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1. INTRODUCTION

A new branch of optics has developed in recent
years, viz., quantum plasmonics [1–25], which studies
the quantum regimes of the electrodynamics of plas�
monic structures. The problems studied in quantum
plasmonics primarily include surface�enhanced laser
spectroscopy (SERS) [26, 27], near�field amplifica�
tion (surface plasmon amplification by stimulated
radiation emission, SPASER [28]), the development
of nanosized light sources of [29–32], and the com�
pensation of losses in plasmonic transmission lines [2,
23, 33–35] and metal materials [17, 36–41]. The lat�
ter problem is important for developing energy con�
centrators [42] and a superlens with a resolution
exceeding the diffraction limit [37, 43, 44].

The quantum properties of plasmonic structures
are manifested most clearly in a spaser [28] or in a
dipole nanolaser [9], the experimental implementa�
tion of which was reported in [32, 45, 46]. A spaser can
be schematically represented as a quantum�plasma
system consisting of inversely excited two�level quan�
tum dots (QDs) surrounding plasmon nanoparticles

(NPs).
1
 The operational principle of a spaser is analo�

gous to that of a laser, i.e., amplification ensured by
inverse population combined with the feedback pro�
duced by induced radiation of the quantum system.
The condition for induced emission of radiation by an
inverse quantum system in the field of the wave emit�
ted earlier by the same system is ensured by placing the
quantum system into a cavity localizing the mode

1 A more realistic analysis of a four�level QD does not lead to
qualitatively new properties (see [47–49]).

being generated. The role of photons in the spaser is
played by surface plasmon (SP) nanoparticles. Their
localization on NPs creates conditions for the feed�
back. In other words, generation and amplification of
near fields of NPs take place in a spaser. Amplification
of SPs occurs due to nonradiative energy transfer from
a QD. This process is based on the dipole–dipole [50]
(or any other near�field) interaction [51] between a QD
and a plasmon nanoparticle. This mechanism plays the
leading role because the probability of nonradiative exci�
tation of a plasmon is higher by a factor of (krNP—TLS)–3

than the probability of radiative de�excitation of a pho�
ton [5, 50] (rNP–TLS is the distance between the centers of
an NP and a two�level system (QD), k = 2π/λ, where λ
is the wavelength in vacuum). Thus, the energy transfer
from the QD to the NP is effective due to the small dis�
tance between the QD and the NP.

The pumping intensity threshold value and the
spaser dynamics can be described in the semiclassical
approximation by the Maxwell–Bloch equations [9,
22]. In this approximation, we pass from equations for
quantum operators (namely, plasmon NP annihilation
operator , QD dipole transition operator , and

inverse population operator (t) = (t) – (t),

where  =  and  =  are the population
densities of the upper and lower states of the QD) to
their mean values. In this case, spontaneous radiation
and quantum noise are integrated. As a consequence,
the theory gives a zero�width generation line.

In [52], it was proposed that approach [53] be used

for writing equations for operators  of the number
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of plasmons, upper level population density , and

“energy exchange” operators i(  – ) instead of
the Maxwell–Bloch equations and then pass to the C�
numbers. In such an approach, additional terms
appear during the derivation of the equation as a con�
sequence of the commutation relations. To obtain a

closed system of equations, correlator  =

 is uncoupled. The resultant equations
describe the nonthreshold behavior of the spaser. In
contrast to the approach based on the Maxwell–Bloch
equations, the number of plasmons below the lasing
threshold differs from zero. This was treated by the
author of [52] as allowance for spontaneous radiation.
However, this approach does not yield the spaser gen�
eration frequency or the spaser radiation linewidth.

In the recent publication [54], it was proposed that
the Heisenberg–Langevin equations for plasmon NP
annihilation operator , dipole transition operator 

in the QD, and inverse population operator  be used
for describing the spaser. Then a transition was made
from the operator equations to C�numerical equa�
tions, which were solved numerically. This approach is
valid when pumping in the QD is intense and the
dipole�moment amplitude for the NP is large enough
to disregard quantum correlations. As should be
expected, the Schawlow–Townes formula for the lin�
ewidth was obtained in a slightly modified form. How�
ever, in the vicinity of and below the spaser generation
threshold, fluctuations in the quantities are on the
order of magnitude of these quantities, and the
approximation used in [54] is inapplicable.

Note that the problem of subthreshold dynamics in
the Jaynes–Cummings model is of considerable inter�
est in describing quantum calculations [55, 56].

