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Restoration of the continuous phase transition induced by frozen disorder in systems
with two interacting order parameters
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A model which in the thermodynamic limit calculates the partition function exactly is used to study the
phase transitions of systems with two interacting order parameters coupled to their respective random fields.
An ordered phase is always unstable for the spatial rafirgd when both random fields are present. A
continuous phase transition is possible when only one of the random fields is nonzero. For this case, a diagram
of the equilibrium order parameter as a function of temperature for three different strengths of the random field
is constructed. The critical temperature decreases with increasing randomness. The slope of the order parameter
becomes steeper as the random field decreases and diverges as the randomness vanishes. These results can be
contrasted with pure systems of coupled parameters where a fluctuation-induced first-order transition occurs.
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I. INTRODUCTION fluctuation interactions, which is the reason for the existence

The influence of random fields is frequently used as f the first-order phase transition in the pure system of two
reason to account for qualitative differences between experfoupled order parametet$?*the influence of only one ran-
mental results and theoretical predictions concerning a pha$tom field coupled to one of the order parameters restores the
transition. Renormalization groufRG) theory has investi- Second-order phase transition. Two random fields coupled to
gated such systems and in many cases found interestirtgeir corresponding order parameters forbid an ordered phase
resultst=12In some cases exactly solvable models were usefpor d<4.
to recover, add to, and/or clarify RG resultst’ This paper The Ginzburg-Landau free energy functional of a system
considers the critical behavior of systems described by twavith two coupled order parameters under the influence of
coupled scalar order parameters, each one of which is influwo frozen-in fields is described by
enced by its respective random field. There are many ex- 1 2 L
amples of physical systems with competing order _ 2| Ad 2 P S
parameters? In the present work the study of such systems Flev el = 2f dx E{ {T'(pi 09 +clVeC) 43¢ Y
is done within the context of a model which in theétﬁhermo- 5
dynamic limit calculates the partition function exacepy 1
taking into account fluctuation interactions of equal and op- + EWgof(x)ng(x)— Z [higi() + hi(x)(¥)]
posite momentur® This model belongs to the same univer- =t
sality class as the spherical motfeind has demonstrated (1)

major qualitative results obtained by RG theory. For exyherer=(T-T,)/T, with T, a trial critical temperature for
ample, physical systems encompassed by this model arg,e continuous scalar order parametgi), h; is a uniform

LA ; L 5y
orthorombic highT, superconductors withil-pairing?* and _external conjugate fieldy(x) is a quenched random field;

g)yggrl C?E%rz'ggBoTﬁ alg Ga aztdrutck:gr%oggfseihitlr)?[n?imlnar Ms the coupling strength between the order parametersgand

andc; are the usual constants of interactions. Here is how the

critical behavior at the phase transition in such systems. ThPest of the paper is organized: In Sec. Il the steps for the

model was also applied successfully in pure systems witlg : . . :

. . olution of functional Eq(1) are set up, by first applying the
coupleq order paramgté?srvhere it derived rg;ults such as a replica method and second by applying the defining approxi-
fluctuation-induced first-order phase transition, as well a ation of the model. In Sec. ill the equations are solved and
random Ising modelS where it derived a dimensional reduc- an expression of the equilibrium order parameter of the rel-

tion. Pure systems with coupled order parameters are CONMLyant phase is obtained. The results are used to construct a

plex and when RG techniques were applied the results Wer&iagram of the equilibrium order parameter as a function of

goétzlr‘:]vsy; O%O;i%t?]%?rogfg' E?tvisérxestgt(?hs:s%hcg tr?]ee?ﬁo (ﬁemperature for different strengths of the random field. Sec-
y P ' ion IV closes with a summary.

which is used in this paper, yielded results analogous to those
of RG theory, it could be a serious argument in support of the
correctn_ess_of these results. Thus, we are C(_)nfident that this Il. METHOD OF SOLUTION

model will yield correct results when applied in the random-

field type functional of two coupled order parameters. For To find the partition function corresponding to functional
this case it will be shown that, regardless of the presence d&q. (1) we first apply the replica methdd.To calculate the
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average with respect th;(x) free energy of the quenched o 4 a3 ] W 2
system, one must average over all the free energies corre- fd X@ij(X) — _JV_? alel = f d"xej
sponding to all possible random configurations of the ran-

dom field h;(x)

