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Abstract—Suppression of cross coupling between dielectric plasmon waveguides by inserting an additional
waveguide between two main waveguides has been demonstrated. It has been found that the cross-sectional
dimensions of the system can be less than two microns, i.e., several hundreds of times smaller than the cross-
sectional dimensions of a system made with the use of a dielectric fiber. It has been determined that modes
propagating in these waveguides are the sum of one of the symmetric modes and one antisymmetric mode of
the coupled system, and the cross coupling is suppressed by matching the wave numbers of these modes. Ana-
lytical results are confirmed by numerical simulation.
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INTRODUCTION
Surface plasmon waveguides are key components

of nanoplasmonic optic devices [1–9]. These wave-
guides can be used as interchip [10] and intrachip
[11, 12] plasmon connections. An advantage of plas-
mon waveguides consists in their small size and high
operating frequencies (up to optical frequencies). This
is achieved by means of subwavelength localization of
the electromagnetic field. Main drawbacks of plasmon
waveguides are the attenuation due to the ohmic loss
and the cross coupling between waveguides. The
attenuation can be compensated by the use of an active
medium [13–18]. The cross coupling arises due to
tunneling of the signal from one waveguide to another.
As in other waveguides, the surface plasmon wave
leaks through the physical boundary of the waveguide.
As a result, if two waveguides are placed close to each
other, the energy transfer between them or, in other
words, cross coupling, takes place.

For miniaturization of devices and increase of the
transmission capacity of optical transmission lines, it
is desirable to obtain high density of plasmon wave-
guides. However, high density inevitably leads to an
increase in the cross coupling. In [19], an original
method for suppressing the cross coupling was pro-
posed: an additional waveguide was placed between
the signal-carrying waveguides and, with the use of

adiabatic elimination, decoupling between the initial
waveguides and the additional one was demonstrated.
The proposed method allows us to control the addi-
tional waveguide; however, it does not allow us to con-
trol the isolation between the lateral (initial) wave-
guides.

In this study, the possibility of isolation of plasmon
waveguides with the use of an additional waveguide
placed between them is investigated. The additional
waveguide modifies the dispersion relation for the sys-
tem eigenmodes. Its parameters are selected so as to
equate wave numbers of the symmetric and antisym-
metric modes in the signal-carrying waveguides. In
this case, any linear combination of these modes prop-
agates without changes. In particular, this is true for
excitation of such a linear combination when the sig-
nal propagates in only one waveguide.

1. SUPPRESSION OF ENERGY TRANSFER 
BETWEEN WAVEGUIDES WITH THE HELP 

OF AN ADDITIONAL WAVEGUIDE

Using the theory of coupled modes, let us consider
propagation of an electromagnetic wave in a system
consisting of two coupled waveguides with identical
wave numbers . Let the z axis be directed along the
waveguides and the coupling constant be denoted by

β
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Fig. 1. Layout of the system of plasmon waveguides: (1, 3) signal-carrying waveguides and (2) additional waveguide placed
between the signal-carrying waveguides.
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. The field in the waveguides is described by the
equation

(1)

where  and  are the field amplitudes in these wave-
guides. The eigenmodes of the system can be found as

eigenvectors of matrix 

(2)

and their wave numbers can be found as the eigenval-
ues of the same matrix:

(3)
One of the modes is reflection symmetric, and the

other mode is reflection antisymmetric. Thus, if the
phase difference between the modes is zero ( ), then
the field exists only in the first (second) waveguide.

The energy is completely transferred from one wave-
guide to the other when the phase difference between
the eigenmodes changes by . This occurs when the
lengths of the waveguides satisfy the conditions

(4)
In the case of two waveguides, the only way to increase
the cross-coupling (CC) length  is to decrease .
This can be attained either by increasing the distance
between the waveguides, which decreases the system’s
transmission capacity per unit area, or by restructur-
ing the system.

