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A model which in the thermodynamic limit calculates the partition function exactly is used to study the
phase transitions of systems with two interacting order parameters coupled to their respective random fields.
An ordered phase is always unstable for the spatial rangedø4 when both random fields are present. A
continuous phase transition is possible when only one of the random fields is nonzero. For this case, a diagram
of the equilibrium order parameter as a function of temperature for three different strengths of the random field
is constructed. The critical temperature decreases with increasing randomness. The slope of the order parameter
becomes steeper as the random field decreases and diverges as the randomness vanishes. These results can be
contrasted with pure systems of coupled parameters where a fluctuation-induced first-order transition occurs.
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I. INTRODUCTION

The influence of random fields is frequently used as a
reason to account for qualitative differences between experi-
mental results and theoretical predictions concerning a phase
transition. Renormalization group(RG) theory has investi-
gated such systems and in many cases found interesting
results.1–12 In some cases exactly solvable models were used
to recover, add to, and/or clarify RG resu1ts.13–17This paper
considers the critical behavior of systems described by two
coupled scalar order parameters, each one of which is influ-
enced by its respective random field. There are many ex-
amples of physical systems with competing order
parameters.18 In the present work the study of such systems
is done within the context of a model which in the thermo-
dynamic limit calculates the partition function exactly15 by
taking into account fluctuation interactions of equal and op-
posite momentum.19 This model belongs to the same univer-
sality class as the spherical model20 and has demonstrated
major qualitative results obtained by RG theory. For ex-
ample, physical systems encompassed by this model are,
orthorombic highTc superconductors withd-pairing21 and
oxygen ordering near a structural phase transition in
Y–Ba–Cu–O.22 Both RG and the model exhibit similar
critical behavior at the phase transition in such systems. The
model was also applied successfully in pure systems with
coupled order parameters23 where it derived results such as a
fluctuation-induced first-order phase transition, as well as
random Ising models15 where it derived a dimensional reduc-
tion. Pure systems with coupled order parameters are com-
plex and when RG techniques were applied the results were
not always proven rigorously.24 But since the study of these
systems from another point of view, such as the method
which is used in this paper, yielded results analogous to those
of RG theory, it could be a serious argument in support of the
correctness of these results. Thus, we are confident that this
model will yield correct results when applied in the random-
field type functional of two coupled order parameters. For
this case it will be shown that, regardless of the presence of

fluctuation interactions, which is the reason for the existence
of the first-order phase transition in the pure system of two
coupled order parameters,23,24 the influence of only one ran-
dom field coupled to one of the order parameters restores the
second-order phase transition. Two random fields coupled to
their corresponding order parameters forbid an ordered phase
for dø4.

The Ginzburg-Landau free energy functional of a system
with two coupled order parameters under the influence of
two frozen-in fields is described by
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1
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whereti =sT−Tcid /Tci with Tci a trial critical temperature for
the continuous scalar order parameterwisxd, hi is a uniform
external conjugate field,hisxd is a quenched random field,w
is the coupling strength between the order parameters, andgi
andci are the usual constants of interactions. Here is how the
rest of the paper is organized: In Sec. II the steps for the
solution of functional Eq.(1) are set up, by first applying the
replica method and second by applying the defining approxi-
mation of the model. In Sec. III the equations are solved and
an expression of the equilibrium order parameter of the rel-
evant phase is obtained. The results are used to construct a
diagram of the equilibrium order parameter as a function of
temperature for different strengths of the random field. Sec-
tion IV closes with a summary.

II. METHOD OF SOLUTION

To find the partition function corresponding to functional
Eq. (1) we first apply the replica method.25 To calculate the
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average with respect tohisxd free energy of the quenched
system, one must average over all the free energies corre-
sponding to all possible random configurations of the ran-
dom fieldhisxd
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where wisxd is an n-component vector, wisxd
;fwi1sxd , . . . . ,winsxdg, andFef ffwig is defined as
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and where the averaging in Eq.(4) is done with respect to the
probability distribution functionPihhsxdj=Pxrihhsxdj. Note
that for short-range(e.g., Gaussian) random correlations
Pihhsxdj can be decomposed into a product of independent
probabilities at the various locations in the system,
Pxrifhsxdg. Thus choosing

rifhisxdg =
e−hi

2sxd/2Bi

Î2pBi

, s5d

with Bi measuring the strength of the respective random
fields,Fefffwig takes the form
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The above effective free energy functional is now treated
within the context of the model which reduces the quartic
terms as follows:19

E ddxwi j
4sxd → aij

2fwig
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; aijfwi jg ; E ddxwi j
2

E ddxw1j
2 sxdw2j

2 sxd → a1jfw1jga2jfw2jg
V
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with V the volume of the system. When above reductions are
expressed in momentum space their physical meaning is
clear: only fluctuation interactions of equal and antiparallel
momentum are considered. When this model was applied to
functional Eq.(1) with zero random fields, it demonstrated a
rich picture of phase transitions23 and in particular, it proved
the existence of fluctuation-induced first-order phase transi-
tion which was in accordance with RG theory predictions.24

Below it is seen how the random fields replace such a first-
order phase transition by a continuous one.