In this study, we will use the approximation of a
small number of plasmons to obtain the spectrum of
surface plasmons excited by spontaneous transitions
in a quantum emitter. It will be shown that the relax�
ation rate is the sum of the relaxation rates of the
quantum emitter to its thermal reservoir and to the
plasmon cavity. The dependence derived for the aver�
age number of plasmons on the pump intensity indi�
cates the nonthreshold nature of the process.

2. HEISENBERG–LANGEVIN EQUATIONS
OF SPASER DYNAMICS

To describe the quantum dynamics of a spaser, we
can use the model Hamiltonian of the form [9, 16, 28,
38, 39, 57]

(1a)

where

(1b)

n̂e

â†σ̂ σ̂†â

â†ân̂e〈 〉

â†â〈 〉 ne〈 〉

â σ̂

D̂

Ĥ ĤSP ĤTLS V̂,+ +=

ĤSP �ωSP ẫ
†
ẫ, ĤTLS �ωTLSσ̂̃

†
σ̂̃= =

are the Hamiltonians of SPs and of the two�level QD.

Operator  = – , which determines the inter�
action between the two�level QD and the NP, can be
written in the form

where

is the Rabi frequency and er is the unit vector of r/r.
Vectors

which appear in the expression for the Rabi frequency,
normalize the dipole moment of the NP,

as well as the dipole moment of the QD,

Here,  =  is the operator of the transition
between excited  and ground  states of the QD,
μTLS = r is the dipole transition in the QD, and eNP and
eTLS are the unit vectors determining the directions of

the dipole moments of the NP and QD, respectively
2

(see [39] for details concerning the quantization pro�
cedure).

Assuming that the transition frequency in the QD is
close to the SP frequency (ωSP ≈ ωTLS), we will seek the
solutions in the form

where (t) and (t) are the slowly varying amplitudes.

Note that the population inversion operator (t) is
“slow” by definition. Disregarding rapidly oscillating
terms on the order of exp(±2iωt) (rotating wave

approximation [58]), the interaction operator  can
be written in the form of the Jaynes–Cummings
Hamiltonian [59]

(1c)

Using the standard commutation relations [ , ] =

, [ , ] =  and proceeding from Hamiltonian
(1), we obtain the following Heisenberg equations of
motion [9, 60] for operators (t) and (t) as well as

for population inversion operator (t):

(2)

2 We assume that the spatial modes of the NP and the QD which
specify these directions are singled out by the geometry of the
problem.
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†
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3
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(3)

(4)

where δ = ω – ωTLS and Δ = ω – ωSP are frequency
“detunings.”

It should be noted that system (2)–(4) describes
neither pumping nor energy dissipation. These pro�
cesses were taken into account in [9, 13, 22] phenom�
enologically by introducing the relevant terms written
in the τ�approximation. This made it possible to cal�
culate the frequency, threshold, and amplitude of
spaser radiation [9, 13, 22].

To take into account dissipation consistently, it
should be borne in mind that the spaser is an open
quantum system. Following [11, 59, 61], we extend
our analysis to the spaser surroundings with which NP
and QD interact. Without loss of generality, we can
assume that these are reservoirs in the form of a con�
tinuum of boson field modes, with which NP and QD
interact and relax. Depending on the predominant
relaxation mechanism [62], such bosons can be
phonons, polaritons, surface plasmons, etc. [50]. The
Hamiltonians of the reservoirs with which NPs and
QDs interact can be written in the form

(5)

(6)

where , ,  and , are the annihilation and cre�
ation operators for bosons from the thermal reservoir
for NPs and QDs, respectively, and the Hamiltonians
of the interaction of NPs and QDs with these reser�
voirs are given by

(7)

Hamiltonian  is also written in the rotating wave
approximation because the interaction with the reser�
voirs is of the resonant type [59, 63]. The Hamiltonian
of the total “spaser + reservoirs” system can be written
in the form

(8)

Using this Hamiltonian, we can write the Heisen�
berg equations for the operators of the reservoir; under
the assumption that the time of correlation of reservoir
variables is much shorter than the characteristic time

σ̂ iδσ̂ iΩRâD̂,+=
.

â iΔâ iΩRσ̂,–=
.

