plane’s acceleration is directed opposite its velocity—which we chose 
as the positive x-direction. We also converted the speed to m/s for 
compatibility with the SI units given for acceleration.

assess Make sense? That 625 m is just over one-third of a mile, 
which seems a bit short. However, this is an absolute minimum with 
no margin of safety. For full-size jetliners, the standard for minimum 
landing runway length is about 5000 feet or 1.5 km.

✓TIp Be Careful with Mixed Units

Frequently problems are stated in units other than SI. Although it’s 
possible to work consistently in other units, when in doubt, convert 
to SI. In this problem, the acceleration is originally in SI units but 
the velocity isn’t—a sure indication of the need for conversion. 

ExAMpLE 2.3  Motion with Constant Acceleration: Landing a Jetliner

A speeding motorist zooms through a 50 km/h zone at 75 km/h (that’s 
21 m/s) without noticing a stationary police car. The police officer im-
mediately heads after the speeder, accelerating at 2.5 m/s2. When the 
officer catches up to the speeder, how far down the road are they, and 
how fast is the police car going?

Interpret We interpret this as two problems involving one-dimensional 
motion with constant acceleration. We identify the objects in question 
as the speeding car and the police car. Their motions are related be-
cause we’re interested in the point where the two coincide.

Develop It’s helpful to draw a sketch showing qualitatively the posi-
tion-versus-time graphs for the two cars. Since the speeding car moves 
with constant speed, its graph is a straight line. The police car is accel-
erating from rest, so its graph starts flat and gets increasingly steeper. 
Our sketch in Fig. 2.10 shows clearly the point we’re interested 
in, when the two cars coincide for the second time. Equation 2.10, 
x = x0 + v0t + 1

2  at2, gives position versus time with constant accel-
eration. Our plan is (1) to write versions of this equation specialized 

to each car, (2) to equate the resulting position expressions to find the 
time when the cars coincide, and (3) to find the corresponding posi-
tion and the police car’s velocity. For the latter we’ll use Equation 2.7,  
v = v0 + at.

evaluate Let’s take the origin to be the point where the speeder 
passes the police car and t = 0 to be the corresponding time, as 
marked in Fig. 2.10. Then x0 = 0 in Equation 2.10 for both cars, 
while the speeder has no acceleration and the police car has no initial 
velocity. Thus our two versions of Equation 2.10 are

xs = vs0 t 1speeder2 and xp = 1
2 ap t

2 1police car2
Equating xs and xp tells when the speeder and the police car are at the 
same place, so we write vs0 t = 1

2 ap t
2. This equation is satisfied when 

t = 0 or t = 2vs0 /ap. Why two answers? We asked for any times 
when the two cars are in the same place. That includes the initial en-
counter at t = 0 as well as the later time t = 2vs0 /ap when the police 
car catches the speeder; both points are shown on our sketch. Where 
does this occur? We can evaluate using t = 2vs0 /ap in the speeder’s 
equation:

xs = vs0 t = vs0 
2vs0

ap
=

2vs0
2

ap
=

122121 m/s22

2.5 m/s2 = 350 m

Equation 2.7 then gives the police car’s speed at this time:

vp = ap t = ap

2vs0

ap
= 2vs0 = 150 km/h

assess Make sense? As Fig. 2.10 shows, the police car starts from 
rest and undergoes constant acceleration, so it has to be going faster 
at the point where the two cars meet. In fact, it’s going twice as fast—
again, as in Example 2.2, that’s because the police car’s position 
depends quadratically on time. That quadratic dependence also tells 
us that the police car’s position-versus-time graph in Fig. 2.10 is a  
parabola. ■

ExAMpLE 2.4  Motion with Two Objects: Speed Trap!

Figure 2.10 Our sketch of position versus time for the cars in Example 2.4.

Motorist
passes
police
car.

Police car
catches up.

■
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24 Chapter 2 Motion in a Straight Line

GOT IT? 2.4 The police car in Example 2.4 starts with zero velocity and is going at 
twice the car’s velocity when it catches up to the car. So at some intermediate instant it 
must be going at the same velocity as the car. Is that instant (a) halfway between the times 
when the two cars coincide, (b) closer to the time when the speeder passes the stationary 
police car, or (c) closer to the time when the police car catches the speeder?

2.5 The Acceleration of Gravity
Drop an object, and it falls at an increasing rate, accelerating because of gravity (Fig. 2.11). 
The acceleration is constant for objects falling near Earth’s surface, and furthermore it has 
the same value for all objects. This value, the acceleration of gravity, is designated g and 
is approximately 9.8 m/s2 near Earth’s surface.

The acceleration of gravity applies strictly only in free fall—motion under the influence of 
gravity alone. Air resistance, in particular, may dramatically alter the motion, giving the false 
impression that gravity acts differently on lighter and heavier objects. As early as the year 1600, 
Galileo is reputed to have shown that all objects have the same acceleration by dropping objects 
off the Leaning Tower of Pisa. Astronauts have verified that a feather and a hammer fall with 
the same acceleration on the airless Moon—although that acceleration is less than on Earth.

