
ISSN 1064�2269, Journal of Communications Technology and Electronics, 2016, Vol. 61, No. 6, pp. 551–573. © Pleiades Publishing, Inc., 2016.
Original Russian Text © V.Yu. Shishkov, A.A. Zyablovskii, E.S. Andrianov, A.A. Pukhov, A.P. Vinogradov, A.V. Dorofeenko, S.A. Nikitov, A.A. Lisyanskii, 2016, published
in Radiotekhnika i Elektronika, 2016, Vol. 61, No. 6, pp. 509–533.

551

INTRODUCTION

The development of communication technologies
necessitates the construction of devices for conversion
of electrical signals into optical signals for the trans�
mission in optical communication channels. The fol�
lowing requirements must be satisfied for such devices:
relatively high modulation frequency of signals, low
generation threshold, narrow directional pattern of
output signal, and low production costs. Lasers with
cavities based on a defect mode in photonic crystal
(vertical�cavity surface emitting (VCSE) lasers) [1–4]
and distributed�feedback (DFB) lasers are used at
present for such purposes. Sources of coherent radia�
tion based on composite materials containing plasmon
nanostructures [5–11] may serve as alternative
sources. The modulation frequency that is higher than
that of the VCSE and DFB lasers is the main advantage
of the alternative sources.

Normally, a VCSE laser consists of two 1D photo�

nic crystals
1
 (Bragg mirrors) with a resonant cavity in

between [12–20] and amplifying medium that is
placed in the resonant cavity. The laser generation in
such devices takes place along the direction that is per�
pendicular to the layer plane.

The amplifying medium in a VCSE laser represents
a thin layer of a narrow�band�gap semiconductor that
is placed between two layers of a wide�band�gap semi�
conductor. Such a heterostructure works as a quantum
well when the amplifying layer is relatively thin [12].
The total energy of carriers in quantum wells is a sum
of discrete levels that emerge owing to the space quan�
tization along the direction that is perpendicular to the

1 See Appendix 1 for the properties of photonic crystals.

layer and a continuous component that describes the
motion along the layer:

(1)

where p are the momenta of carrier along the layer, m
is the effective mass of carrier, l is the layer thickness,
and n is the integer.

Radiative transitions of electron from the conduc�
tion band to the valence band serve as working levels in
quantum wells. The photon frequency in quantum
wells is a sum of the band gap of bulk semiconductor
and a discrete quantity related to the finite thickness of
the semiconductor film. The dependence of the tran�
sition frequency on the film thickness can be used to
accurately tune the transition frequency to the cavity
mode [12].

When the thickness of the resonant cavity is one
half of the wavelength of the generated radiation, the
single�mode lasing is easily reached in VCSE lasers
[17, 21]. The VCSE laser can be stabilized with respect
to thermal fluctuations owing to a relatively high Q
factor of the vertical cavity. The amplification band is

highly sensitive to the thermal fluctuations [15].
2
 If the

2 Temperature variations lead to variations in the thickness of lay�
ers in the VCSE�laser structure, so that the mode frequency of
the cavity and frequency of amplification band are varied. The
frequency of cavity mode is inversely proportional to the layer
thickness, and the frequency of the amplification band is
inversely proportional to the squared thickness owing to space
quantization of the energy of carriers. Therefore, the frequency
of the amplification band is significantly more sensitive to varia�
tions in temperature in comparison with the frequency of the
cavity mode.
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amplification band is significantly broader than the
cavity band, the latter determines the laser frequency
(frequency pulling) [12, 22, 23]. Such a frequency sta�
bility is an advantage of vertical�cavity lasers in opto�
electronic applications in which the laser frequency
must be tuned to the waveguide mode of optical fiber.

A DFB laser may serve as an alternative to a VCSE
laser. In the DFB lasers, the laser mode is generated
owing to multiple scattering by periodic photonic�
crystal structure rather than reflection from cavity
mirrors.

The DFB lasers that are employed in optoelectron�
ics contain plates of 2D photonic crystal (PC) in
which amplifying medium is used as a matrix [24]. The
wave vector of the laser mode in such systems belongs
to the plate plane and the generated radiation is emit�

ted along the perpendicular direction.
3
 The emission

from the PC surface takes place due to the fact that the
spatial spectrum of the Bloch wave contains wave
numbers the tangential components of which are less
than the wave number in surrounding space. The
width of the directional pattern of the emitter is deter�
mined by the size of the emitting aperture, in particu�
lar, the transverse size of the PC plate. Therefore, the
size of the PC plate must be significantly greater than

the wavelength.
4
 An increase in the PC size leads to a

decrease in loss related to the emission from the end
surfaces of the plate and, hence, a decrease in the las�
ing threshold.

Note the nonlinearity of the regime of developed
generation. In this case, the permittivity of the active
matrix depends on the field intensity and is modulated
with the period of the Bloch wave. In general, the
period of the Bloch wave is incommensurable with the
PC period and the development of lasing causes dis�
tortions of the PC periodicity. Thus, the mode ceases
to be the mode of the Bloch wave, the scattering by
single cells looses long�range order, and the direc�
tional pattern becomes broader. In the exceptional
case, the lasing in the DFB laser takes place at fre�
quencies in the vicinity of the boundary of the PC
band gap, so that the period of the Bloch wave almost
coincides with the PC period and the modulation of
the active medium caused by the generated wave does
not lead to violations of the PC periodicity.

The closeness of the laser frequency to the edge of
the band gap determines the physical scenario of las�
ing. Owing to the Bragg reflection, the Bloch wave at
the edge of the band gap is transformed into a standing
wave, so that the conditions for the cavityless lasing are
satisfied. This circumstance accounts for the term dis�
tributed�feedback lasers.

3 In the first DFB lasers, the radiation was emitted along the
direction of generation. However, such a configuration cannot
be used to construct a radiation source with a relatively narrow
directional pattern.

4 A narrow beam is needed for efficient delivery of the optical sig�
nal of the DFB laser to optical fiber.

Thus, the modes at the boundary of the PC band
gap exhibit the lowest lasing threshold, the radiation of
such modes is emitted along the direction that is
orthogonal to the plane of the PC plate, and the devel�
opment of lasing at frequencies in the vicinity of the
boundary of the PC band gap does not destroy the PC
periodicity.

1. SIMPLIFIED MODEL OF DFB LASER

To illustrate the above analysis, we consider a DFB
laser (Fig. 1). We assume that the plate made of the
amplifying medium is placed in lossless medium with
permittivity εlm.