ĤNP–R � ωjb̂j
†
b̂j,

j

∑=

ĤTLS–R � ωj ĉj
†ĉj,

j

∑=

b̂ b̂
†

ĉ ĉ†

V̂R � γj 1, b̂j
†
â â†b̂j+( )

j

∑=

+ � γj 2, ĉj
†σ̂ σ̂†ĉj+( ).

j

∑

V̂R

Ĥ ĤSP ĤTLS V̂ ĤNP–R ĤTLS–R V̂R.+ + + + +=

of variation of the system (Markov approximation), we
obtain the following equations for the spaser [59, 63]:

(9)

(10)

(11)

where

(12)

(13)

(14)

(15)

(16)

and g1, 2(ω) is the density of states of the bosonic
modes of the reservoirs with which NPs and QDs

interact. Two�time correlators of operators , (t),

and (t) in the Markov approximation are delta
functions such as [59, 63]

(17)

and the occupation numbers  = (exp(�ω/kBT) – 1)–1

of bosonic modes of reservoirs at optical frequencies
can be disregarded because  is much smaller than
unity even at room temperature. The pumping of QDs
by external sources can be taken into account phe�

nomenologically by addition of relaxation term (  –

)/τp to formula (11), where τp is the pumping rate

[9]. Denoting  = (τp – τ
σ
/2)/(τp + τ

σ
/2)  and =

2  + , we finally obtain

(18)

(19)

(20)

â iΔ 1/τa–( )â iΩRσ̂– F̂a t( ),+=
.
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.
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.
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⎛ ⎞ â iωRσ̂– F̂a t( ),+=

.

σ̂ iδ 1
τσ
����–⎝ ⎠
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Equations (18)–(20) are the Heisenberg–Langevin
equations for the spaser [11, 54].

3. CHAIN OF EQUATIONS FOR MEAN VALUES 
OF OPERATORS

System of equations (18)–(20) is of the operator
type. To get an idea about the dynamics of the process,
we must pass to observable quantities (mean values of
these operators). However, this system is nonlinear,

and Eq. (19) contains the product of operators ,
which is also an operator; to close the system, we must
write the Heisenberg equation for this operator, which
will contain the product of an even larger number of
operators. Therefore, we obtain an infinite chain of
equations describing the dynamics of the mean values
of operators of physical quantities [59].

We are interested in the spaser operation near and
below of the generation threshold. This means that the
average number of plasmons must be small; for this
reason, we will consider only two states (  and ) in
the subspace of states, which correspond to the
absence of excited plasmons and to the state with a
single excited plasmon; in other words, we assume that

 = 0 and  = 0. In this approximation, only

operators , , and  (multiplied by any combi�
nations of atomic operators) have nonzero mean val�

âD̂

0| 〉 1| 〉

â2 0| 〉 â†2
1| 〉

â â† â†â

ues. Therefore, we will henceforth disregard the terms
containing the second and higher powers of the cre�
ation and annihilation operators. For example, this

concerns operators  and .
Indeed, in this approximation, we have

With such an approach, two closed subsystems can
be singled out from the infinite chain of equations. In
our further analysis, we will also take into account the
fact that the mean values of noise operators are zero:

The first group of equations describes the dynamics
of the mean values of Hermite operators of the number

of plasmons, , QD population inversion, , and

energy exchange,  –  and :

(21)

(22)

(23)

(24)

The time�independent solution to this system for

, , and  in the limit τa � , τD, τ
σ

has the form

(25)

(26)

Factor (1 + D0) indicates that for any finite occupa�
tion number of the upper level (D0 > –1), the num�
ber of plasmons differs from zero and the population
inversion differs from the value of D0 specified by
incoherent pumping. Note that in this analysis, we
take into account quantum correlations between the
atom and the field (namely, we have retained the
commutation relations between operators and, as a
consequence, zero fluctuation energies of the dipole
moments of NPs and QDs). In the semiclassical
model [9, 22–25, 52], the amplitudes dipole
moments of NPs and QDs, as well as of their ener�
gies, are equal to zero (Fig. 1).

