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The critical behavior at phase transitions of m-component random magnets with cubic anisotropy is
studied within the context of an exactly solvable model. The presence of a random field suppresses
any phase transition for spatial dimensions d=<4. If one or more of the components of the random
field are zero, but with at least one nonzero component, a new second-order phase transition in the
anisotropic phase occurs. In the pure case second-order transitions could happen only into the
isotropic phase. The critical temperature of this new, random-field-induced second-order transition

decreases with increasing randomness.
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The last 20 years have generated a lot of intense research
on the subject of random systems with frozen-in disorder.'~”’
In this work the critical behavior at phase transitions of
m-component random magnets with cubic anisotropy is stud-
ied within the context of an exactly solvable model which
considers interactions of fluctuations with equal and opposite
momenta. The model allows one to investigate systems with
complex symmetry which are hard to study within the frame-
work of the renormalization group theory.*~'% In the absence
of randomness and when the coupling constant of the uni-
form cubic anisotropy is negative, the model explicitly finds
a fluctuation-induced first-order phase transition into the an-
isotropic phase.'® Below, it will be shown that a new second-
order transition replaces the first order which is present in the
pure case. The critical temperature of this new, random-field-
induced second-order transition decreases with increasing
randomness, which is measured by the field—field correlator.
Also, the presence of a random field suppresses any phase
transition for spatial dimensions d<4.

Let us see all these by starting with a system described
by the Ginzburg—Landau—Wilson functional
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where S(x) is an m-component order parameter, 7xT—T,, h
and h(x) are m-component constant and random fields, re-
spectively. The free energy averaged with respect to a distri-
bution of the random field can be evaluated with the help of
the replica method. Assuming that h(x) is a &-correlated ran-

“E]Jectronic maik: demetris-nicolaides@bloomfield.edu

0021-8979/99/85(8)/6067/3/$15.00

6067

© 1999 American Institute of Physics.

dom variable, (h,(x)hg(x))=B,6,56(x—x"), and ¢(x) is a
replicated m X n-component vector order parameter, we de-
rive an effective functional H ¢ ¢],
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The model can calculate the free energy exactly if we split
interaction terms in Eq. (2) as follows:
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d[‘Pia(x)] = J‘ dd'xcnga(x)'

Equations (3) imply that the model considers interactions of
fluctuations with equal and antiparallel momenta, and trans-
fers the ¢* model into the universality class of the spherical
model.'"'? The model then uses a transformation analogous
to that of Hubbard-Stratonovich so the partition function
becomes
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After the diagonalization with respect to indices i and j, func-
tional integrals in Eq. (4) can be calculated. Notice that only
when y;,=y,, is true, does the degeneracy of the eigenval-
ues become n as expected by treating the pure cubic system
within the replica method. This gives:
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where ¢ is the renormalized trial critical temperature given by
r=7+2mu+2v) S 2m) 0,A),
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A is the cutoff momentum, and S, the surface area of a
d-dimensional sphere. In the thermodynamic limit, V—oo,
the saddle point of the integrals in Eq. (5) gives an exact
solution for the partition function.

The disorder averaged free energy and the various com-
ponents of the order parameter, P, are given, respectively, by
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(8)
with x;, and y, defined by the equations dF/dx;,=0 and

dF/dy,=0. This system of nXm+m equations can be re-
duced to just m equations for the unknowns y,. The latter
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equations should be expanded in powers of # up to the first
order. The resulting equations for y, can be written in terms
of @, when Eq. (8) is used,
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It becomes obvious from Eq. (9) that in the limit 4 ,—0
there are no solutions for ® , when d=4. On the other hand,
when d>4 it is seen that the random field has no effect and
the results are those of the pure system.' Let us solve Eq.
(9b) in the limit A,—0 for d=3. In this case an ordered
phase can exist if some of the components of the random
field are equal to zero. Say the first / components of B are
zero. Then the possible phases are those which have nonzero
components of any number from the set of components be-
tween @, and ®; (including ®;). It can be shown that the
phases that may occur under the proper conditions, stated
below, are: the isotropic phase, which is the one having @
=P,=---=P,;=P,#( with the rest of the components be-
ing zero, and the anisotropic phase with only one nonzero
component, say, @, .

Below, the solutions for the order parameters @, and @
are given for the case when the nonzero components of the
random field are equal to one another and have strength B.
This does not affect any general result but rather makes the
equations somehow simpler:
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The integer m, may take the values 1-/, giving therefore the
appropriate expressions for the anisotropic phase ®,. (1),
and the isotropic phase ®,.(1).
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The pure case is obtained in the limit B—0. For this
special case it was derived previously'® that when the cou-
pling constant v is negative, the anisotropic phase occurs via
a fluctuation-induced first-order transition. On the other
hand, when v is positive the phase transition is of the second
order but into the isotropic phase. However, the presence of
randomness B creates a new second-order phase transition
for both positive and negative v. Explicitly, if r=¢_+ 7,
where ¢ is the critical temperature for the second-order tran-
sition for the random case, then
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Equation (10) equated to zero gives the critical temperature
t.. For positive v the critical temperature of the isotropic
phase is higher than that of the anisotropic phase. Therefore,
in Egs. (10) and (11) my=1. The reverse is true for negative
v when the anisotropic phase is realized before the isotropic
one. Therefore, in Eqs. (10) and (11) mg=1. Since in the
pure case with v positive the transition is of the second kind,
one can find a simple analytic expression up to the order of B
for the critical temperature in the random case with positive
v. This is

u(m=my)v+u)(v+umy)B

fe= v(—v(v+umg)—umo(um+ V) +ut(m—mg)) (12)
It is easily verified that the critical temperature decreases
with increasing B.

For negative v, the analytic expression of the critical
temperature obtained by equating Eq. (10) to zero is very
cumbersome. An approximate solution cannot be obtained
since in the pure case the existence of the first-order phase
transition provides a discontinuity of the order parameter at
criticality. However, numerical calculations show that this
critical temperature decreases with increasing randomness,
as well as the slope of the curve ®,.(71) vs 7 becomes

steeper with decreasing randomness. This is expected as in
this limit the discontinuity of the first-order transition is re-
covered.

Parameter ¢ represents the radius of interactions in the
original system. Setting c— [or «(c)=0] we suppress
fluctuations. In this case one can see from Eq. (9) that a
second-order phase transition is restored and critical expo-
nents become the same as the mean field ones independent of
dimensionality or the presence of random fields.
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