2 A2 () 62 (X) —> al‘[@l‘]az'[QDz'],
~F= <In[ T1[De(x)]expi- F[<pi<x)]}]> f X¢1j(X)¢2(X) v @
i=1

with V the volume of the system. When above reductions are
(2)  expressed in momentum space their physical meaning is
n=0 clear: only fluctuation interactions of equal and antiparallel
, momentum are considered. When this model was applied to
where ¢(x) is an n-component vector, ¢i(X)  fynctional Eq.(1) with zero random fields, it demonstrated a
=[¢1(®),.....0n(X)], andFer{¢] is defined as rich picture of phase transitioffsand in particular, it proved
L= the existence of fluctuation-induced first-order phase 6t{;jansi—
_ d 2 2 tion which was in accordance with RG theory predictiéns.
Ferlei(X)] = Ef_m d X{z [ﬂipi(xﬂ *+G(Veix) Below it is seen how the random fields replace such a first-
order phase transition by a continuous one.
" (g 4 After the reductions of Eq(7) and the use of a transfor-
+ 2 ZQDij(X) ~hig;(0) mation analogous to Hubbard-Stratonovich the partition
=1 function becomes

2
= %( [1[D"¢i(x)] expl(- Feff[@i(x)]))
i=1

2

+ VEVZ ‘Pij(x)@gj(x)} - Ql¢i] 3 2n v 2 g
j=1 Z= H (D<piquijdyij)ex - E E |:7'ixij + Z'xﬁ
with i=1j=1 i=1,=1
2 w hi 17 ,
Qe :f dx In{ I1 (f dhi(x)pi[hi(x)]> e T XY T Wuo}— > % | g “(yij + Gia" =~ B)
) i=1 2 m 5
15 s ~ ig®ij'—q [ - 8
xexpEE > hi(X)gDij(X)}, (4) * i:zl,q J;J 5 Piia®ii’-q )
i=1j=1

and where the averaging in E@) is done with respect to the On the one hand the transformation introduced extra vari-
probability distribution functionP{h(x)}=II,p;{h(x)}. Note  ables thex; andy;, but on the other hand, it eliminated of
that for short-rangee.g., Gaussignrandom correlations the quartic terms of Eq6), thus making the calculation of
Pi{h(x)} can be decomposed into a product of independenthe partition function possible. Therefore, functional inte-
probabilities at the various locations in the system,grals in Eq.(8) may be calculated after the diagonalization

II,p[h(x)]. Thus choosing with respect to then components of the vectas;. Note that
the nondiagonal terms in the free energy are due to the ran-
e—hiz(x)IZBi dom fieldsB;. After diagonalization, it becomes required that
pilhi(¥)] = —=—=, (5 y; are independent gfsince only this choice reproduces the
V2B pure system of coupled order parameters upon suppression

with B, measuring the strength of the respective randon®f the random fields. This is so because as the random fields
fields I': (4] takes the form vanish, the degeneracy of the eigenvalues of every other
» Ceffl @i choice ofy;; does not reduce to-fold, as expected from the
- 2 study of the pure system of coupled parameters treated
Fod@i(X)] = %f ddx{z [Ti|<Pi(X)|2+ [V yvithin the context of the rep[ica_method. Th!s simplifieg the
o =1 integration since we can defiryg =y;. Hence integrals with
respect toy; and x; may be performed using the steepest

n n
i W descend method, and the partition function maybe obtained.
+3 (%ﬁ(x) - hwpu(x))} 52 #0965 y 4
j=1 j=1

4 In the thermodynamic limilv —co the calculation is exact.
Consequently,
n 2 n 2
- Bl(E (Plj(x)> - Bz(z QDzj(X)) } (6) 2 v
j=1 j=1
z=|1I (Dxijdyi)exp{— EF(Xijyyi;hlth):| (9)

The above effective free energy functional is now treated i=1
within the context of the model which reduces the quartic
terms as follows? with
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F(%ij,Yi hihy)
2 n
=> > (tx: + G L
- < =i XIJ 4X yIXI] 4X11X21
nh? ]
i —nB; .
(10)

In Eg. (10) we have made the following definitions: the nor-
malized trial critical temperaturg is t;=7+1/2g;6(A;c;)
+WO(A; ¢ 4)]=(T-T,)/T; and withS; the surface area of a
d-dimensional unit-radius sphere we defifié\ ;c;) andfy

+(n=Dfy(y;;c)+ falyi —nB;;c) —

Ad—2
d#2
BA:C) = S Jcd-2
T em| ey
ZCi
fa(yici)
7leldlz = K(C) d/2
T ' d # even
S ) dg “sin ?
(27T)d dr2 ,
10y _ di _
a(‘g) Inlyi| = w(c)y; Inly|  d=even
\ |

(11)

whereA is a momentum cutoff.