To describe the interaction of electromagnetic field
and amplifying medium, we use the system of the
Maxwell–Bloch equations [25] that is represented in
the following way for the propagation along the direc�
tion that is perpendicular to layers [25, 26]:

(2)

(3)

(4)

Here, E is the electric field, P is the polarization, n is
the population inversion of the gain medium,  is the
population inversion that is reached in the medium in
the absence of electromagnetic field, ωQD is the transi�

tion frequency of quantum dots (QDs),  is the
square of the dipole moment of the transition in the
gain medium, and τp and τinv are the characteristic
relaxation times of polarization and population inver�
sion. The system of the Maxwell–Bloch equations was
derived in [25] on the assumption that the amplifying
medium represents an ensemble of two�level systems
the population inversion in which results from external
action. The two�level systems were described using the
quantum�mechanical equations for the density matrix
that are reduced to equations for polarization P and
population inversion n. The electromagnetic field in
the system was analyzed on the assumption that quan�
tum fluctuations can be disregarded owing to a rela�
tively large number of photons in the system and that
the field can be described with the aid of classical
Maxwell equations. The field amplification results
from the stimulated transitions in the amplifying
medium, and the energy transition from the amplify�
ing medium to the electromagnetic wave is described
using a term on the right�hand side of Eq. (2). Such an
approximation is known as the semiclassical approxi�
mation [25].
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Maxwell–Bloch equations (2)–(4) make it possi�
ble to describe the interaction of electromagnetic field
and amplifying medium. For relatively low fields

 = , population inversion is

virtually constant and field�independent. In this case,
the field and polarization can be analyzed using linear
equations (2)–(4) and the amplifying medium can be

0n n−⎛
⎜
⎝
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ω
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inv
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0

2 PE n
t

�

described with the aid of permittivity with negative fre�
quency�dependent imaginary part:

(5)

where εpl is the permittivity of the plate in the absence

of the amplifying medium, α =  and β =

( )
αω τ

ε ω = ε −

− ω τ + ω − ω

p
am p

QD

QD

l

p
2 2

2
,

2i

π τ

�
�p

2
04 ,d n

(а)

x

z

y

(b)

x

h

y

(c)

d1 d2

εam
δh

εm

ε1 ε2

d1 d2

k1x
ω

c
��� ε1= k2x

ω

c
��� ε2=

Fig. 1. (a) Scheme of the DFB laser consisting of an amplifying layer that contains a periodic grating of nanoribbons, (b) scheme
of a unit cell of the DFB laser, and (c) a cell of an auxiliary 1D PC with effective permittivities of layers  and .1ε 2ε
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 [26, 27], and εam is the permittivity of the
amplifying medium that is used to fabricate the PC
plate.

A periodic structure of nanoribbons (Fig. 1a) with
permittivity εm is introduced into the film to produce
the distributed feedback in the DFB laser. Film thick�
ness is h, the distance between nanoribbons is  the
width of nanoribbon is  and the height of nanorib�
bon is  (Fig. 1b). The lower surface of the film lies
on the xy plane.

A waveguide mode that is scattered by nanoribbons
may propagate inside the film. The system under study
is periodic along the x direction, and its single cell
consists of two sections (Fig. 1b). The first section rep�
resents a homogeneous dielectric waveguide with
thickness h and permittivity εam that is placed into
medium with permittivity εlm. The second section is
the homogeneous (with respect to the x axis) two�layer
waveguide consisting of the layer with thickness 
with permittivity εam and the layer with thickness 
and permittivity εm that is placed into medium with
permittivity εlm. Such a system can be analyzed using
an auxiliary 1D PC the single cell of which consists of
two layers with effective permittivities ε1 and ε2

(Fig. 1c). The effective permittivity and impedance of
the ith layer (i = 1, 2) can be calculated as  =

 and  =  where  is the wave vector
of the TE�polarized wave that propagates along the ith

section of the waveguide (Fig. 1b).
5

To find quantity , we solve the boundary
eigenvalue problem. The distributions of the electric
and magnetic fields in the waveguide (Fig. 1b) are
given by

(6)

where  is the wave number along the waveguide
axis,

5 Such a polarization configuration is chosen with allowance for
the fact that the dipole moments of nanoribbons are induced by
electric field, so that a narrow directional pattern with the maxi�
mum along the normal to the PC can be obtained only for the
TE polarization.
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are the wave numbers along the z axis in the external
medium, nanoribbon of the auxiliary waveguide, and
active medium of the auxiliary waveguide, respectively.
Amplitudes, amode, bmode, aam, bam, and blm are found
from the boundary conditions at the edges of layers.
With allowance for the boundary conditions, the dis�
persion relation for wave vector  is written as

(7)

We must assume that δh = 0 in expression (7) to
calculate wave vector  at the fragment of the
waveguide outside the nanoribbon. In calculations, we
use parameters εlm, εam, εmode, h, and δh from experi�
ments on DFB lasers [9, 28] and obtain 

 and imaginary parts of ε1 and ε2 that do not
depend on the pump intensity. Below, we study the
working regimes of the DFB laser at different Imε1

and Imε2.
The properties of 1D PC are well known (see

Appendix 1). The lasing threshold in PC is determined
by the condition [26, 29]

(8)

where N is the number of PC cells, d is the length of
the PC cell, r is the reflection coefficient for the PC–
vacuum interface, and kB is the Bloch wave number
in the PC. Expression (8) can be divided into ampli�
tude and phase conditions for lasing. The amplitude
condition

(9)

Makes it possible to determine the minimum popula�
tion inversion n0 that is needed for lasing. Note that
Bloch wave vector  depends on the permittivity
of active layers that, in turn, nonlinearly depends on
population inversion n0. In the DFB laser, the reflec�
tion from the end surfaces of the plate is insignificant,
since the standing mode emerges in the system due to
multiple scattering by the PC periodic structure.
Indeed, an increase in the number of the PC cells
always leads to the scenario in which  so that
the loss related to the emission from the end surfaces
of the PC can be neglected. In this case, expression (9)
is reduced to equation

(10)

In other words, the lasing threshold for the PC with
 is determined only by the loss related to emis�

sion along the direction perpendicular to the PC plane
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and the internal loss in the PC�cell material. The con�
dition  can easily be satisfied at the boundary
of the band gap where the PC impedance is written as
ZPC ≈ iZPC (see Appendix 1), so that the absolute value
of the reflection coefficient for the PC–insulator
interface is represented as

Using expression (8), we derive the phase condition

(11)

where n is the integer. Expression (11) makes it possi�
ble to determine the radiation frequency of the DFB
laser. It is seen that the lasing takes place when the

phase shift related to a single passage through the sys�
tem is a multiple of π.

At frequencies that are close to the second bound�

ary of the band gap, we have  =  + 

where  Using formula (11), we obtain

(12)

where  Note that m = ±1 for PC modes that
are closest to the band gap.