Let us now discuss the effect of the loss on the cross
coupling in the proposed system. In a system of two
coupled lossy waveguides, the wave numbers assume
imaginary parts:

(5)
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If losses in both waveguides are identical, then the
imaginary parts of the symmetric and antisymmetric
modes are also identical: . As a result, the
cross-coupling length  is
independent of the loss.

If the imaginary parts of the symmetric and anti-
symmetric modes differ, then the amplitudes of the
fields in the first and second waveguides are identical:

(6)

where  and  are the initial amplitudes of the sym-
metric and antisymmetric eigenmodes. As a result,
oscillations in the waveguides occur at .
Otherwise, the field distribution is similar to that of
the symmetric or the antisymmetric mode and the
field amplitudes decrease as the wave propagates. The
layout proposed in this study can be used at

.

In order to increase  without increasing the dis-
tance between the waveguides, we place additional lin-
ear waveguide 2 between signal-carrying waveguides 1
and 3 (Fig. 1). It is assumed that the signal-carrying
waveguides have identical wave numbers  and the
coupling constant of these waveguides is . The wave
number of the additional waveguide is , and the cou-
pling constant of the additional waveguide and the sig-
nal-carrying waveguides is .

Let us consider this system in the approximation of
coupled modes. Let the z axis be directed along the
waveguides. In this case, we can write the equation

+ −γ = γ
( )( )CC 2 ReL + −= π β − β

( ) ( )
( )( )( )
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( )( )( )
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Fig. 2. Wave numbers of the eigenmodes of the three-
waveguide system as functions of the wave number in the
central waveguide.
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determining the dependence of the fields on the coor-
dinate as

(7)

where , ,  are the amplitudes of the fields in the
respective waveguides. The system of these waveguides
is symmetric; therefore, all system eigenmodes are
either symmetric or antisymmetric. The field of the
antisymmetric mode must be zero in the central wave-
guide and must have different signs in the lateral wave-
guides. There is only one field distribution that satis-
fies these conditions. Two other modes are symmetric.
These modes are orthogonal to each other; therefore,
one of these modes has maxima in the lateral wave-
guides and the other mode has a maximum in the cen-
tral waveguide. Below, the symmetric mode with max-
ima in the lateral waveguides is indexed by , the
other symmetric mode is indexed by , and the anti-
symmetric mode is simply marked by the minus sign
( ). Our goal is to find the waveguide parameters at
which wave numbers of antisymmetric mode  and
first symmetric mode  coincide. In this case,
according to Eq. (4), .

In the system under consideration, wave numbers
,  and  have the form

(8)

(9)

(10)
Below, all wave numbers are normalized to the

wave vector in free space . At the first step, in
order to estimate the possibility of elimination of the
cross coupling, we use parameters in the range
observed in the experiments [20, 21]. We assume that
the wave numbers in the lateral waveguides are

. Coupling constants of the waveguides 
and  exponentially decrease as the distance between
the waveguides increases. The coupling constant of the
first and second (or the second and third) waveguides

 must be several times higher than . The theory of
coupled modes, which we use, is the theory of perturba-
tions with respect to coupling constants  and .
The theory is applicable if . We assume that

 and ,
whereas wave number of the central waveguide  will
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be varied. For these parameters, in the absence of the
central waveguide, the cross-coupling length

, where  is the wave-
length in free space. The cross-coupling length limits
the waveguide length for which data transmission is
possible. In our case, the waveguide length cannot
exceed  since, at this distance, the signal is com-
pletely transferred from the first waveguide to the
third one.