Although g is approximately constant near Earth’s surface, it varies slightly with latitude 
and even local geology. The variation with altitude becomes substantial over distances of 
tens to hundreds of kilometers. But nearer Earth’s surface it’s a good approximation to take g 
as strictly constant. Then an object in free fall undergoes constant acceleration, and the equa-
tions of Table 2.1 apply. In working gravitational problems, we usually replace x with y to 
designate the vertical direction. If we make the arbitrary but common choice that the upward 
direction is positive, then acceleration a becomes -g because the acceleration is downward.

A diver drops from a 10-m-high cliff. At what speed does he enter the 
water, and how long is he in the air?

Interpret This is a case of constant acceleration due to gravity, and the 
diver is the object of interest. The diver drops a known distance starting 
from rest, and we want to know the speed and time when he hits the water.

Develop Figure 2.12 is a sketch showing what the diver’s position 
versus time should look like. We’ve incorporated what we know: 
the initial position 10 m above the water, the start from rest, and the 
downward acceleration that results in a parabolic position-versus-time 
curve. Given the dive height, Equation 2.11 determines the speed v. 
Following our newly adopted convention that y designates the ver-
tical direction, we write Equation 2.11 as v2 = v 2

0 + 2a1y - y02. 
Since the diver starts from rest, v0 = 0 and the equation becomes 
v2 = -2g1y - y02. So our plan is first to solve for the speed at the 
water; then use Equation 2.7, v = v0 + at, to get the time.

evaluate Our sketch shows that we’ve chosen y = 0 at the water, 
so y0 = 10 m and Equation 2.11 gives

�v �  = 2-2g1y - y02 = 21-2219.8 m/s2210 m - 10 m2
 = 14 m/s

This is the magnitude of the velocity, hence the absolute value sign; 
the actual value is v = -14 m/s, with the minus sign indicating 
downward motion. Knowing the initial and final velocities, we use 
Equation 2.7 to find how long the dive takes. Solving that equation 
for t gives

t =
v0 - v

g
=

0 m/s - 1-14 m/s2
9.8 m/s2 = 1.4 s

Note the careful attention to signs here; we wrote v with its 
 negative sign and used a = -g  in Equation 2.7 because we 
 defined downward to be the negative direction in our coordinate 
system.

assess Make sense? Our expression for v gives a higher speed with 
a greater acceleration or a greater distance y - y0—both as expected. 
Our approach here isn’t the only one possible; we could also have 
found the time by solving Equation 2.10 and then evaluating the speed 
using  Equation 2.7. ■

ExAMpLE 2.5  Constant Acceleration due to Gravity: Cliff Diving

Curve is �at
here because diver
starts from rest.

We want this 
slope (speed) c

cand
this time.

Figure 2.12 Our sketch for Example 2.5.

Figure 2.11 Strobe photo of a falling ball. 
Successive images are farther apart, showing 
that the ball is accelerating.
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2.5 The Acceleration of Gravity 25

You toss a ball straight up at 7.3 m/s; it leaves your hand at 1.5 m 
above the floor. Find when it hits the floor, the maximum height it 
reaches, and its speed when it passes your hand on the way down.

Interpret We have constant acceleration due to gravity, and here the 
object of interest is the ball. We want to find time, height, and speed.

Develop The ball starts by going up, eventually comes to a stop, and then 
heads downward. Figure 2.13 is a sketch of the height versus time that we 
expect, showing what we know and the three quantities we’re after. Equa-
tion 2.10, y = y0 + v0 t + 1

2 at2, determines position as a function of time, 
so our plan is to use that equation to find the time the ball hits the floor 
(again, we’ve replaced horizontal position x with height y in Equation 2.10). 
Then we can use Equation 2.11, v2 = v0

2 + 2a1y - y02, to find the 
height at which v = 0—that is, the peak height. Finally, Equation 2.11 will 
also give us the speed at any height, letting us answer the question about the 
speed when the ball passes the height of 1.5 m on its way down.

evaluate Our sketch shows that we’ve taken y = 0 at the 
floor; so when the ball is at the floor, Equation 2.10 becomes 
0 = y0 + v0 t - 1

2 gt2, which we can solve for t using the quadratic 
formula [Appendix A; t = 1v0 { 2v0

2 + 2y0  g2/g]. Here v0 is the 
initial velocity, 7.3 m/s; it’s positive because the motion is initially 
upward. The initial position is the hand height, so y0 = 1.5 m, and 
g of course is 9.8 m/s2 (we accounted for the downward acceleration 
by putting a = -g in Equation 2.10). Putting in these numbers gives 
t = 1.7 s or -0.18 s; the answer we want is 1.7 s. At the peak of its 
flight, the ball’s velocity is instantaneously zero because it’s mov-
ing neither up nor down. So we set v2 = 0 in Equation 2.11 to get 
0 = v0

2 - 2g1y - y02. Solving for y then gives the peak height:

y = y0 +
v0

2

2g
= 1.5 m +

17.3 m/s22

12219.8 m/s22 = 4.2 m

To find the speed when the ball reaches 1.5 m on the way down, 
we set y = y0 in Equation 2.11. The result is v2 = v0