To find threshold population inversion  from
expression (10), we must determine the dependence of
quantity  on the PC parameters with the aid
of the Rytov equation [30] (see Appendix 1):

(13)

Threshold parameter  is implicitly determined
using equation

(14)

Expression (14) is an exact expression for the lasing
threshold but, for estimations, we employ the system
of Maxwell–Bloch equations (2)–(4). We assume that
the lasing in the PC takes place in the vicinity of the
QD transition frequency ωQD. Then, electric field E
and polarization P are represented as

where E and P are the real quantities and  and
 are the complex functions the variations in

which are substantially slower than variations in expo�
nential function  Using such a condition,
we represent the Maxwell–Bloch equations as

(15)
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(17)

At the initial stage of lasing, the population inversion
is approximately  since the field amplitude is insuf�
ficient for significant changes of the population inver�
sion. In this case, nonlinear system of equations (15)–
(17) is reduced to the linear system

(18)
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Thus, slow amplitudes of the field and polarization
can be represented as

where function  satisfies the equation

and, hence, serves as the mode of cavity that repre�
sents a finite sample of PC. Finally, we derive the fol�
lowing system of equations for variables  and :
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We average spatial factors in expressions (20) and (21)
with respect to the mode of the linear PC correspond�
ing to frequency ωQD:

Thus, we derive equations that make it possible to find

functions  and  with effective factors:
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dition (27) shows that the lasing is started when the
loss and gain averaged over the cavity mode are equal.
Hence, the lasing threshold decreases when the field is
concentrated in the layers with amplification. For the
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Such a dependence is a manifestation of the Bor�
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system. The nonlinearity of the amplifying medium
leads to a variation in the real part of permittivity,
which may result in the field redistribution in the PC
cell and violation of periodicity. However, the emis�
sion along the direction that is perpendicular to the
surface is possible only if the dipole moments of metal
nanoparticles exhibit in�phase oscillations, which is
possible only in a periodic system.

We consider lasing in PC at frequencies from
allowed band (Fig. 3a). The field distribution at the
center of the allowed band is not spatially periodic in
spite of the periodicity of the PC structure prior to las�
ing. This circumstance is due to the fact that the Bloch
wavelength in the allowed band of PC is incommensu�
rable with the PC period. Hence, the field causes non�
uniform variations in the population inversion that
lead to the secondary modulation of permittivity,
which destroys the PC periodicity (Fig. 3b).

In the vicinity of the band gap, the wavelength of
the laser mode is comparable with the PC period and
the Bloch wave represents a modulated standing wave
the period of which is close to the PC period. Figure 4a
shows the electric field distribution upon lasing in the
vicinity of the second band gap. Such a distribution
exhibits a relatively high spatial periodicity, and the
electric fields in the passive layers are matched. Hence,
the emitters in such layers exhibit in�phase oscillations
and the radiation is emitted along the direction that is
perpendicular to the PC.

When the radiation loss is taken into account as the
imaginary part of permittivity, we obtain dissipation in
passive layers and structural modification of the band
gap. However, the above properties of the field distri�
bution (Fig. 4b) remain unchanged owing to the Bor�
rmann effect [31]: the field is localized in the gain lay�
ers providing stability with respect to loss in the metal

layers of PC. Normally, the field is not localized in the
loss layers in the lasing regime. However, the system
under study exhibits field localization in the loss layers.

The electric field generated in the PC induces
dipole moments in nanoparticles. Assuming linear
dependence of the induced dipole moments on the
field inside nanoparticles, we calculate directional
pattern of the radiation [33]

(28)

For the emission along the direction that is perpen�
dicular to the PC surface, the electric field in the loss

layers must exhibit in�phase oscillations.
6
 Such a sce�

nario is possible if the phase shift per PC cell is a mul�
tiple of 2π. Therefore, the transition frequency of the
gain medium must be tuned to the boundary of an even
band gap of PC (Fig. 5).

2. FREQUENCY OF AMPLITUDE 
MODULATION IN VCSE AND DFB LASERS

The VCSE and DFB lasers are fabricated using the
planar technology, so that the testing of lasers can be
performed on the substrate at which they are produced
and, hence, the production costs substantially
decrease [12]. In addition, the surface from which the
laser radiation is emitted may be plane�parallel in both
lasers and the size of sample may be significantly less
than the wavelength. Thus, a relatively narrow and
symmetric directional pattern can be obtained.

6 Recall that the loss layers simulate the perturbations causing
scattering of electromagnetic waves that propagate along the
surface.

( )(0)
0( ) ( ) exp .n n

n

I e I e a ik e r= − ⋅∑� � � �

100

50

0

–50

–100
10 155

x/(d1 + d2)

E, 10 × Re(ε)
(a)

2

1

–2

–3

–4

10 155 x/(d1 + d2)

Re(ε), Im(ε)

(b)

0

–1

1

2

Fig. 3. (a) Electric field distribution in PC and (b) (1) real and (2) imaginary parts of the PC permittivity with allowance for non�
linearity of the gain medium (  and  are the thicknesses of layers in the PC cell, ωQDτ0 = 90 is the transition frequency in the

gain medium, and  =  + ).
1d 2d

0τ 1(dπ 2)d c



558

JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS Vol. 61  No. 6  2016

SHISHKOV et al.

The DFB and VCSE lasers are used in optoelec�
tronics for the transformation of electric signal. An
important characteristic for such applications is the
frequency of amplitude modulation in the presence of
relatively small variations in the pump intensity that do
not provide transition to the below�threshold regime
[24, 34]. The frequency of the amplitude modulation
is given by [24, 35] (see Appendix 2)

(29)

where  is the photon number density in
the laser mode in the stationary state, s is the number

β
ω = +

τ τ τ

st
mode

am
en en sp

2 0 ,
g S F

=

st
modeS s V

of photons in a mode,  is the mode volume,  is
the gain,  =  is the field�energy decay time in
the cavity,  is the spontaneous decay time of the gain
medium in free space,  is the Purcell factor of the
cavity mode, and β is the ratio of the rate of spontane�
ous decay to the cavity mode to the total rate of spon�
taneous decay. The mode volume is calculated as

(30)

where the integration is performed over the entire

space and  denotes the maximum value

of the expression in parentheses in the entire space.

For both VCSE and DFB lasers, we have 
owing to a relatively large number of modes to which
QDs may emit. Therefore, we may approximate the
modulation frequency as

(31)

It is seen that the frequency of the amplitude mod�
ulation in the VCSE and DFB lasers is limited.
Indeed, an increase in  results from an increase in
number s of photons in the cavity mode that can be
reached using an increase in either Q factor or popula�
tion inversion. An increase in the Q factor leads to a
decrease in the modulation frequency, so that such a
method for an increase in the number of photons is
inapplicable. An increase in population inversion n
leads to an increase in the modulation frequency.
However, the maximum possible population inversion
is equal to the number density of atoms in the amplify�
ing medium. In addition, the pump current that is
needed for the generation of population inversion
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n = n0 exponentially increases with increasing n0 [12].
Thus, the modulation frequency can hardly be
increased using an increase in the population inver�
sion. Note that a relatively high photon density in the
cavity may cause overheating and the damage of gain
medium.