Dependences of the wave number of each mode on
 are shown in Fig. 2. It can be seen that at

, wave numbers of modes  and  coin-
cide and are equal to 1.995. In this case, the eigen-
modes of the system have the form

(11)

Let us determine the field distribution in the wave-
guides under the assumption that a signal with the unit
amplitude is excited only in the first waveguide. In this
case, we obtain the following eigenmodes:

(12)

Since the wave numbers of eigenmodes  and 
are identical, the phase difference between them does
not change. The field in the first waveguide can be
written as

(13)

This field reaches minimum values at the points
, where n is an integer. Let

us determine the minimum value of  at these points:
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Fig. 3. Distribution of the electric field of eigenmodes at (a) , (b) , and
(c) .
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The field in the third waveguide is determined by the
expression

(15)

This expression has a maximum at the same points
, where  is minimal. At these points, the ampli-

tude of  has the form

(16)

The maximum field strength in the third waveguide is
. Thus, the strength of the induced signal in

our system is at a level of  of the strength of the
carrier signal. In other words, the cross coupling is
practically eliminated in this system.

In the presence of loss, the situation in the three-
waveguide system is similar to that in the two-wave-
guide system: if the loss level is the same in all wave-
guides, the cross-coupling length does not change.
Indeed, for wave numbers  and

, Eq. (7) takes the form
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Let us introduce new variables  = ,
where subscript i varies from 1 to 3. These variables

( ) ( ) ( )
( )( ) ( )

3 1 1

2 1 2 2

3 3
exp 3 .
u z c U c U

i z c U
+ + − −

+ + + +

= +
+ β − β

minz 1u
2u

( ) ( ) ( ) ( )
( )

2 1 1 2 2

2 2

3 3 3
2 3 0.07.

u z c U c U c U
c U

+ + − − + +

+ +

= + −
= ≈

36 10−≈ ×
0.6%

1 1 iβ → β + γ
2 2 iβ → β + γ

1 12 131 1

2 12 2 12 2

3 313 12 1

1

2

3

( ) ( )
*( ) ( )

( ) ( )* *

0 0 ( )
0 0 ( ) .
0 0 ( )

u z u z
di u z u z
dz

u z u z

u z
i u z

u z

β κ κ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟− = κ β κ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠κ κ β⎝ ⎠
γ⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟+ γ
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟γ⎝ ⎠ ⎝ ⎠

( ) 'iu z ( )( )expiu z z−γ
JOURNAL OF COMMUNICATIONS TECHN
satisfy Eq. (7); therefore, we can apply to them the
same reasoning as that applied to the lossless system.
The losses in the additional waveguide and in the sig-
nal-carrying waveguides are different; therefore, the
propagation lengths of different modes are also differ-
ent. The signal propagation length is determined by
the shortest propagation length and by the cross-cou-
pling length.

In the context of the theory of coupled modes, the
solution for a system of waveguides can be represented
in the form of a linear combination of eigenmodes of
each waveguide. This theory is the first-order pertur-
bation theory, where the coupling constants of wave-
guides serve as perturbation parameters. Higher orders
of the perturbation theory may noticeably affect the
results obtained since even a small difference between
the wave numbers of the first symmetric and antisym-
metric modes may result in energy transfer between
the waveguides. To check the analytical results, we will
perform a numerical simulation of signal propagation
in the described system.

2. NUMERICAL SIMULATION
Let us consider a system of dielectric surface plas-

mon waveguides [22, 23] with parameters shown in
Fig. 1. The waveguides consist of dielectric strips
placed on a 300-nm-thick gold film. At the Telecom
wavelength  μm, the refractive index of gold is

 [24].
The lateral waveguides have identical refractive

indices of 1.5277 (SiO2) [25] (dimensions are shown in
Fig. 1). This ensures single-mode operation for each
waveguide. The refractive index of the additional

1.55λ =
0.5241 10.742i+
OLOGY AND ELECTRONICS  Vol. 63  No. 7  2018
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Fig. 4. Distribution of the magnitude of the electric field strength at the interface between the gold film and the waveguide. The
inset show the layout of the system, where section AB of the third waveguide is used to excite this waveguide.