σ̂†D̂â2〈 〉 â† 1 D̂+( )â2〈 〉
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.
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Fig. 1. Dependence of average number  of plasmons
on pumping D0; curve 1 corresponds to the case when
quantum fluctuations are taken into account, curve 2
describes the result obtained in [52] based on uncoupling

of correlator  = ; and curve 3 is calcu�

lated using the Maxwell–Bloch equations. The vertical
line corresponds to the threshold value of pumping,
obtained from the system of Maxwell–Bloch equations,

Dth = (τaτσ )–1. These dependences were calculated

for the following values of constants: τa = 4 × 10–14 s,

τ
σ

= 10–11 s, τD = 10–13 s,  = 10–13 s, and

Dth = 0.0025.
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It should be noted that for the characteristic decay
times in a metallic NP and a semiconducting QD (τa ~

10–14 s, τ
σ
 ~ 10–11 s, τD ~ 10–13 s, and  ~ 10–13 s

[64–67]), the number  = (D0 – Dth)τa/4τD of
inducibly excited plasmons in the semiclassical
approximation [9, 22] under experimentally attainable
pump intensities [32, 45] is found to be small. How�
ever, the theory developed above cannot be used for
D0 > Dth because it exceeds the approximation used in

it, predicting that  ≥ 1.

The second subsystem describes the dynamics of

average non�Hermite operators  and  of NP and

QD dipole moments, as well as  and :

(27)

(28)

(29)

(30)

or, in matrix form,
(31)

where x = { , , , }T and 

(32)

Note that the steady�state solution to this system is
zero, which is a consequence of disregarding the non�
linear terms in the case of rupture of the chain of the
Heisenberg equations. Therefore, this approximation
fails to describe the Hopf bifurcation of the spaser and
the phase transition from incoherent excitation of
plasmons to the coherent excitation (i.e., lasing
threshold). Nevertheless, this system carries rich
information about the dynamics and the spectrum of
the spaser.

Let us now analyze the solutions to system (31). We
will find the eigenvalues of matrix M. These eigenval�
ues can be determined from the characteristic equa�

tion, which can be derived assuming that τa � , τD,
τ
σ
, which corresponds to the above characteristic

decay times [64–67]:

(33)

The roots of this equation under the same assumptions
have the form

(34)

to within smaller�order terms, and

(35)

(in fact, root λ2, 3 is multiple only in the given limit
case). The decay rate is determined by the characteris�

tic number with the smallest magnitude (i.e., τa +

).

This result has a clear physical meaning. If the QD
did not interact with the NP, the rate of its decay would
be determined exclusively by the properties of the

thermal reservoir and would be equal to . If it inter�
acted only with the SP, and only the resonator mode
decays, the decay rate in this case (in the limit τa �

) would be τa (see [59]). In our case, the QD
interacts both with the reservoir and with the NP
which plays the role of the low�Q cavity in the given
case, and its decay rate is determined by these two
interactions. The above analysis shows that the relax�

ation rate in the limiting case when τa �  is the
sum of the rates of the QD relaxation to the thermal
reservoir and to the cavity with losses.

4. QUANTUM REGRESSION THEOREM. 
SPASER SPECTRUM

System (31) is linear, which allows us to determine
the spaser spectrum using the quantum regression the�
orem [68, 69]. Let us formulate this theorem in the
form convenient for further analysis. We consider a
system described by operators

ΩR
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and experiencing the action of Markov noise (  =

0,  = 2Dδ(τ'' – τ'), D is the matrix of
correlators). If the operator dynamics is described by
the linear equations

(36)

where matrix M and vector ξ, the form of which is
determined by the properties of the system, are inde�
pendent of time, the mean values of the two�time cor�
relators are described by the linear system of equations

(37)

with the same matrix M and vector ξ [68, 69].

We will only consider the features important for
further analysis (see [68–70] for details). We set ξ = 0,
which can always be attained by a linear substitution of
variables. Integrating system (36), we get

(38)

Postmultiplying this relation by (t) and averaging
over quantum states, we obtain

(39)

The second term on the right�hand side of this equa�
tion is zero. Indeed, substituting the solution to
Eq. (38) into this term, we obtain

(40)

Since the reservoir and the system are not correlated at
the initial instant, we have

F̂ τ '( )〈 〉

F̂ τ '( )F̂ τ ''( )T〈 〉

X̂ MX̂ ξ F̂ t( ),+ +=
.

∂ X̂ t τ+( )X̂
T

t( )〈 〉
∂τ

����������������������������������

=  M X̂ t + τ( )X̂
T

t( )〈 〉 ξ X̂
T

t( )〈 〉+

X̂ t τ+( ) Mτ( )X̂ t( )exp M t τ+( )( )exp+=

× τ ' Mτ '–( )F̂ τ '( ).expd

t

t τ+

∫

X̂
T

X̂ t τ+( )X̂
T

t( )〈 〉 Mτ( ) X̂ t( )X̂
T

t( )〈 〉exp=

+ M t τ+( )( ) τ' Mτ '–( )expd

t

t τ+

∫exp

× F̂ τ '( )X̂
T

t( )〈 〉 .