An alternative approach to an increase in frequency
ωam employs a decrease in laser mode volume Vmode. In
this case, the modulation frequency increases due to
an increase in both photon density in the mode and
spontaneous decay rate. Indeed, the rate of spontane�
ous decay of atom to the cavity mode differs from the
decay rate in free space by Purcell factor [24]

(32)

which is inversely proportional to the mode volume.
In conventional VCSE and DFB lasers, the mode

volume is Vmode ≥  where S is the emitting sur�
face and n is the refractive index for the cavity mode.
Thus, the maximum frequency of the amplitude mod�
ulation is fundamentally limited in the VCSE and
DFB lasers [12]. Wide�aperture sources of coherent
radiation based on spasers are being developed at
present to eliminate the above limitation.

3. SPASERS AND PLASMON DFB LASERS

3.1. Spasers

There has been considerable recent interest in the
sources of coherent radiation based on composite
materials containing plasmon nanostructures as alter�
natives to lasers with cavities based on PCs [5–11].
The key element of such structures is the generator of
coherent plasmons (spaser) that was theoretically pre�
dicted in 2003 [10, 36] and experimentally imple�
mented in 2009 [37, 38]. A spaser schematically repre�
sents a quantum–plasmon device consisting of
inversely excited QDs, atoms, or molecules that inter�
act with plasmon nanoparticles [10, 36], plasmon
waveguides [37, 38], or surfaces. The working princi�
ple of spaser is similar to the working principle of laser
based on the amplification provided by population
inversion and the feedback provided by the stimulated
emission of quantum system. The conditions for the
stimulated emission of the inverse quantum system in
the presence of the wave field that is generated in the
same system are provided in the cavity that localizes
the generated mode. Surface plasmons of nanoparti�
cles the localization of which on a nanoparticle pro�
vides the conditions for positive feedback serve as the
emitted field in the spaser. In other words, the genera�
tion of near�fields of nanoparticles takes place in a
spaser. The amplification of surface plasmons results
from the nonradiative energy transfer [39] from QDs.
The process is based on the near�field interaction of a
QD and a plasmon nanoparticle. Such a process can
be considered as the basic process, since the probabil�

( )
=

π λ
mode

mode
2 3

3 ,
4

QF
V n

( )2 ,S nλ

ity of the nonradiative excitation of plasmon is greater
than the probability of radiative emission of photon by
factor (krNP–QD)–3, where rNP–QD � λ is the distance
between the centers of nanoparticle and QD and

 Ohmic loss IJ and the loss related to the far�
field emission of electromagnetic fields Iem are the
main losses in the spaser. The ohmic loss in nanoparti�
cle increases proportionally to the nanoparticle volume

(IJ ~ VNP ~ ), and the emission loss is proportional to

the squared volume of nanoparticle (Iem ~ ~ 
rNP is the radius of nanoparticle). Thus, the emission
(ohmic) loss dominates at relatively large (small) sizes
of nanoparticles when rNP ≥ 50 nm (rNP ≤ 20 nm).

The Purcell factor Fmode � 1 must be taken into
account in spaser owing to a relatively small volume of
the laser mode Vmode ≈ VNP �λ3. If the frequency of the
gain medium is tuned to the resonance with a mode of
nanoparticle (e.g., dipole mode), the rate of spontane�
ous decay to such a mode is significantly higher than
the total rate of the decay to the remaining modes

 (see Appendix 2). Therefore, frequency of the
amplitude modulation ωam in spaser may be signifi�
cantly higher than the frequency in conventional
lasers [40].

The main disadvantage of spasers that impedes
their application as sources of far�field electromag�
netic radiation is related to (i) low efficiency of the
conversion of pump current energy into the radiation
energy due to relatively high ohmic loss in nanoparti�
cle and (ii) relatively wide directional pattern. The lat�
ter is due to the fact that the size of spaser is substan�
tially less than the wavelength of emitted radiation, so
that the directional pattern of a single spaser coincides
with the directional pattern of a single dipole.

The sources of coherent radiation with a relatively
narrow directional pattern can be based on the plas�
mon DFB lasers [19, 40] that employ the matching of
planar distributed emitters (2D arrays of spasers
[16, 17, 28, 30]) and the systems based on light stopping.

3.2. Plasmon DFB Lasers

Plasmon DFB lasers slightly differ from conventional
DFB lasers. Therefore, they exhibit the main advantages
and disadvantages of the conventional systems.

The lasing in plasmon DFB lasers takes place at
waveguide modes that propagate along the surface of
the system, and the radiation is emitted along the
direction that is perpendicular to the generation plane.
The positive feedback in the system results from mul�
tiple scattering by a periodic grating of perturbations

(metal nanoparticles or holes in metal film).
7

The plasmon DFB lasers are divided into two
classes. The lasers of the first class are based on dielec�

7 The grating of perturbations serves as the PC.
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tric films with embedded periodic arrays of nanoparti�
cles (Fig. 6). The photonic modes of dielectric film
serve as the waveguide modes in such systems [9, 28].
The dielectric film contains the gain medium and a
grating of metal nanoparticles that provides the posi�
tive feedback and the outcoupling of radiation from
the plane of generation. Such systems differ from con�
ventional DFB lasers by the application of a grating of
metal perturbations instead of a grating of dielectric
perturbations.

In the lasers of the second class, the cavity repre�
sents a metal film perforated with a grating of nano�
holes [8, 41] (Fig. 7). In such systems, surface plas�
mons that propagate along the interface of metal film
serve as laser modes and holes in the film serve as per�
turbations.

The narrowing of the directional pattern along the
direction that is perpendicular to the plane of the plas�
mon DFB laser has been experimentally observed for
both metal film perforated with periodic holes and
covered with an amplifying layer [8, 41] and regular
grating of metal nanoparticles in an amplifying layer
[9, 28]. The presence of metal in the experimental
samples leads to significant loss and relatively low Q
factor of the system, so that the plasmon DFB lasers
must be thresholdless lasers [42]. In other words, the
lasing threshold in such lasers must be smoothed by
the noise component. Nevertheless, the experiments
yield a sharp threshold with respect to the radiation
intensity induced by nanoparticles. Such a result is
easy to interpret with allowance for the fact that the
noise component of electromagnetic field in the sys�
tem is a random component, so that the phase of the
corresponding field is changed from particle to parti�
cle. Therefore, the radiation related to the noise com�
ponent is emitted to the full solid angle. At the same
time, electric and magnetic fields on all nanoparticles
are matched upon lasing, so that a narrow directional
pattern is obtained. Thus, the emission exhibits sharp
threshold dependence on the pump intensity in spite
of the fact that the plasmon DFB lasers are threshold�
less lasers.