IIl. RESULTS

Expressions of the disorder, average free energy and ord

parameterp;, are given by

1
Fa= lim —F(Xij WYis hl,hZ)y (12)
n—on
and
Fa h;
==—=lim—— 13
@i P hi n40y|(h ) ( )

with x;; andy; obtained from equilibrium equations=/ Jx;;
=0 anddF/dy;=0 using Eq.(10). From gF/dx;=0 it is de-
rived that for a fixed all n of the variables; are equal to
one another henog; =x;. After eliminatingx; we obtain two
equations fory; andys:

_zngl - 2nw

(tl’ Yir

2
n
R,
(yi =nB)
with A=g;g,—w? andi #i’. When Eq.(14) is expanded in

powers ofn, for anyd and up to orden (which is sufficient
since we consider the— 0 limit), the solution fory,(h;) is

(yi—t)- +(n-Dfg(yi;c)

+fa(yi —nBc) + (14)
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independent oh. Using Eq.(13), then, respectively, for a
nonevend (including nonintegensand d even the resulting
equations for the averaged order paramete@are

2 ﬁﬁ;r

29t 2wt

A A

<>( )m 2)/2
el ) sl

d(d- 2)K(c)B( ><d4
[

2wh
A (2l

+<

4

h, \ (@472
-M(Ci)Bi(—'> {d-lﬂ“
L @i

d=noneven
=0 for .

+1

d(d-2)
4

()]

15
d=-even (15)

Before we proceed with the random problem we will review
some of the results of the pure ca@&— 0).2324 There are
three low-symmetry solutions for the system of E¢ED).
The first one is a mixed phase with bath and ¢, nonzero.
The second ongand analogously the third opes when one
of the order parameters is nonzero and the other one is: that
is phase 1 is wherp;# 0 and ¢,=0 and phase 2 when,
=0 and¢,# 0. The system ofv>0, A<0 demonstrates a
fluctuation-induced first-order phase transition from disorder
into either one of the ordered phases 1 or 2. A phase transi-
tion between ordered phases 1 and 2 is of first order as well.
Thus there exists a triple point. For this system the mixed
phase is unstable. On the other hand, all three low symmetry
hases can occur for systems described by either the set of
equalitiesw>0, A>0, orw<0, A>0 and the transitions
from the disorder to the ordered phases or between the or-
dered phases are of the second order. Thus, they create a
tetracritical point. The phase diagrams have been constructed
elsewhere using both the moéfelnd RG theors# and are
qualitatively similar.

The critical behavior of the random case is, however,
completely different. For example, when bdh andB, are
nonzero it is derived from Eq15) that whenh,— 0 no so-
lution exists for¢; for the spatial rangel<4. However, a
solution exists and a phase transition is possible when only
one of the random fields is nonzero. Additionally, unlike the
pure case where the mixed phase can reghtdeast when
inequalitiesw>0, A>0, or w<0, A>0 are trug, in the
random case, the mixed phase is unstable. Moreover, it will
be shown that wheB;, # 0 andB;=0 (wheni’ =2 theni=1)
only phase occurs and the transition is of the second order.
Specifically, for A<0, the fluctuation-induced first-order
transition present in the pure case which created a triple
point, or the tetracritical point corresponding Ao>0, are
now replaced in the random case by a continuous phase tran-
sition into the unaccompanied phaisé.e., phasd’ cannot
occun. We will first begin with systems obeying <0 in
3 d, since in that case the pure version of functional &g.
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demonstrates a discontinuous phase transition. Then we will ¢
also examine the case &f>0.
For examplesA <0, d=3, B;=0, andB,+# 0, then from
Eq. (15), at zero constant external fields— 0, the tempera-
ture dependence of the order parametgrof phase 1 is
obtained. Notice that unlike the pure case for which both
order parameterg, and ¢, had equilibrium values resulting
into a triple point, in the random case a solution exists only
for one of the order parameteis,. Perhaps this is a hint that
a second-order phase transition is to be expected. It is de-

1

rived
B T
o2, = k() [ 3lw(colA 2
¥ 20, 80, e
3k(c)A N\ (T-Ty) WT-Ty 2(T-Ty
t 8 + T - T - T FIG. 1. Diagram of the equilibrium order parameter of phase 1
% 2 191 9ha (¢1# 0 and g, # 0) of systems havings <0, as a function of tem-
_ 3w|«(c,)|B, perature for three different strengths of the random fi&jd The
+ 3k(C)A\2 (T-T,) T-T,) . (16) critical temperature decreases with increasing randomness. Also the
49, \/( K(C ) + 2 _W 1 curve becomes steeper with decreasing randomness, an indication
801 T2 T10: of its divergence a8,—0.