M t τ+( )( ) τ' Mτ '–( ) F̂ τ '( )X̂
T

t( )〈 〉expd

t

t τ+

∫exp

=  M t τ+( )( ) τ' Mτ '–( ) F̂ τ '( )X̂
T

0( )〈 〉expd

t

t τ+

∫exp

+ M t τ+( )( ) τ' τ '' Mτ '–( )expd

0

t

∫d

t

t τ+

∫exp

× F̂ τ '( )F̂
T
τ ''( )〈 〉 MTτ ''–( ) MTt( ).expexp

F̂ τ '( )X̂
T

0( )〈 〉 F̂ τ '( )〈 〉 X̂
T

0( )〈 〉 0,= =

and the first term on the right�hand side of Eq. (40)
vanishes. Substituting the noise correlators

into the second term of Eq. (40), we obtain

(41)

Indeed, the integration domain [t, t + τ] ⊗ [0, t] in this
formula intersects the carrier of the delta function
δ(τ'' – τ') over a set with zero measure at point (t, t).
Thus, expression (40) equals zero.

This result has a clear physical meaning. Since the
noise is of the Markov type, the time of correlation

between  and  is much shorter than all characteris�
tic times of the problem. Consequently, correlators

 in expression (39) vanishes (see also
[68–70]).

Thus, expression (40) assumes the form

(42)
Differentiating this expression with respect to τ, we
obtain formula (37). It should be emphasized once
again that the main conditions for fulfilling the quan�
tum regression theorem are the linearity of initial sys�
tem of operator equations (36) and the Markov nature
of the noise.

At first glance, it appears that information on noise
operators of the reservoir is lost upon a transition from
formula (36) to (37). However, this is not true. First,
according to the fluctuation–dissipation theorem [59,
61, 63, 68–70], the correlators of Markov noise deter�
mine the decay constants that appear explicitly in
matrix M (as shown in Section 2; see formula (17)).
Second, information on the reservoir temperature is
contained in operator equations (27)–(30) in terms of
occupation numbers  for reservoir modes (see [59]
for details). These numbers were omitted because  �
1 in the optical range even at room temperature.

Let us consider again a spaser operating near and
below the threshold. Since its dynamics is described by
linear system (31), its spectrum can be calculated

using the quantum regression theorem.
3
 According to

the Wiener–Khinchin theorem, the spectrum S(ω) of
the electric field is a Fourier transform of a 2D corre�
lation function

(43)

3 This approach was successfully used for calculating the reso�
nance fluorescence spectrum [59, 68], the spectrum of a three�
level system located near a metallic plane [71], etc.

F̂ τ '( )F̂
T
τ ''( )〈 〉 2Dδ τ '' τ '–( )=

τ ' τ ''δ τ '' τ '–( ) M τ τ '–( )( )expd

0

t

∫d

t

t τ+

∫

× 2D MT t τ ''–( )( )exp 0.=

X̂ F̂

F̂ τ '( )X̂
T

t( )〈 〉

X̂ t τ+( )X̂
T

t( )〈 〉 Mτ( ) X̂ t( )X̂
T

t( )〈 〉 .exp=

n
n

S ω( ) 1
π
��Re τ Ê

–( )
τ( )Ê

+
0( )〈 〉d

0

∞

∫=

× iωt–( ),exp



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 117  No. 2  2013

SPECTRUM OF SURFACE PLASMONS EXCITED 211

where  and  are the negative� and positive�
frequency branches of the electric field operator [59,
70]. The choice of such ordering of the operators cor�
responds to the spectrum of light emitted by the NP
and QD dipoles [59, 72].

To calculate correlator , we
assume that the dipole moments of the NP and the
two�level QD are parallel to the x axis and the point of
observation lies on the z axis. Then the fields emitted
by the NP and QD in the far�field zone are defined by
the relations [59]

(44)

Considering that  =  for the NP and  =

 for the two�level QD, we obtain the radiation
spectrum of the spaser in the form

(45)

Thus, to calculate the spectrum of the system, we
must know the following correlators:

Using the quantum regression theorem, we can find
these correlators by solving system (37), in which

and M is defined in Eq. (32).
Figure 2 shows the spaser spectrum obtained by

numerically solving system of equations (37). The
spectrum has the form of a broad NP line with a nar�
row peak of much smaller width against its back�
ground.