3.3. Spasing in the Stopped�Light Regime

Coherent sources with a narrow directional pattern
based on the plasmon DFB lasers can be supple�
mented with the systems based on light stopping. In
such structures, the lasing takes place at modes with
zero group velocity.
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When group velocity in the system vgr = 
approaches zero, density of states of electromagnetic
field  ~  = 1/vgr increases, so that the rate of
induced transitions in the gain medium increases in
the presence of such a light field. The stopped�light
mode serves as the cavity mode and provides the feed�
back. The main principle of lasing based on stopped
light lies in the fact that the group velocity of photon in
the system is zero (i.e., the photon does not propagate
being localized in a certain region in the system).
Thus, the stimulated emission takes place also to the
stopped photon. The stopped�light effect localizes the
mode and allows lasing in a homogeneous infinitely
long system in the absence of a real cavity that confines
optical radiation. Such a type of lasing allows genera�
tion on the subwavelength scale.

A particular system is considered in [43] where the
dynamics of lasing in a plasmon structure that has a
slow�light mode in the near�IR range is analyzed. It is
known that the slow�light regime can be reached in
PCs and metamaterials [44]. The results of [43] show
that a layered plasmon structure also makes it possible
to generate stopped�light mode. In such a system
stopped light emerges owing to the equalization of
energy fluxes that are oppositely directed in the layers
of the structure. Different directions of energy fluxes
in the layers are needed for the generation of the sur�
face plasmon. The group velocity becomes zero at the
point of equalization of energy fluxes, since the energy
density remains finite [45]. The fluxes cannot be
mutually compensated in a passive or active system
due to the presence of an energy flux that is related to
dissipation or generation. However, an increase in gain

k∂ω ∂

ρ k∂ ∂ω

in the passive medium may compensate for loss, so
that the zero group velocity can be reached.

A metal–insulator–metal structure has been pro�
posed in [43] for implementation of the stopped�light
regime (Fig. 8a). The thickness of the upper metal
layer was t = 500 nm, and the thickness of the dielec�
tric layer was h = 290 nm. The insulator was placed on
top of the thick metal layer. The TM2 mode in the
structure provides two points at which the group veloc�
ity is zero (Fig. 8b). A variation in the parameters of
waveguide makes it possible to obtain such points at
frequencies that are close to each other, so that a rela�
tively large fragment with zero group velocity is formed
on the dispersion curve  (Fig. 8). Both points are
located on the dispersion curve in the region corre�
sponding to leaky waves that are emitted to free space
perpendicularly to the planar structure (Fig. 8a).

To compensate for the loss related to the emission
along the direction perpendicular to the plane of
structure and Joule loss in metal, a gain medium can
be used instead of the insulator [46–48]. The dynam�
ics of the pumped planar structure has been studied
with the aid of numerical simulation of the Maxwell–
Bloch equations [25]. The active medium has been
simulated as a four�level system. In such an approach,
we may assume that the pumping of active medium
can be performed with the aid of a waveguide at a
higher (optical) frequency.

The dispersion relations are obtained at different
pump levels in the active medium. At an inversion of
nthr = 0.13, the imaginary part of the wave vector of the
TM2 mode changes sign. Such a level of the inversion
is considered in [46–48] as the lasing threshold. The
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narrowing of the laser line has been demonstrated. In
the steady�state regime, the inversion in the active
medium n ~ 0.5 (Fig. 9a) is significantly greater that
threshold level nthr calculated above. Such an increase
is due to the additional compensation for loss upon
lasing (i.e., partial propagation of energy along the
waveguide that results from both group�velocity dis�
persion and the formation of spatial wells caused by
nonuniform distribution of electric field (Fig. 9b)).

Note that, in this case, the real part of the wave vec�
tor is close to zero, so that the atomic oscillations in
the gain medium are matched in the spot the size of
which is inversely proportional to the real part of the
wave number. In fact, the size of the lasing spot is
determined by the pumping area and has subwave�
length size, which impedes the formation of a narrow
directional pattern.

Note also a possibility of spasing in the stopped�
light regime for the plasmon mode that is located on
the dispersion curve outside the light cone and does
not emit to free space. For example, the point with
zero group velocity is observed for the TM1 mode in
the waveguide with a similar (metal–insulator–metal)
structure and specific parameters of layers. In this
case, the waves with k ≈ k2 (k2 is the wave number of
the TM1 mode with zero group velocity) are involved
in the formation of the laser mode. Therefore, the
electromagnetic field of such a mode is modulated at a
frequency of about  In this case, the emission is
absent and the near�field is generated. Thus, such a
regime can be called spasing in the absence of cavity.

3.4. Phase�Matching of a 2D Array of Spasers

2D spaser arrays can also be used for the develop�
ment of coherent sources with relatively narrow direc�
tional patterns. In accordance with the recent theoret�
ical predictions of [5, 6, 49–51], the interaction of

2 .k∼π

spasers in a planar array may lead to phase matching of
the field oscillations on single spasers and the narrow�
ing of the directional pattern along the direction per�
pendicular to the plane of array.

In fact, such systems represent PCs a unit cell of
which contains a scatterer surrounded by active
medium. The plasmon resonance emerges in the scat�
terer at a certain frequency, a single cell is transformed
into a spaser, and the system becomes similar to the
system of [49–51]. The difference lies in the fact that
the analysis cannot be restricted to the dipole–dipole
interaction of the spasers.

Two substantially different methods can be used for
mode locking in the 2D spaser array.

A rectangular grating of plasmon nanoparticles
with complicated shapes (Fig. 10) that are placed on
the surface of the active medium has been considered
in [5, 6]. For certainty, we assume that the grating
belongs to the xy plane and the edges of grating are
parallel to the x and y axes.

Owing to the periodicity of the grating, the field in
such a system can be represented as a series in terms of
standing waves with wave numbers

where dx and dy are the distances between the neigh�
boring nanoparticles along the x and y axes, respec�
tively; Lx and Ly are the sizes of the system along the
axes; and nx and ny are the integers that range from 0 to

 and from 0 to , respectively.
The shape of nanoparticles in [5, 6] corresponds to

the minimum radiation intensity of the grating of
nanoparticles when the field distribution in the system
coincides with the standing wave with  = 
(phase matching). For such a shape of nanoparticles,
the threshold pumping for the phase�matched mode is
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lower than the pumping for any mode of the system. In
any system of several spasers, which represents a mul�
timode laser, the mode competition results in the sur�
vival of the mode with the lowest pumping threshold
and the phase�matched distribution of currents is
established in the system. Note two significant disad�
vantages of such a method (the application of nano�
particles with complicated shapes (Fig. 10a) and the
minimization of the radiation intensity for the above
type of phase matching) that impede the development
of an efficient source of coherent radiation.