1.0

0.5

0

E, rel. unit

A
B

2 0 –2

–0.2

30

20

10

0

0.4

Fig. 5. Distribution of the magnitude of the electric field at the interface between the gold film and (1) the right waveguide,
(2) the central waveguide, and (3) the left waveguide (a) with and (b) without the additional waveguide. The origin of the z axis is
point B in the inset in Fig. 4.
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waveguide is 3.4757 (Si) [26]. The width of the lateral
waveguide is fixed, and the width of the central wave-
guide is varied.

Let us determine eigenmodes of the system by the
finite-element method with a grid size varying from 52
to 260 nm. The closer the element to the boundary of
the system, the smaller its size; the farther the element
from the boundaries, the larger its size. The width of
the calculation area is 6 μm and the height is 3.3 μm.
Thus, the size of the system is considerably smaller
than the size of the calculation area.

The system supports three eigenmodes: two sym-
metric modes and one antisymmetric mode (Fig. 3).
Numerical simulation shows that, at the width of the
second waveguide  nm, real parts of the wave
vectors of the symmetric mode with maxima in the
lateral waveguides and the antisymmetric mode
(Figs. 3a and 3b) are identical and their wave numbers
are, respectively,  and

175d =

1 1.0856 0.00252iβ = +
JOURNAL OF COMMUNICATIONS TECHNOLOGY AND
 at a wavelength of 1.55 μm.
The third mode has a maximum in the central wave-
guide (Fig. 3c).

Let us now consider propagation of the signal
excited in the third waveguide of this system. The
lengths of the first and second waveguides are 30 μm,
whereas the length of the third waveguide, which car-
ries the signal, is 32 μm. Thus, excitation of this wave-
guide occurs in additional 2-μm-long section AB (see
the inset in Fig. 4). The remaining parameters of the
system are the same as in Fig. 1. The layout of the sys-
tem used in the numerical calculations is shown in
Fig. 4. The signal in the form of the eigenmode of an
(isolated) waveguide is excited in the third 32-μm-
long waveguide.

Numerical calculations show that the signal propa-
gates along the right waveguide with a very small
energy transfer to the left one. Fields in each wave-
guide are shown in Fig. 5a.

2 1.0856 0.00271iβ = +
 ELECTRONICS  Vol. 63  No. 7  2018
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Fig. 6. Distribution of the magnitude of the electric field at the interface between the gold film and the waveguide in the system
formed by only two signal-carrying waveguides. The system layout is shown in the inset.
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It can be seen in Fig. 5a that the electric field
amplitude in waveguide 3 decreases along the z axis,
which is mainly due to the ohmic loss in the metal.
Besides, the electric field amplitude decreases because
the mode excited in section AB is not the exact sum of
the symmetric and antisymmetric modes of the three
waveguides. At the boundary of transition from one
waveguide (AB) to the three waveguides, a certain part
of the energy is used to excite modes in the first and
second waveguides. As the signals travel along the
waveguides, oscillation of the electric field also occurs
(which is particularly noticeable in the central wave-
guide) (see Fig. 5a). This effect is caused by the cross
coupling between the right and central waveguides. It
can be shown that the length of the cross coupling
between these two waveguide  μm. Note
that the system operates even if the imaginary parts of
the wave numbers are different.

In order to show the contribution of the cental
wavegude to suppression of the cross coupling, we cal-
culated a system without an additional waveguide
(Fig. 6). It can be seen that, as the wave propagates in
the third waveguide, the energy is transferred to the
other waveguide (see Figs. 5b and 6).

CONCLUSIONS
It has been shown that the energy transfer between

two waveguides can be suppressed by placing between
them an additional waveguide with specially selected
parameters. The wave excited in one of the waveguides
that is the sum of a symmetric and antisymmetric
modes corresponds to zero field in the other two wave-
guides. Since wave numbers of the symmetric and
antisymmetric modes coincide, the modes propagate
unchanged along the waveguide. The proposed

CC 0.56L ≈
JOURNAL OF COMMUNICATIONS TECHN
approach makes it possible to significantly increase
the density of plasmon waveguides on the chip and
increase the transmission capacity of optical commu-
nication lines based on these waveguides.
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