2 , so v = {v0 
or {7.3 m/s. Once again, there are two answers. The equation has 
given us all the velocities the ball has at 1.5 m—including the initial 
upward velocity and the later downward velocity. We’ve shown here 
that an upward-thrown object returns to its initial height with the same 
speed it had initially.

assess Make sense? With no air resistance to sap the ball of its en-
ergy, it seems reasonable that the ball comes back down with the same 
speed—a fact we’ll explore further when we introduce energy con-
servation in Chapter 7. But why are there two answers for time and 
velocity? Equation 2.10 doesn’t “know” about your hand or the floor; 
it “assumes” the ball has always been undergoing downward accelera-
tion g. We asked of Equation 2.10 when the ball would be at y = 0. 
The second answer, 1.7 s, was the one we wanted. But if the ball had 
always been in free fall, it would also have been on the floor 0.18 
s earlier, heading upward. That’s the meaning of the other answer, 
-0.18 s, as we’ve indicated on our sketch. Similarly, Equation 2.11 
gave us all the velocities the ball had at a height of 1.5 m, including 
both the initial upward velocity and the later downward velocity. ■

ExAMpLE 2.6  Constant Acceleration due to Gravity: Tossing a Ball

Figure 2.13 Our sketch for Example 2.6.

We’re given the
initial speed and
height.

Here is another
time the ball
would have been
at �oor level.

The curve is �at at
the top since speed
is instantaneously 
zero.

We want this
height c

cand
this speed c

cand this 
time.

✓TIp Multiple Answers

Frequently the mathematics of a problem gives more than one answer. Think about 
what each answer means before discarding it! Sometimes an answer isn’t consistent 
with the physical assumptions of the problem, but other times all answers are meaning-
ful even if they aren’t all what you’re looking for.

GOT IT? 2.5 Standing on a roof, you simultaneously throw one ball straight up and 
drop another from rest. Which hits the ground first? Which hits the ground moving faster?

In Example 2.5 the diver was moving downward, and the downward gravitational ac-
celeration steadily increased his speed. But, as Conceptual Example 2.1 suggested, the 
acceleration of gravity is downward regardless of an object’s motion. Throw a ball straight 
up, and it’s accelerating downward even while moving upward. Since velocity and ac-
celeration are in opposite directions, the ball slows until it reaches its peak, then pauses 
instantaneously, and then gains speed as it falls. All the while its acceleration is 9.8 m/s2 
downward.
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26 Chapter 2 Motion in a Straight Line

AppLICATIOn Keeping Time

The NIST-F1 atomic clock, shown here with its developers, sets the U.S. 
standard of time. The clock is so accurate that it won’t gain or lose more than 
a second in 100 million years! It gets its remarkable accuracy by monitoring a 
super-cold clump of freely falling cesium atoms for what is, in this context, a 
long time period of about 1 s. The atom clump is put in free fall by a more so-
phisticated version of the ball toss in Example 2.6. In the NIST-F1 clock, laser 
beams gently “toss” the ball of atoms upward with a speed that gives it an up-
and-down travel time of about 1 s (see Problem 66). For this reason NIST-F1 is 
called an atomic fountain clock. In the photo you can see the clock’s towerlike 
structure that accommodates this atomic fountain.

2.6 When Acceleration Isn’t Constant
Sections 2.4 and 2.5 both dealt with constant acceleration. Fortunately, there are many 
important applications, such as situations involving gravity near Earth’s surface, where ac-
celeration is constant. But when it isn’t, then the equations listed in Table 2.1 don’t apply. 
In Chapter 3 you’ll see that acceleration can vary in magnitude, direction, or both. In the 
one-dimensional situations of the current chapter, a nonconstant acceleration a would be 
specified by giving a as a function of time t: a(t). If you’ve already studied integral calcu-
lus, then you know that integration is the opposite of differentiation. Since acceleration is 
the derivative of velocity, you get from acceleration to velocity by integration; from there 
you can get to position by integrating again. Mathematically, we express these relations as

 v1t2 = La1t2 dt  (2.12)

 x1t2 = Lv1t2 dt (2.13)

These results don’t fully determine v and x; you also need to know the initial conditions 
(usually, the values at time t = 0); these provide what are called in calculus the constants 
of integration. In Problem 87, you can evaluate the integrals in Equations 2.12 and 2.13 for 
the case of constant acceleration, giving an alternate derivation of Equations 2.7 and 2.10. 
Problems 82, 88, and 89 challenge you to use integral calculus to find an object’s position 
in the case of nonconstant accelerations, while Problem 90 explores the case of an expo-
nentially decreasing acceleration.