A method for the phase�matching of the oscilla�
tions of dipole moments of single nanoparticles in a
2D spaser array that is free of the above disadvantages
has been proposed in [49–51]. In such a method, at
least two nanoparticles interact with each QD in the
spaser array [49–51]. Such interaction in the system of
spasers leads to the phase matching of the oscillations
of spasers that is maintained when the radiative loss is
taken into account. The radiation power of an array of
phase�matched spasers per unit solid angle along the
direction perpendicular to the plane of array is propor�
tional to the square of the number of spasers N2. Such
an increase is due to superradiance [52] at small sizes
of the system (significantly less than the wavelength)
and the narrowing of the directional pattern at large
sizes. Thus, the system may serve as an efficient source
of directional coherent radiation.

We consider a particular 2D periodic array of spas�
ers. Two inverse QDs that are located in the vicinity of
a metal ellipsoid nanoparticle (NP) (Fig. 11a) serve as
a model of spaser [49–51]. For simplicity, we assume
that the quantum system is a two�level system and the
ellipsoid nanoparticles that have dipole plasmon
modes serve as cavities. The eigenfrequencies of the
dipole modes with different orientations are different
owing to the nonspherical shape of the nanoparticles.
We assume that the frequency of the mode with the

dipole mode that is oriented along the major axis of
ellipsoid coincides with the QD transition frequency
and the frequencies of the remaining dipole modes
substantially differ from the transition frequency and,
hence, are not excited upon lasing in the system.

Let single spasers [49–51] form a 2D rectangular
grating. For definiteness, we assume that the grating
belongs to the xy plane and the edges of the grating are
parallel to the x and y axes (Fig. 11c). We also assume
that the distances between the nanoparticles along the x
and y axes (δx and δy in Fig. 11b) are significantly less
than the wavelength (  =  =  =  in [49–51])
and the system under study has a square shape with

side L and number of spasers N.
8

The spaser dynamics is described using a system of
three equations for amplitude of NP dipole moment a,
polarization σ, and population inversion D of QD
[53]. In the 2D array, the spaser with number  =

 interacts with the local field  =
 that is generated by the spaser with

number  =  The projection of the local field
of a single dipole along the direction of the dipole
moment of the nanoparticle is represented as

(33)

where  is the wave number in vacuum,  is the
unit vector that is parallel to the NP dipole moment,

 is the vector that connects spaser with number 

8 A p–n junction can be used in practice as amplifying medium
instead of QDs. In this case, the p–n junction is formed on a
specific substrate (e.g., InP) and, then, metal (gold or silver)
NPs are deposited on the p–n junction.
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and spaser with number , and  is the radiative
decay rate. For a spherical nanoparticle with radius rNP

in free space, we have  =  [53]. In

general, parameter  depends on the environment
and shape of NP. At the frequency of the dipole reso�

nance ωres, parameter  is related to polarizability
:

For the calculation of the local field, we restrict
consideration to the dipole–dipole interaction (with
allowance for the retardation effect (33)) of the
nanoparticles and disregard the interaction with
higher multipoles. The expression for the local field
is typical of free space, and a single effect that is
related to the metal film and taken into account is the
wave decay in free space (we have k =  in
expression (33), and  and  in the
numerical simulation). When such a decay is not
taken into account, the NP interaction in a perfect
system is not reduced to the interaction of neighbor�
ing NPs, the finiteness of the sizes of structure
becomes significant, and we obtain nonuniformity
over the array of local fields that are exerted on spas�
ers and several instabilities. As for the remaining
effects, the qualitative influence of the local field on
the system under study is absent.

In the approximation of rotating wave [54–58], the
system of interacting spasers is described using the sys�
tem of nonlinear differential equations

(34)
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where  is the dipole moment of the th nanoparti�
cle,  is the dipole moment and  is the population
inversion of the th QD, and D0 is the external pump
intensity that is assumed to be equal for all QDs. The
relaxation times of polarization (transverse relaxation)
and population inversion (longitudinal relaxation) of
QDs are τdqd and τiqd, respectively. The lifetime of the
plasmon mode is determined by the Joule and radia�

tive losses:  =  +  (in the calculations, we use

 = ).
In the system of equations (34)–(36), we take into

account the interaction of NPs (the second term on
the right�hand side in Eq. (34)) and the interaction of
NP with four neighboring QDs (the first term on the
right�hand side in Eq. (34)). We also take into account
the radiative loss that increases with an increase in the
number of spasers. The system of equations (34)–(36)
does not take into account the spontaneous emission
of QDs that is important in the vicinity of the generation
threshold. Hence the above system of equations can be
used only substantially above the lasing threshold.

The numerical solution of the system of equa�
tions (34)–(36) at  that is significantly greater than
a certain threshold level shows that the oscillations of
dipole moments of single spasers in the spaser array
reach a stationary level with almost uniform phase dis�
tribution over the array (Fig. 12). In the arrays with a
number of spasers N of about 102, we can reach almost
perfect phase matching of the oscillations of dipole
moments in the system (Fig. 12a). In relatively large

systems , we obtain perturbations in the
vicinity of boundaries along the direction that is paral�
lel to the oscillations of dipole moments (Fig. 12b).
Such an edge effect has a scale of about one wave�
length in vacuum. When the sizes of the system are sig�
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Fig. 12. Distributions of the oscillation phases of dipole moments over the spaser array for (a) 5 × 5 and (b) 100 × 100 spaser arrays
at  (spaser numbers are plotted on the x and y axes, and the phase of the dipole moment is plotted on the z axis).Ω ≠r 0
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nificantly greater than the wavelength, the influence of
the edge effects on the radiation intensity of a spaser
array and the directional pattern is negligible.

The phase�matched regime of oscillations of the
dipole moments in the spaser array is reached owing to
the interaction of NPs and QDs of the neighboring NPs.

In the phase�matched regime, the far�field interac�
tion of spasers leads to an increase in the radiation inten�
sity. Such an effect is more developed for the systems with
small sizes  for which expression (33) is rep�
resented as

(37)

where  ≈  When the dipoles oscillate with
identical phases and amplitudes, the last term in
expression (34) can be divided into two parts:

(38)

The second term on the right�hand side in expres�
sion (38) leads to an increase in the loss rate for the

th plasmon by a factor of . Hence, the effec�

tive decay rate is  +  and Eq. (34) can be rep�
resented as

(39)

Thus, the dipole moments of NPs at  pro�
vide identical contributions to the radiation intensity

of each NP:  =  In this case, the total radi�
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ation intensity of N NPs is proportional to the square
of the total number N2, which is typical of the superra�
diance [52]. Note that such a dependence is obtained
with the aid of the expression for the total field of
dipole with allowance for retardation (33). Therefore,
all terms must be taken into account in expression (33)
to correctly describe the effect of radiation on the
oscillation dynamics of dipole moments in the spaser
array.