After the reductions of Eq.(7) and the use of a transfor-
mation analogous to Hubbard-Stratonovich the partition
function becomes

Z =E p
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On the one hand the transformation introduced extra vari-
ables thexij and yij , but on the other hand, it eliminated of
the quartic terms of Eq.(6), thus making the calculation of
the partition function possible. Therefore, functional inte-
grals in Eq.(8) may be calculated after the diagonalization
with respect to then components of the vectorwi. Note that
the nondiagonal terms in the free energy are due to the ran-
dom fieldsBi. After diagonalization, it becomes required that
yij are independent ofj since only this choice reproduces the
pure system of coupled order parameters upon suppression
of the random fields. This is so because as the random fields
vanish, the degeneracy of the eigenvalues of every other
choice ofyij does not reduce ton-fold, as expected from the
study of the pure system of coupled parameters treated
within the context of the replica method. This simplifies the
integration since we can defineyij ;yi. Hence integrals with
respect toyi and xij may be performed using the steepest
descend method, and the partition function maybe obtained.
In the thermodynamic limitV→` the calculation is exact.
Consequently,

Z =E p
i=1

2

sDxijdyidexpF−
V

2
Fsxij ,yi ;h1,h2dG s9d

with
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In Eq. (10) we have made the following definitions: the nor-
malized trial critical temperatureti is ti =ti +1/2fgiusL ;cid
+wusL ;ci8Þidg;sT−Tid /Ti and withSd the surface area of a
d-dimensional unit-radius sphere we defineusL ;cid and fd
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whereL is a momentum cutoff.

III. RESULTS

Expressions of the disorder, average free energy and order
parameterwi, are given by

Fav = lim
n→0

1

n
Fsxij ,yi ;h1,h2d, s12d

and

wi = −
] Fav

] hi
= lim

n→0

hi

yishid
, s13d

with xij and yi obtained from equilibrium equations]F /]xij
=0 and]F /]yi =0 using Eq.(10). From ]F /]xij =0 it is de-
rived that for a fixedi all n of the variablesxij are equal to
one another hencexij ;xi. After eliminatingxi we obtain two
equations fory1 andy2:
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with D=g1g2−w2 and i Þ i8. When Eq.(14) is expanded in
powers ofn, for anyd and up to ordern (which is sufficient
since we consider then→0 limit), the solution foryishid is

independent ofn. Using Eq.(13), then, respectively, for a
nonevend (including nonintegers) and d even the resulting
equations for the averaged order parameterwi, are
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Before we proceed with the random problem we will review
some of the results of the pure casesBi →0d.23,24 There are
three low-symmetry solutions for the system of Eqs.(15).
The first one is a mixed phase with bothw1 andw2 nonzero.
The second one(and analogously the third one) is when one
of the order parameters is nonzero and the other one is: that
is phase 1 is whenw1Þ0 andw2=0 and phase 2 whenw1
=0 andw2Þ0. The system ofw.0, D,0 demonstrates a
fluctuation-induced first-order phase transition from disorder
into either one of the ordered phases 1 or 2. A phase transi-
tion between ordered phases 1 and 2 is of first order as well.
Thus there exists a triple point. For this system the mixed
phase is unstable. On the other hand, all three low symmetry
phases can occur for systems described by either the set of
inequalitiesw.0, D.0, or w,0, D.0 and the transitions
from the disorder to the ordered phases or between the or-
dered phases are of the second order. Thus, they create a
tetracritical point. The phase diagrams have been constructed
elsewhere using both the model23 and RG theory24 and are
qualitatively similar.

The critical behavior of the random case is, however,
completely different. For example, when bothB1 andB2 are
nonzero it is derived from Eq.(15) that whenhi →0 no so-
lution exists forwi for the spatial rangedø4. However, a
solution exists and a phase transition is possible when only
one of the random fields is nonzero. Additionally, unlike the
pure case where the mixed phase can realize(at least when
inequalitiesw.0, D.0, or w,0, D.0 are true), in the
random case, the mixed phase is unstable. Moreover, it will
be shown that whenBi8Þ0 andBi =0 (when i8=2 theni =1)
only phasei occurs and the transition is of the second order.
Specifically, for D,0, the fluctuation-induced first-order
transition present in the pure case which created a triple
point, or the tetracritical point corresponding toD.0, are
now replaced in the random case by a continuous phase tran-
sition into the unaccompanied phasei (i.e., phasei8 cannot
occur). We will first begin with systems obeyingD,0 in
3 d, since in that case the pure version of functional Eq.(1)
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demonstrates a discontinuous phase transition. Then we will
also examine the case ofD.0.