(a)

(b)

(c)

0

Time, t

A
cc

el
er

at
io

n,
 a

0 t1

GOT IT? 2.6 The graph shows accelera-
tion versus time for three different objects, all of 
which start at rest from the same position. Only 
object (b) undergoes constant acceleration. Which 
object is going fastest at the time t1?
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ChaPter 2 SuMMary
Big Idea

The big ideas here are those of kinematics—the study of motion 
without regard to its cause. Position, velocity, and acceleration are 
the quantities that characterize motion:

Position Velocity

Rate of
change

Rate of
change

Acceleration

Key Concepts and Equations

Average velocity and acceleration involve changes in position and velocity, respectively, 
occurring over a time interval ∆t:

 v =
∆x

∆t

 a =
∆v

∆t

Here ∆x is the displacement, or change in position, and ∆v is the change in velocity.
Instantaneous values are the limits of infinitesimally small time intervals and are given 

by calculus as the time derivatives of position and velocity:

 v =
dx

dt

 a =
dv

dt

∆t
∆x

Time, t

Po
si

tio
n,

 x

This line’s 
slope is the
average
velocity c

cand this line’s 
slope is the instantaneous
velocity.

∆t
∆v

Time, t
0
V

el
oc

ity
, v

cwhile the
instantaneous
acceleration a
is the slope of

this line.

The average acceleration a
is this line’s slope c

Applications

Constant acceleration is a special case that yields simple equations 
 describing one-dimensional motion:

 v = v0 + at

 x = x0 + v0 t + 1
2 at2

 v2 = v0
2 + 2a1x - x02

These equations apply only in the case of constant acceleration.

1
2

x

tTime, t
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 x

x0

v0t
x0

Slope = v0

at2

An important example is the acceleration of gravity, essentially con-
stant near Earth’s surface, with magnitude approximately 9.8 m/s2.

At the peak 
of its �ight, 
the ball is 
instantaneously 
at rest.

Just before the peak,
v is positive;  just
after, it’s negative.

Since v is steadily decreasing, the 
acceleration is constant and negative.

v 0

v0

-v0

a 0

-9.8 m>s2

H
ei

gh
t, 
y

Time, t

Time, t

Time, t

 P
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For homework assigned on MasteringPhysics, go to www.masteringphysics.com

BIO Biology and/or medicine-related problems DATA Data problems ENV Environmental problems CH Challenge problems Comp Computer problems

For thought and Discussion
 1. Under what conditions are average and instantaneous velocity 

equal?
 2. Does a speedometer measure speed or velocity?
 3. You check your odometer at the beginning of a day’s driving and 

again at the end. Under what conditions would the difference be-
tween the two readings represent your displacement?

 4. Consider two possible definitions of average speed: (a) the aver-
age of the values of the instantaneous speed over a time interval 
and (b) the magnitude of the average velocity. Are these definitions 
equivalent? Give two examples to demonstrate your conclusion.

 5. Is it possible to be at position x = 0 and still be moving?
 6. Is it possible to have zero velocity and still be accelerating?
 7. If you know the initial velocity v0 and the initial and final heights 

y0 and y, you can use Equation 2.10 to solve for the time t when 
the object will be at height y. But the equation is quadratic in t, so 
you’ll get two answers. Physically, why is this?

 8. Starting from rest, an object undergoes acceleration given by 
a = bt, where t is time and b is a constant. Can you use bt for a 
in Equation 2.10 to predict the object’s position as a function of 
time? Why or why not?

 9. In which of the velocity-versus-time graphs shown in Fig. 2.14 
would the average velocity over the interval shown equal the  
average of the velocities at the ends of the interval?

v

t
(a)

v

t
(b)

v

t
(c)

Figure 2.14 For Thought and Discussion 9

 10. If you travel in a straight line at 50 km/h for 1 h and at 100 km/h 
for another hour, is your average velocity 75 km/h? If not, is it 
more or less?

 11. If you travel in a straight line at 50 km/h for 50 km and then at 
100 km/h for another 50 km, is your average velocity 75 km/h? If 
not, is it more or less?

exercises and Problems
Exercises

Section 2.1 Average Motion
 12. In 2009, Usain Bolt of Jamaica set a world record in the 100-m 

dash with a time of 9.58 s. What was his average speed?
13. The standard 26-mile, 385-yard marathon dates to 1908, when 

the Olympic marathon started at Windsor Castle and finished 
before the Royal Box at London’s Olympic Stadium. Today’s 
top marathoners achieve times around 2 hours, 3 minutes for the 
standard marathon. (a) What’s the average speed of a marathon 
run in this time? (b) Marathons before 1908 were typically about 
25 miles. How much longer does the race last today as a result 

of the extra mile and 385 yards, assuming it’s run at part (a)’s 
 average speed?

14. Starting from home, you bicycle 24 km north in 2.5 h and then 
turn around and pedal straight home in 1.5 h. What are your (a) 
displacement at the end of the first 2.5 h, (b) average velocity 
over the first 2.5 h, (c) average velocity for the homeward leg 
of the trip, (d) displacement for the entire trip, and (e) average 
velocity for the entire trip?

15. The Voyager 1 spacecraft is expected to continue broadcast-
ing data until at least 2020, when it will be some 14 billion 
miles from Earth. How long will it take Voyager’s radio sig-
nals, traveling at the speed of light, to reach Earth from this 
distance?

16. In 2008, Australian Emma Snowsill set an unofficial record in the 
women’s Olympic triathlon, completing the 1.5-km swim, 40-km 
bicycle ride, and 10-km run in 1 h, 58 min, 27.66 s. What was her 
average speed?