The radiation power of the spaser array can be
obtained using the equations of energy balance that
follow from expression (39) for the stationary regime:

(40)

In accordance with expression (37), we have  ≈

 for  Thus, the term  in sum 

can be taken into account as  =  The left�
hand side of Eq. (40) is proportional to the energy loss
in the system. The first term on the right�hand side
corresponds to the Joule loss, and the second term
corresponds to radiative loss I:

(41)

where q is the electron charge. Figure 13a presents the
dependence of the power of radiative loss on the num�
ber of spasers in the array.

At relatively small sizes of the system, the spasers

exhibit the in�phase oscillations (  for the above
parameters) (Fig. 12a). In this case, the radiation
intensity per one spaser linearly increases with an
increase in the number of spasers:  =  ~  For
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Fig. 13. Plots of (a) integral (with respect to angle) radiation intensity and (b) radiation intensity per one spaser along the direction
that is perpendicular to the plane of array vs. number of spasers: (dashed lines) perfectly matched system and (solid line) real sys�
tem. The inset shows the dependence for a relatively small number of spasers.
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such arrays, the radiation intensity coincides with the
radiation intensity of a perfectly phase�matched sys�
tem (see inset to Fig. 13a). With a further increase in
the size of the array, the radiation intensity decreases
due to the formation of boundary states (Fig. 12b). A
further increase leads to the phase�matching of the
major part of the array (Fig. 12b). For the number of

spasers , the radiation intensity of the sys�
tem under study becomes approximately equal to the
radiation intensity of a perfectly matched system and
the total radiation intensity decreases. Such a decrease
results from the destructive interference of the dipole
moments of spasers that are located in different parts
of the system. The equality of the radiation intensities
of the system under study and the perfectly matched
system is due to negligible influence of the edge effects
at relatively large sizes of the spaser array.

For practical applications, the total radiation
intensity of the system of spasers is less important than
the radiation intensity per unit solid angle along the
direction perpendicular to the plane of array (i.e., the
radiation power that is measured using a small detector
that is placed above the plane of spaser array). We can
calculate the total radiation power of the system of
dipoles taking into account the interaction in the sys�
tem via the total radiation field. However, such an
approach is inapplicable in the calculation of the
angular distribution of the radiation intensity. Such a
distribution can be obtained with the aid of the elec�
trodynamic analysis of radiation for the calculated dis�
tribution of amplitudes and phases of NP dipole
moments in the phase�matched spaser array. In other,
words, we consider a system of spasers as a phased
antenna array. The angular distribution of the radia�
tion of such an antenna can be obtained using the Fou�
rier transform of the current distribution over its aper�
ture [33]. For the system under study, we must use the
distribution of phases and amplitudes of dipole
moments over the system of spasers. Thus, the angular
distribution of the radiation intensity is given by

(42)

where  is the unit vector along the direction of emis�
sion,  is the coordinate vector of the th dipole in the

array, and  =   is the radiation
intensity of a single dipole along vector  The integra�
tion of expression (42) over all directions e yields
expression (41). Along the direction that is perpendic�

ular to the plane, we have  =  and

obtain dependence  for the phase�matched
system with any size.

Such a conclusion is proven by the results of
numerical calculation (Fig. 13b). It is of interest that a
linear increase in ratio  is determined by two
effects. At relatively small sizes of the system (L < λ),
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such an increase results from an increase in the inte�
gral radiation intensity due to the superradiance [52].
At , an increase in ratio  is caused by the
narrowing of the directional pattern due to an increase
in the aperture of the emitting system (Fig. 14).

The numerical study of the 2D spaser array shows
that the interactions of NPs with QDs of the neighbor�
ing NPs leads to the phase�matching of the oscilla�
tions of dipole moments of single spasers. A mode
with the lowest threshold with respect to pumping
Dthr normally survives in multimode lasers in the
presence of mode competition [49, 50, 54–59]. For
the system of spasers, the threshold with respect to
pumping is given by

Such a threshold is identical to the threshold of a
single spaser [53] with effective parameters Ωr, τdnp,
and mismatch δ

(43)

(44)

(45)

where  is the wave number of the eigen�
mode of dipole oscillations in the spaser array.

Quantity  depends on three factors 

, and  The first term 

exhibits minimum at  Indeed, in the phase�
matched mode, the fields of the neighboring NPs
interfere on QDs, so that the corresponding interac�
tions and energy transfer reach maximum levels for the
phase�matched mode. Such an effect has been ana�
lyzed in [50]. On the other hand, the second term

 increases with increasing  owing to an
increase in the radiative loss, so that quantity Dthr

increases. With regard to this factor, the mismatched
mode must have the lowest threshold. At the same

time, the third term  tends to unity

when parameter  increases.
Thus, the stationary mode in the system results

from the competition of two effects: phase�matching
related to the nonlinear dipole–dipole interaction of
NPs with neighboring QDs and mismatching related
to an increase in the radiation intensity.

The first effects dominates at realistic parameters.

Hence, the mode with  has the lowest threshold
and will be observed in the stationary regime.

The above theory can be used only for an infinite
2D array of spasers, since, in accordance with the
assumption, the threshold and frequency of lasing are
identical for all of spasers in the array. A system with
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finite sizes exhibits edge effects at the boundaries
(Fig. 12b) that lead to a decrease in the radiation
intensity when the size of structure is on the order of
wavelength (Fig. 13a).

The edge effects are due to the shift of the fre�
quency of the plasmon resonance of NPs at the
boundaries relative to the resonance frequency of NPs
at the center of the array. Indeed, the frequency of the
NP plasmon resonance depends on the environment.
At the center of the system, the environments are
identical and, hence, the shifts of the resonance fre�
quency are also identical. For the spasers at the bound�
aries, the environment differs from that at the center of
the system, so that the frequency of the NP plasmon
resonance at the boundary differs from the resonance
frequency of the same NP that is located at the center.

To compensate for the edge effects in the array, we
must change the mutual positions of NPs at the edges
of the system in such a way that the frequencies of plas�
mon resonances become identical. Figure 15 shows
the positions of NPs at the boundary of the array at
which the resonance frequencies are identical for
all NPs.

In the resulting system, the presence of boundary
does not affect the phase distribution of dipole

(а)

z

x

y z

x

y

(b)

Fig. 14. Directional pattern for the phase�matched spaser array for the system of (a) 5 × 5 and (b) 100 × 100 spasers.
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Fig. 15. Position of NPs in the vicinity of the boundary of
the phase�matched spaser array at which the field on NPs
does not depend on the NP position in the array at α =

 β1 =  and β2 = 

where  =  and  are the distances between the
neighboring NPs along the directions that are perpendicu�
lar and parallel to the boundary of array, respectively.
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moments. The results of numerical simulation prove
such a conclusion (Fig. 16).