For examples,D,0, d=3, B1=0, andB2Þ0, then from
Eq. (15), at zero constant external fields,hi →0, the tempera-
ture dependence of the order parameterw1 of phase 1 is
obtained. Notice that unlike the pure case for which both
order parametersw1 andw2 had equilibrium values resulting
into a triple point, in the random case a solution exists only
for one of the order parameters,w1. Perhaps this is a hint that
a second-order phase transition is to be expected. It is de-
rived

w1±
2 =

3wuksc2du
2g1

F−
3uksc2duD

8g1

±ÎS3ksc2dD
8g1

D2

+
sT − T2d

T2
−

wsT − T1d
T1g1

G −
2sT − T1d

g1T1

7
3wuksc2duB2

4g1ÎS3ksc2dD
8g1

D2

+
sT − T2d

T2
−

wsT − T1d
T1g1

. s16d

The solutionw1+ corresponds to the lowest free energy. In
the limit B2→0, Eq. (16) reduces to the expression corre-
sponding to the pure case,B2=0, wherew1+ (or w2+) has a
jump-like behavior at the temperature given by
f3ksc2dD /8g1g2+ t2−wt1/g1=0.23 On the other hand, in the
random case whereB2Þ0, the requirementw1+=0 from Eq.
(16) derives three solutions for a transition temperature.
However, only one of them, which is symbolized byTc is
always real and positive and is the true critical temperature
of the random case.Tc describes a second-order phase tran-
sition into the single phasew1 eliminating the triple point of
the pure case.Tc is decreasing with increasing randomness.
The expression ofTc is very long and cumbersome, thus it
will not be provided. Instead we discuss the results in terms
of the actual graph resulting from that cumbersome expres-
sion and a symbolic equation of the order parameterw1+
which maintains the same mathematical form as Eq.(16). If
we definet;T–Tc, then for smallt

w1+
2 std = − a1t +

NAt
Îa2 + NTc

+
NA8B2t

sa2 + NTcd3/2. s17d

Using the solution ofTc from Eq. (16) one can find thata1,
a2, A, A8, andN (N is the only negative number), are explicit
but unwieldy expressions ofgi, w, ci, and Ti. For a small
random fieldB2 Eq. (17) becomes(noteTc depends onB2):

w1+
2 st,B2d = − tFa1 −

N

B2
1/2S A

sNN8d1/2 +
A8

sNN8d3/2DG ,

s18d

whereN also depends ongi, w, ci, andTi. Based on Eq.(18)
we construct a graph(Fig. 1) which shows the dependence of

thew1+ on the temperatureT and on three different strengths
of the random fieldB2. We observe three characteristics:(1)
the disorder–order phase transition is continuous;(2) the
critical temperature is decreasing with increasing random-
nessB2; (3) the slope of the curves become steeper with
decreasing randomnessB2. In the latter, at a given tempera-
ture point t0 it is derived from Eq.(18) that for B2Þ0 the
slope is equal to

Udw1+st0,B2d
dt

U
t0

= −
1

2
Î−

1

t0
Fa1 −

N

B2
1/2S A

sNN8d1/2 +
A8

sNN8d3/2DG .

s19d

It is clear from the above equation that as the random fieldB2
vanishes the slope becomes infinite. These results can be
contrasted with pure systems of coupled parameters where a
fluctuation-induced first-order transition occurs.23,24

Let us now consider systems described byD.0. As in the
pure problem we have a second-order phase transition. Be-
cause the pure case presents a second-order transition, then
in the random case withB1=0 andB2Þ0 instead of dealing
with the exact solutionw1+=0 from Eq.(16) to find the criti-
cal temperature(which finds a very long and cumbersome
expression), since in the pure case the order parameter is
continuous at the critical temperatureTc-p, i.e., w1+sB2

=0,T=Tc-pd=0, we expandw1+sB2Þ0,Td about the critical
temperature of the pure case,Tc-p. Then up to orderB2, the
critical temperature of the random case isTc-r =Tc-p−tB2
where

FIG. 1. Diagram of the equilibrium order parameter of phase 1
(w1Þ0 andw2Þ0) of systems havingD,0, as a function of tem-
perature for three different strengths of the random fieldB2. The
critical temperature decreases with increasing randomness. Also the
curve becomes steeper with decreasing randomness, an indication
of its divergence asB2→0.
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Tc-p = T1 −
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If t8=T–Tc-r then for smallt8
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Equations(20) and(21) reduce to those of the pure problem
upon suppression of the random field as expected. Notice
that an analog calculation of expansion ofw1+sB2Þ0,Td
about the critical temperature of the pure case in systems
described byD,0 cannot be carried out since the pure case
presented a first-order phase transition and the behavior of
the order parameter had a discontinuity at the critical point.

IV. CONCLUSION

It has been shown that, despite a fluctuation-induced first-
order phase transition which occurs in the pure case of
coupled order parameters, the existence of one random field

replaces such a transition by a continuous one. The critical
temperature decreases with increasing randomness. The or-
der parameter has a steeper slope as the strength of the ran-
dom field weakens, and it diverges as the random field van-
ishes, marking the crossover to the first-order phase
transition of the pure case. In addition, unlike the pure case
where depending on the system a phase transition into either
one of the three low-symmetry phases may be possible, the
random case is different: for three-dimensional systems if
both random fields are nonzero no phase transition takes
place. A phase transition occurs when only one random field
is nonzero, and in that case the mixed phase is unstable and
only phase 1(or 2 depending on what random field is zero) is
stable.
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