17. Taking Earth’s orbit to be a circle of radius 1.5 * 108 km, deter-
mine Earth’s orbital speed in (a) meters per second and (b) miles 
per second.

18. What’s the conversion factor from meters per second to miles per 
hour?

Section 2.2 Instantaneous Velocity
19. On a single graph, plot distance versus time for the first two trips 

from Houston to Des Moines described on page 16. For each trip, 
identify graphically the average velocity and, for each segment of 
the trip, the instantaneous velocity.

20. For the motion plotted in Fig. 2.15, estimate (a) the greatest 
velocity in the positive x-direction, (b) the greatest velocity in 
the negative x-direction, (c) any times when the object is instan-
taneously at rest, and (d) the average velocity over the interval 
shown.
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Figure 2.15 Exercise 20

21. A model rocket is launched straight upward. Its altitude 
y as a function of time is given by y = bt - ct2, where 
b = 82 m/s, c = 4.9 m/s2, t is the time in seconds, and y is in 
meters. (a) Use differentiation to find a general expression for the 
rocket’s velocity as a function of time. (b) When is the velocity 
zero?

Section 2.3 Acceleration
22. A giant eruption on the Sun propels solar material from rest to 

450 km/s over a period of 1 h. Find the average acceleration.
23. Starting from rest, a subway train first accelerates to 25 m/s, then 

brakes. Forty-eight seconds after starting, it’s moving at 17 m/s. 
What’s its average acceleration in this 48-s interval?
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Exercises and Problems 29

24. A space shuttle’s main engines cut off 8.5 min after launch, at 
which time its speed is 7.6 km/s. What’s the shuttle’s average ac-
celeration during this interval?

25. An egg drops from a second-story window, taking 1.12 s to fall 
and reaching 11.0 m/s just before hitting the ground. On con-
tact, the egg stops completely in 0.131 s. Calculate the magni-
tudes of its average acceleration (a) while falling and (b) while 
stopping.

26. An airplane’s takeoff speed is 320 km/h. If its average accelera-
tion is 2.9 m/s2, how much time is it accelerating down the run-
way before it lifts off?

27. ThrustSSC, the world’s first supersonic car, accelerates from rest 
to 1000 km/h in 16 s. What’s its acceleration?

Section 2.4 Constant Acceleration
28. You’re driving at 70 km/h when you apply constant acceleration 

to pass another car. Six seconds later, you’re doing 80 km/h. How 
far did you go in this time?

29. Differentiate both sides of Equation 2.10, and show that you get 
Equation 2.7.

30. An X-ray tube gives electrons constant acceleration over a distance 
of 15 cm. If their final speed is 1.2 * 107 m/s, what are (a) the elec-
trons’ acceleration and (b) the time they spend accelerating?

31. A rocket rises with constant acceleration to an altitude of 85 km, 
at which point its speed is 2.8 km/s. (a) What’s its acceleration? 
(b) How long does the ascent take?

32. Starting from rest, a car accelerates at a constant rate, reaching 
88 km/h in 12 s. Find (a) its acceleration and (b) how far it goes 
in this time.

33. A car moving initially at 50 mi/h begins slowing at a constant 
rate 100 ft short of a stoplight. If the car comes to a full stop just 
at the light, what is the magnitude of its acceleration?

34.  In a medical X-ray tube, electrons are accelerated to a velocity 
of 108 m/s and then slammed into a tungsten target. As they stop, 
the electrons’ rapid acceleration produces X rays. If the time for 
an electron to stop is on the order of 10-9 s, approximately how 
far does it move while stopping?

35. California’s Bay Area Rapid Transit System (BART) uses an au-
tomatic braking system triggered by earthquake warnings. The 
system is designed to prevent disastrous accidents involving 
trains traveling at a maximum of 112 km/h and carrying a total 
of some 45,000 passengers at rush hour. If it takes a train 24 s to 
brake to a stop, how much advance warning of an earthquake is 
needed to bring a 112-km/h train to a reasonably safe speed of  
42 km/h when the earthquake strikes?

36. You’re driving at speed v0 when you spot a stationary moose on the 
road, a distance d ahead. Find an expression for the magnitude of 
the acceleration you need if you’re to stop before hitting the moose.

Section 2.5 The Acceleration of Gravity
37. You drop a rock into a deep well and 4.4 s later hear a splash. 

How far down is the water? Neglect the travel time of sound.
38. Your friend is sitting 6.5 m above you on a tree branch. How fast 

should you throw an apple so it just reaches her?
39. A model rocket leaves the ground, heading straight up at 49 m/s. 

(a) What’s its maximum altitude? Find its speed and altitude at 
(b) 1 s, (c) 4 s, and (d) 7 s.

40. A foul ball leaves the bat going straight up at 23 m/s. (a) How 
high does it rise? (b) How long is it in the air? Neglect the dis-
tance between bat and ground.

41. A Frisbee is lodged in a tree 6.5 m above the ground. A rock 
thrown from below must be going at least 3 m/s to dislodge the 
Frisbee. How fast must such a rock be thrown upward if it leaves 
the thrower’s hand 1.3 m above the ground?