This result has a clear physical meaning. The solu�
tion to system (37) is the sum of the exponentials of the
product from multiplying eigenvalues λ of matrix M by
time. The Fourier transform of such a function is the
sum of the Lorentz lines, whose centers are deter�
mined by the imaginary parts Imλ of the eigenvalues,
while halfwidths are determined by their real parts
Reλ. Eigenvalues λ are determined by expressions
(34) and (35); consequently, the spectrum

(46)

is the sum of two Lorentz lines: a broad NP line whose
width is determined by the Joule loss in the metal (on

Ê
–( )

Ê
+( )

Ê
–( )

τ( )Ê
+( )

0( )〈 〉

Ê
+( )

r t,( ) ω2
μ〈 〉

c2 r
������������ x̂ d̂ t r /c–( )〈 〉 ,=

Ê
–( )

r t,( ) ω2
μ

c2 r
���������� x̂ d̂

†
t r /c–( )〈 〉 .=

μ d̂ μNP â μ d̂

μTLS σ̂

S ω( ) Re τ iωτ–( )〈 μNPâ† τ( )(expd

0

∞

∫≈

+ μTLSσ̂
† τ( ) ) μNPâ 0( ) μTLSσ̂ 0( )+( )〉.

â† t τ+( )â t( )〈 〉 , â† t τ+( )σ̂ t( )〈 〉 ,

σ̂† t τ+( )â t( )〈 〉 , σ̂† t τ+( )σ̂ t( )〈 〉 .

X1 â, X̂2 σ̂, X̂3 âD̂, X̂4 â†σ̂â,= = = =

S ω( ) ω ωSP–( )2 1/τa
2+( )

1–
≈

+ ω ωSP–( )2 ΩR
2 τa

1– τσ
1–+( )

2
+( )

1–

the order of ) and a narrow QD line whose width is

approximately equal to  +  and determined
by the interaction between the NP and the QD.

Thus, the linewidth of the spaser operating near
and below the threshold cannot be described by for�
mulas of the Schawlow–Townes type, which are nor�
mally used for calculating the line width in the spec�
trum of quantum generators [53, 54, 58, 61] with a
large number of quanta. This is due to the fact that in
the regime with a small number of quanta, amplitude
fluctuations of the radiation field play a significant role
apart of the phase fluctuations. It was shown above
that these fluctuations can be correctly taken into
account using the procedure of truncation of the chain
of equations (18)–(20) and the quantum regression
theorem (37).

5. CONCLUSIONS

We have analyzed the operation of the spaser in the
subthreshold regime. A correct calculation of the line
width of the spaser operating near and below the gen�
eration threshold is based on the quantum regression
theorem. This approach is applicable for n ≤ 1. It is
shown that the allowance for quantum fluctuations
and correlations is essential for the description of
operation below the threshold, which results in a non�
threshold behavior of the spaser due to spontaneous
emission of SPs by an excited QD. The equation
describing the dynamics of the two�time self�correla�

tion function  can be
obtained from system (27)–(30) for the dipole
moments, which are equal to zero in the stationary
state. It is important, however, that the initial condi�

tion  for this system is
determined by the set of equations (21)–(24) for the
energy and dipole moments of the NP and QD, which
gives a nonzero value of energies in the stationary state
due to spontaneous emission.

τa
1–

ΩR
2 τa

1– τσ
1–

â† τ( ) σ̂† τ( )+( ) â 0( ) σ̂ 0( )+( )〈 〉

â† 0( ) σ̂† 0( )+( ) â 0( ) σ̂ 0( )+( )〈 〉

Δω, 1014 s−1
−0.2 0.2−0.4 0.4

0.6

−0.6 0

0.4

0.8

1.0
S

0.6
0.2

Fig. 2. Spaser spectrum below generation threshold.
Parameters are the same as in Fig. 1.
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It is shown (expression (38)) that the shape of the
spaser line cannot be described by the Schawlow–
Townes formula and has the form of a broad NP line
serving as the background for a narrow peak associated
with the QD line. The width of the peak depends on
the QD linewidth (i.e., on the decay in the QD) as well
as on the interaction between the NP and QD.

This analysis is extremely important in connection
with heated discussions [20, 40, 47–49, 73–75] con�
cerning the application of subthreshold spasers for
compensating losses in metamaterials.
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