Thus, the radiation intensity of the system under
study and a perfectly matched system coincide at any
number of spasers in the array (Fig. 17).

CONCLUSIONS

Modern plasmon wide�aperture lasers [9, 28, 41]
predominantly represent plasmon DFB lasers. Such
lasers exhibit the generation of the Bloch wave at the
edge of the second band gap. Plasmon DFB lasers are
free of strict limitations on the frequency of the ampli�
tude modulation that are typical of DFB and VCSE
lasers. Thus, the former, can be used in optoelectron�
ics for transformation of electric signal into optical
signals and vice versa.

Devices based on cooperative phase�matching of
emitters with the generation of a wave with zero tan�
gential wave vector may serve as alternatives to the
plasmon DFB lasers. Note, for example, lasers with
cavities on the stopped�light mode and 2D spaser
arrays.

The main principle of lasing with the aid of stopped
light is based on the fact that the group velocity of pho�
tons in such devices is zero, so that photons do not
propagate and appear to be localized in certain region
inside the system. The resulting stimulated emission
takes place to the same stopped photons, so that the
lasing can be obtained in homogeneous infinitely long
medium in the absence of a real cavity that confines
the radiation. Such an effect allows lasing on the sub�
wavelength scale.

In a 2D spaser array, the interaction of NPs via QDs
of the neighboring spasers may lead to the phase�
matching of the oscillations of dipole moments of sin�
gle NPs. When the aperture of the array is sufficient,

the directional pattern becomes relatively narrow and
the total radiation intensity increases by two orders of
magnitude due to superradiance. Such devices are
interesting for applications in systems of open optical
communications. In particular, the first optical phased
array can be developed.

APPENDIX 1

BAND STRUCTURE OF PC

PCs represent structures in which the permittivity
exhibits periodic variation along one, two, or three
axes in space. PCs are classified as 1D, 2D, and 3D
with respect to the number of directions along which
the permittivity is varied.

The properties of a linear 1D PC are well studied,
the electric�field distribution in such a structure satisfies
the Floquet–Bloch theorem:  = 

where  =  and kB is the Bloch wave num�
ber. When the PC consists of two alternating layers
with thicknesses  and , permittivities ε1 and ε2, and
permeabilities μ1 and μ2, respectively, the Bloch wave
number can be calculated using the Rytov formula [30]

(A1.1)

where k1 =  and k2 =  are the wave
vectors in the first and second media, respectively, and
Z1 and Z2 are the corresponding impedances. The
presence of band gaps (BGs) in the spectrum is an
important property of PCs. Electromagnetic waves
with frequencies from BG exponentially decay in the
depth of PC, the real part of the Bloch wave number
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 is π, and the imaginary part of the Bloch wave
number is positive  (Fig. 18).

Normally, BGs emerge in PC at frequencies for
which

(A1.2)

where n is the natural number.
9

The electromagnetic waves at frequencies from the
BG exponentially decrease upon propagation in PC
and do not provide energy transfer, so that the Poynt�

ing vector  =  of such waves must be zero.

Hence, the electric and magnetic fields in such waves
must oscillate with a phase shift of  Thus, the
impedance of PC (  = ) for such waves from BG

is an imaginary quantity:  = 0.

The group velocity in PC vgr =  strongly
depends on frequency. At the boundary of BG, we have
vgr → 0 (Fig. 18).

There is no difference between the first and second
layers in the cell of the 1D PC. A 2D PC represents a
homogeneous dielectric matrix that accommodates a
periodic 2D grating of spatially independent perturba�
tions. Thus, the PC properties differently depend on the
permittivity of matrix (first layer) and perturbations
(second layer). Such a difference leads to the absence of
complete BG for both polarizations in 2D PCs. The
numerical calculations show that the complete BG is
formed only when the permittivity of the perturbations
is less than the permittivity of the matrix [59].

9 A PC for which  and  is an exception.
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APPENDIX 2

FREQUENCY 
OF AMPLITUDE MODULATION

The DFB and VCSE lasers are used in optoelec�
tronics for the transformation of electric signals into
optical signals and vice versa. An important character�
istic for such purposes is the frequency of amplitude
modulation of signal at relatively small variations in
the pump intensity that do not provide transition to
the below�threshold regime of laser [24, 34].

To find the frequency of the amplitude modulation,
we employ the system of equations of [25]. When radi�
ation propagates along the normal to the layers in 1D
system, the equations are represented as [25, 26]

(A2.1)

(A2.2)

(A2.3)

where E is the electric field, P is the polarization, n is
the population inversion of gain medium, ωQD is the

QD transition frequency,  is the squared dipole
moment of the transition in the gain medium, and τp

and τinv are the characteristic relaxation times of polar�
ization and population inversion of QDs.
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The electric field and polarization can be written as

(A2.4)

(A2.5)

where  is the mode of the system that satisfies
equation

and ωmode is the mode frequency. Variations in complex
functions  and  are significantly slower than vari�
ations in exponential function  We assume
that  which is valid for the VCSE and
dielectric DFB lasers. Thus, expressions (A2.1)–(A2.3)
can be represented as

(A2.6)
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We substitute expression (A2.7) in expressions (A2.6)
and (A2.8), multiply expression (A2.6) by , and
average spatial factors in expressions (A2.6) and
(A2.8) with respect to the mode of the system corre�
sponding to frequency ωmode:

Thus, we derive equations to determine number den�
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If  Eqs. (A2.9) and (A2.10) can be
represented as

(A2.11)

(A2.12)

where 

We restrict consideration to the scenario in which
the frequency of cavity coincides with the frequency of
the gain band (ωmode = ωQD) and obtain

(A2.13)

(A2.14)

The Maxwell–Bloch equations do not take into
account spontaneous decays in the system. To take
into account such processes, we supplement the equa�
tions with the corresponding terms [19, 24]:

(A2.15)

(A2.16)

where  is the gain, τen =  is the decay time of the
field energy in the cavity, τsp is the spontaneous decay
time of the gain medium in free space,  is the
spontaneous decay rate to the laser mode, and Frem/τsp

is the spontaneous decay rate to the remaining modes.
The amplitude modulation of the signal results

from the time�dependence of quantity N0. In the pres�
ence of relatively weak amplitude modulation, the
field and population inversion weakly depend on time
and appear to be above the lasing threshold at any time
moment, so that quantities  , and  can
be represented as

(A2.17)

(A2.18)

(A2.19)

where  , and  are the stationary states of the
system of equations (A2.15) and (A2.16). We substitute
Eqs. (A2.17)–(A2.19) to system of equations (A2.15)
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and (A2.16) and use parameters Sst, Nst, and  to
obtain

(A2.20)

where

(A2.21)

is the frequency of amplitude modulation and β =
 is the ratio of the spontaneous

decay rate to the laser mode to the spontaneous decay
rate to the remaining modes.
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