42. Space pirates kidnap an earthling and hold him on one of the so-
lar system’s planets. With nothing else to do, the prisoner amuses 
himself by dropping his watch from eye level (170 cm) to the 
floor. He observes that the watch takes 0.95 s to fall. On what 
planet is he being held? (Hint: Consult Appendix E.)

problems
43. You allow 40 min to drive 25 mi to the airport, but you’re caught 

in heavy traffic and average only 20 mi/h for the first 15 min. 
What must your average speed be on the rest of the trip if you’re 
to make your flight?

44. A base runner can get from first to second base in 3.4 s. If he 
leaves first as the pitcher throws a 90 mi/h fastball the 61-ft dis-
tance to the catcher, and if the catcher takes 0.45 s to catch and 
rethrow the ball, how fast does the catcher have to throw the ball 
to second base to make an out? Home plate to second base is the 
diagonal of a square 90 ft on a side.

45. You can run 9.0 m/s, 20% faster than your brother. How much 
head start should you give him in order to have a tie race over 
100 m?

46. A jetliner leaves San Francisco for New York, 4600 km away. 
With a strong tailwind, its speed is 1100 km/h. At the same time, 
a second jet leaves New York for San Francisco. Flying into 
the wind, it makes only 700 km/h. When and where do the two 
planes pass?

47. An object’s  posit ion is  given by x = bt + ct3,  where 
b = 1.50 m/s, c = 0.640 m/s3, and t is time in seconds. To 
study the limiting process leading to the instantaneous velocity, 
calculate the object’s average velocity over time intervals from 
(a) 1.00 s to 3.00 s, (b) 1.50 s to 2.50 s, and (c) 1.95 s to 2.05 s.  
(d) Find the instantaneous velocity as a function of time by dif-
ferentiating, and compare its value at 2 s with your average ve-
locities.

48. An object’s position as a function of time t is given by x = bt4, 
with b a constant. Find an expression for the instantaneous 
 velocity, and show that the average velocity over the inter-
val from t = 0 to any time t is one-fourth of the instantaneous 
 velocity at t.

49. In a drag race, the position of a car as a function of time is given 
by x = bt2, with b = 2.000 m/s2. In an attempt to determine the 
car’s velocity midway down a 400-m track, two observers stand 
at the 180-m and 220-m marks and note when the car passes. (a) 
What value do the two observers compute for the car’s velocity 
over this 40-m stretch? Give your answer to four significant fig-
ures. (b) By what percentage does this observed value differ from 
the instantaneous value at x = 200 m?

50. Squaring Equation 2.7 gives an expression for v2. Equation 2.11 
also gives an expression for v2. Equate the two expressions, and 
show that the resulting equation reduces to Equation 2.10.

51. During the complicated sequence that landed the rover Curiosity on 
Mars in 2012, the spacecraft reached an altitude of 142 m above 
the Martian surface, moving vertically downward at 32.0 m/s. It 
then entered a so-called constant deceleration (CD) phase, during 
which its velocity decreased steadily to 0.75 m/s while it dropped 
to an altitude of 23 m. What was the magnitude of the space-
craft’s acceleration during this CD phase?

BIO
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30 Chapter 2 Motion in a Straight Line

52. The position of a car in a drag race is measured each second, and 
the results are tabulated below.

Time t (s) 0 1 2 3 4 5

Position x (m) 0 1.7 6.2 17 24 40

Assuming the acceleration is approximately constant, plot posi-
tion versus a quantity that should make the graph a straight line. 
Fit a line to the data, and from it determine the approximate ac-
celeration. 

53. A fireworks rocket explodes at a height of 82.0 m, producing 
fragments with velocities ranging from 7.68 m/s downward to 
16.7 m/s upward. Over what time interval are fragments hitting 
the ground?

54. The muscles in a grasshopper’s legs can propel the insect upward 
at 3.0 m/s. How high can the grasshopper jump?

55. On packed snow, computerized antilock brakes can reduce a car’s 
stopping distance by 55%. By what percentage is the stopping 
time reduced?

56. A particle leaves its initial position x0 at time t = 0, moving in the 
positive x-direction with speed v0 but undergoing acceleration of 
magnitude a in the negative x-direction. Find expressions for (a) the 
time when it returns to x0 and (b) its speed when it passes that point.

57. A hockey puck moving at 32 m/s slams through a wall of snow 
35 cm thick. It emerges moving at 18 m/s. Assuming constant 
acceleration, find (a) the time the puck spends in the snow and  
(b) the thickness of a snow wall that would stop the puck entirely.

58. Amtrak’s 20th-Century Limited is en route from Chicago to New 
York at 110 km/h when the engineer spots a cow on the track. 
The train brakes to a halt in 1.2 min, stopping just in front of 
the cow. (a) What is the magnitude of the train’s acceleration? 
(b) What’s the direction of the acceleration? (c) How far was the 
train from the cow when the engineer applied the brakes?

59. A jetliner touches down at 220 km/h and comes to a halt 29 s 
later. What’s the shortest runway on which this aircraft can land?