The solutione,, corresponds to the lowest free energy. In
the limit B,— 0, Eqg. (16) reduces to the expression corre- the ¢, on the temperaturg and on three different strengths
sponding to the pure casB,=0, whereg,, (or ¢,,) has a  of the random field3,. We observe three characteristi¢)
jump-like behavior at the temperature given by the disorder—order phase transition is continuo@; the
[3k(c,)A/8g,]%+t,—wt; /g, =023 On the other hand, in the critical temperature is decreasing with increasing random-
random case wher, # 0, the requiremeng,,=0 from Eq.  nessB,; (3) the slope of the curves become steeper with
(16) derives three solutions for a transition temperaturedecreasing randomneBs. In the latter, at a given tempera-
However, only one of them, which is symbolized By is  ture pointt, it is derived from Eq.(18) that for B,+0 the
always real and positive and is the true critical temperaturglope is equal to

of the random casél. describes a second-order phase tran-
sition into the single phase; eliminating the triple point of

the pure caseT, is decreasing with increasing randomness. dey4(to,By)

The expression of. is very long and cumbersome, thus it dt .

will not be provided. Instead we discuss the results in terms 0

of the actual graph resulting from that cumbersome expres- 1 1 N A A’

sion and a symbolic equation of the order parametgr 7o _E al_@ (NN’)1’2+ (NN)¥2) |

which maintains the same mathematical form as ##§). If
we definet=T-T,, then for smallt (19)
NA’'B,t

— Itis clear from the above equation that as the random Bgld
(az + NTc) .

vanishes the slope becomes infinite. These results can be
contrasted with pure systems of coupled parameters where a
fluctuation-induced first-order transition occéfg?

Let us now consider systems described\ay 0. As in the

NAt
@3,(1) = — agt+ —

(17)
Vao+ NT,

Using the solution off, from Eq.(16) one can find that,

ay, A, A’, andN (N is the only negative numbgrare explicit
but unwieldy expressions dfi;, w, ¢, and T;. For a small
random fieldB, Eq. (17) becomegnote T, depends orB,):

o N[ A A
¢1+(thZ) =-t a — glz (N N/)1/2 + (NN1)3/2 ’

(18)

whereN also depends og;, w, ¢;, andT;. Based on Eq(18)

pure problem we have a second-order phase transition. Be-
cause the pure case presents a second-order transition, then
in the random case witB,;=0 andB, # 0 instead of dealing

with the exact solutiorp,,=0 from Eq.(16) to find the criti-

cal temperaturgéwhich finds a very long and cumbersome
expressio) since in the pure case the order parameter is
continuous at the critical temperaturg..,, i.e., ¢14(B;
=0,T=T.,)=0, we expandp,,(B,#0,T) about the critical
temperature of the pure cask,,. Then up to ordeB,, the
critical temperature of the random caseTig, =T ,— 7B,

we construct a graptiig. 1) which shows the dependence of where
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I (C)IWA(gy T, = WTy)?
3 T \/ +4WPTy(T, - T
. _9g2;<2(c2)wT1+9K2(c2)W2Tf+ |(e)[Ty 16 WT(Ty = To)
epm 1 32 32T, 8T,
3wW?| k(cy)|T,T
r=—— | 2)|212 2 _ (20)
VIKA(C)WA(GoTo — WT1)% + 6 T(T; = T))
If t'=T-T., then for smallt’
2 2 3w|k(C))|(gy Ty —WTH)t’
¢1+(t ) - + > 2
o T1 AT T \/( Wi(C)A | Tep _ ) 16 Byr(giTy—WT))
L 329, Ty 9W2K2(Cz) g:T1T,
3w|k(c T, —wWT,)B,t’
+ |k(cy)|(91 Ty 2)B; (21)

2 2 _ 32
o iTlTZMQWK (DA | Top _ ) 1(25 , Bor(@iTL - wT))
320, Ty M2k (cp) 9:T1T,

Equationg20) and(21) reduce to those of the pure problem replaces such a transition by a continuous one. The critical
upon suppression of the random field as expected. Noticieemperature decreases with increasing randomness. The or-
that an analog calculation of expansion @f.(B,#0,T) der parameter has a steeper slope as the strength of the ran-
about the critical temperature of the pure case in systemdom field weakens, and it diverges as the random field van-
described byA <0 cannot be carried out since the pure casdéshes, marking the crossover to the first-order phase

presented a first-order phase transition and the behavior dfansition of the pure case. In addition, unlike the pure case

the order parameter had a discontinuity at the critical pointVhere depending on the system a phase transition into either
one of the three low-symmetry phases may be possible, the

random case is different: for three-dimensional systems if
both random fields are nonzero no phase transition takes
place. A phase transition occurs when only one random field

It has been shown that, despite a fluctuation-induced firstis nonzero, and in that case the mixed phase is unstable and
order phase transition which occurs in the pure case obnly phase 1or 2 depending on what random field is zgi®
coupled order parameters, the existence of one random fiektable.

IV. CONCLUSION
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