60. A motorist suddenly notices a stalled car and slams on the 
brakes, negatively accelerating at 6.3 m/s2. Unfortunately, this 
isn’t enough, and a collision ensues. From the damage sustained, 
police estimate that the car was going 18 km/h at the time of the 
collision. They also measure skid marks 34 m long. (a) How 
fast was the motorist going when the brakes were first applied?  
(b) How much time elapsed from the initial braking to the collision?

61. A racing car undergoing constant acceleration covers 140 m in 
3.6 s. (a) If it’s moving at 53 m/s at the end of this interval, what 
was its speed at the beginning of the interval? (b) How far did it 
travel from rest to the end of the 140-m distance?

62. The maximum braking acceleration of a car on a dry road is 
about 8 m/s2. If two cars move head-on toward each other at 88 
km/h (55 mi/h), and their drivers brake when they’re 85 m apart, 
will they collide? If so, at what relative speed? If not, how far 
apart will they be when they stop? Plot distance versus time for 
both cars on a single graph.

63. After 35 min of running, at the 9-km point in a 10-km race, you 
find yourself 100 m behind the leader and moving at the same 
speed. What should your acceleration be if you’re to catch up by 
the finish line? Assume that the leader maintains constant speed.

64. You’re speeding at 85 km/h when you notice that you’re only 10 
m behind the car in front of you, which is moving at the legal 
speed limit of 60 km/h. You slam on your brakes, and your car 
negatively accelerates at 4.2 m/s2. Assuming the other car con-
tinues at constant speed, will you collide? If so, at what relative 
speed? If not, what will be the distance between the cars at their 
closest approach?

65. Airbags cushioned the Mars rover Spirit’s landing, and the rover 
bounced some 15 m vertically after its first impact. Assuming 
no loss of speed at contact with the Martian surface, what was 
Spirit’s impact speed?

66. Calculate the speed with which cesium atoms must be “tossed” 
in the NIST-F1 atomic clock so that their up-and-down travel 
time is 1.0 s. (See the Application on page 26.)

67. A falling object travels one-fourth of its total distance in the last 
second of its fall. From what height was it dropped?

68. You’re on a NASA team engineering a probe to land on Jupiter’s 
moon Io, and your job is to specify the impact speed the probe 
can tolerate without damage. Rockets will bring the probe to a 
halt 100 m above the surface, after which it will fall freely. What 
speed do you specify? (Consult Appendix E.)

69. You’re atop a building of height h, and a friend is poised to drop 
a ball from a window at h/2. Find an expression for the speed at 
which you should simultaneously throw a ball downward, so the 
two hit the ground at the same time.

70. A castle’s defenders throw rocks down on their attackers from a 
15-m-high wall, with initial speed 10 m/s. How much faster are 
the rocks moving when they hit the ground than if they were sim-
ply dropped?

71. Two divers jump from a 3.00-m platform. One jumps upward at 
1.80 m/s, and the second steps off the platform as the first passes 
it on the way down. (a) What are their speeds as they hit the  
water? (b) Which hits the water first and by how much?

72. A balloon is rising at 10 m/s when its passenger throws a ball 
straight up at 12 m/s relative to the balloon. How much later does 
the passenger catch the ball?

73. Landing on the Moon, a spacecraft fires its rockets and comes to 
a complete stop just 12 m above the lunar surface. It then drops 
freely to the surface. How long does it take to fall, and what’s its 
impact speed? (Hint: Consult Appendix E.)

74. You’re at mission control for a rocket launch, deciding whether to 
let the launch proceed. A band of clouds 5.3 km thick  extends up-
ward from 1.9 km altitude. The rocket will accelerate at 4.6 m/s2, 
and it isn’t allowed to be out of sight for more than 30 s. Should 
you allow the launch?

75. You’re an investigator for the National Transportation Safety 
Board, examining a subway accident in which a train going at 
80 km/h collided with a slower train traveling in the same direc-
tion at 25 km/h. Your job is to determine the relative speed of 
the collision, to help establish new crash standards. The faster 
train’s “black box” shows that its brakes were applied and it be-
gan slowing at the rate of 2.1 m/s2 when it was 50 m from the 
slower train, while the slower train continued at constant speed. 
What do you report?

76. You toss a book into your dorm room, just clearing a windowsill 
4.2 m above the ground. (a) If the book leaves your hand 1.5 m  
above the ground, how fast must it be going to clear the sill?  
(b) How long after it leaves your hand will it hit the floor, 0.87 m 
below the windowsill?

77. Consider an object traversing a distance L, part of the way at 
speed v1 and the rest of the way at speed v2. Find expressions for 
the object’s average speed over the entire distance L when the object 
moves at each of the two speeds v1 and v2 for (a) half the total 
time and (b) half the total distance. (c) In which case is the aver-
age speed greater?

78. A particle’s position as a function of time is given by 
x = x0 sinvt, where x0 and v are constants. (a) Find expressions 
for the velocity and acceleration. (b) What are the maximum val-
ues of velocity and acceleration? (Hint: Consult the table of de-
rivatives in Appendix A.)
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Answers to Chapter Questions 31

79. Ice skaters, ballet dancers, and basketball players executing verti-
cal leaps often give the illusion of “hanging” almost motionless 
near the top of the leap. To see why this is, consider a leap to 
maximum height h. Of the total time spent in the air, what frac-
tion is spent in the upper half (i.e., at y 7 1

2h)?
80. You’re staring idly out your dorm window when you see a water 

balloon fall past. If the balloon takes 0.22 s to cross the 1.3-m-high 
window, from what height above the window was it dropped?

81. A police radar’s effective range is 1.0 km, and your radar detec-
tor’s range is 1.9 km. You’re going 110 km/h in a 70 km/h zone 
when the radar detector beeps. At what rate must you negatively 
accelerate to avoid a speeding ticket?

82. An object starts moving in a straight line from position x0, at time 
t = 0, with velocity v0. Its acceleration is given by a = a0 + bt, 
where a0 and b are constants. Use integration to find expressions 
for (a) the instantaneous velocity and (b) the position, as func-
tions of time.

83. You’re a consultant on a movie set, and the producer wants a 
car to drop so that it crosses the camera’s field of view in time 
∆t. The field of view has height h. Derive an expression for the 
height above the top of the field of view from which the car 
should be released.

84. (a) For the ball in Example 2.6, find its velocity just before 
it hits the floor. (b) Suppose you had tossed a second ball 
straight down at 7.3 m/s (from the same place 1.5 m above the 
floor). What would its velocity be just before it hits the floor?  
(c) When would the second ball hit the floor? (Interpret any 
multiple answers.)

85. Your roommate is an aspiring novelist and asks your opinion on 
a matter of physics. The novel’s central character is kept awake 
at night by a leaky faucet. The sink is 19.6 cm below the faucet. 
At the instant one drop leaves the faucet, another strikes the sink 
below and two more are in between on the way down. How many 
drops per second are keeping the protagonist awake?

86. You and your roommate plot to drop water balloons on students 
entering your dorm. Your window is 20 m above the sidewalk. 
You plan to place an X on the sidewalk to mark the spot a student 
must be when you drop the balloon. You note that most students 
approach the dorm at about 2 m/s. How far from the impact point 
do you place the X?

87. Derive Equation 2.10 by integrating Equation 2.7 over time. 
You’ll have to interpret the constant of integration.

88. An object’s acceleration increases quadratically with time: 
a(t) = bt2, where b = 0.041 m/s4. If the object starts from rest, 
how far does it travel in 6.3 s?

89. An object’s  accelerat ion is  given by the expression  
a1t2 = -a0 cosvt, where a0 and v are positive constants.  
Find expressions for the object’s (a) velocity and (b) posi-
tion as functions of time. Assume that at time t = 0 it starts 
from rest at its greatest positive displacement from the origin.  
(c)  Determine the magnitudes of the object’s maximum velocity 
and maximum displacement from the origin.

90. An object’s acceleration decreases exponentially with time: 
a1t2 = a0 e

-bt, where a0 and b are constants. (a) Assuming the 
object starts from rest, determine its velocity as a function of 
time. (b) Will its speed increase indefinitely? (c) Will it travel 
indefinitely far from its starting point?

91. A ball is dropped from rest at a height h0 above the ground. At the 
same instant, a second ball is launched with speed v0 straight up 
from the ground, at a point directly below where the other ball is 
dropped. (a) Find a condition on v0 such that the two balls will col-
lide in mid-air. (b) Find an expression for the height at which they 
collide. 

Passage Problems
A wildlife biologist is studying the hunting patterns of tigers. She anesthe-
tizes a tiger and attaches a GPS collar to track its movements. The collar 
transmits data on the tiger’s position and velocity. Figure 2.16 shows the 
tiger’s velocity as a function of time as it moves on a one-dimensional path.
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Figure 2.16 The tiger’s velocity (Passage Problems 92–96)

92. At which marked point(s) is the tiger not moving?
a. E only
b. A, E, and H
c. C and F
d. none of the points (it’s always moving)

93. At which marked point(s) is the tiger not accelerating?
a. E only
b. A, E, and H
c. C and F
d. all of the points (it’s never accelerating)

94. At which point does the tiger have the greatest speed?
a. B
b. C
c. D
d. F

95. At which point does the tiger’s acceleration have the greatest 
magnitude?
a. B
b. C
c. D
d. F

96. At which point is the tiger farthest from its starting position at 
t = 0?
a. C
b. E
c. F
d. H

answers to Chapter Questions

Answer to Chapter Opening Question
 Although the ball’s velocity is zero at the top of its motion, its 
 acceleration is -9.8 m/s2, as it is throughout the toss.

Answers to GOT IT? Questions
 2.1 (a) and (b); average speed is greater for (c)
 2.2 (b) moves with constant speed; (a) reverses; (d) speeds up
 2.3 (b) downward
 2.4 (a) halfway between the times; because its acceleration is con-

stant, the police car’s speed increases by equal amounts in equal 
times. So it gets from 0 to half its final velocity—which is twice 
the car’s velocity—in half the total time.

 2.5 The dropped ball hits first; the thrown ball hits moving faster.
 2.6 (c)
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