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We study enhancement of the magneto-optical (MO) effect in subdiffraction plasmonic chains. We show that, in a
periodic chain of the plasmonic nanoparticles embedded in an MO medium, propagation of a guided mode is
accompanied by rotation of electric dipoles (the Faraday effect). The angle of rotation per unit length is an order
of magnitude greater than that in the same bulk MO medium. We also demonstrate that the effect of Joule losses
can be significantly reduced by using a gain-assisted chain composed of active core-shell nanoparticles (spasers).
The guided mode in such an array of MO spasers exhibits high values of the Faraday rotation and propagation
length. © 2015 Optical Society of America
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(350.4238) Nanophotonics and photonic crystals.
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1. INTRODUCTION
The magneto-optical (MO) effect is widely used to manipulate
light. Time-reversal symmetry breaking due to the presence of
a magnetic field in MO materials offers various opportunities
for the effective polarization conversion and optical isolation
[1]. However, the MO response of natural media is relatively
weak so that enhancements of MO properties are highly de-
sirable. Recently, a number of approaches to MO effect
enhancing have been proposed (for a review see, e.g., [2]).
One of these incorporates layered systems [3] for which a rig-
orous eigenmodes analysis can be performed. In these struc-
tures, at a certain frequency, multiple refraction of light from
interfaces between magnetic and nonmagnetic layers may re-
sult in the Fabry–Perot resonance and the enhancement of the
Faraday rotation. The enhancement is due to the fast growth
of the phase, which changes by π when the frequency passes
through the resonance. Thus, instead of a small bulk value of
the Faraday angle, one can obtain the value of the order of
π∕2 [2,4].

MO effects can also be enhanced in metallic systems.
The effect of the plasmon resonance of charge carries on
the MO response was first analyzed in [5] in which the strong
enhancement of the Kerr effect in bulk metal near the plasma
frequency was reported (see also [6,7]). Strong coupling
between traveling surface plasmons in metals and MO effects
was also demonstrated by using the total internal reflection
technique in [8].

In MO composites containing metal nanoparticles (NPs),
localized surface plasmon excitation also promises to strongly
enhance the MO response of these materials [9–14]. A differ-
ent type of MO enhancement attributed to the phenomenon of
extraordinary optical transmittance was observed in systems

with magnetic metallic gratings [15,16] and perforated peri-
odic structures [17–19].

In this paper, we propose another approach to the reso-
nance MO enhancement. This approach incorporates proper-
ties of so-called subdiffraction chains (SDCs) [20]. We
investigate the enhancement of the Faraday rotation in linear
periodic SDCs of plasmonic NPs embedded in an MO host
medium. We show that, in this system, the Faraday effect
can be strongly enhanced and discuss how to compensate
for Joule losses in metallic NPs.

Periodic linear chains of near-field coupled plasmonic NPs
have been studied extensively since the original work of
Quinten et al. [20]. It was shown that a 1D NP array supports
guided modes due to near-field interactions between adjacent
NPs. At first, only quasi-static interactions with the nearest
neighbors were considered [21,22]. Then, effects of retarda-
tion that have a significant impact on the dispersion character-
istics of long wavelength guided modes were taken into
account [23]. Modes of finite 1D [24], infinite 2D [25], and
3D [26] as well as disordered arrays [27] of NPs were also
investigated.

Intriguing properties of subdiffraction chains composed
of magnetized plasmonic NPs have been studied recently.
In particular, the combination of the MO activity and geomet-
rical chirality of a chain, made of twisted ellipsoidal NPs, have
been shown to lead to a one-way subdiffraction waveguide
[28,29]. However, the Faraday effect has not been investigated
in these systems. A detailed theoretical investigation of mag-
netic plasmonic NPs clusters has been presented in [30], in
which the Faraday rotation and circular dichroism are studied
for the configurations of dimers, helices, and random NP gas.
In all these systems, the enhancement of the Faraday rotation
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due to the plasmonic resonance is predicted. Similar struc-
tures consisting of Au/Ag NPs embedded into yttrium-iron gar-
net thin film were successfully fabricated in [31,32]. Although
the structures presented in those works were random rather
than periodic clusters of NPs, we expect that a periodic
system also can be fabricated. For example, a linear chain
of plasmonic particles can be deposited on a MO substrate
via electron beam lithography [33]; after that, another layer
of a MO material can be deposited on the whole MO sub-
strate/particles structure [32].

The paper is organized as follows: In Section 2, we derive an
analytical expression for the polarizability of an isotropic
spherical NP embedded into a gyrotropic medium. In
Section 3, we consider a 1D periodic array of silver NPs in
a gyrotropic host medium. In Section 4, we analyze guided
modes of a 1D gain-assisted MO SDC. The results are summa-
rized in the Conclusion.

2. NANOPARTICLE EMBEDDED INTO A
MAGNETO-OPTICAL MEDIUM
We study a periodic chain of spherical metallic (silver) NPs of
radius R and interparticle separation L embedded into a MO
host medium (Bi:YIG). This structure is shown schematically
in Fig. 1. We assume that the chain is aligned in the direction
of the MO medium magnetization vector, which is parallel to
the z axis. Thus, the permittivity tensor of the host medium
has the form

ε̂ext �
 ε ig 0
−ig ε 0
0 0 ε

!
: (1)

We model the subwavelength NPs as polarizable dipoles.
This approximation is valid if (1) sizes of the NPs are much
smaller than the light wavelength inside the NP material
and (2) higher multipole resonances of NPs are not excited
[23]. Both conditions are satisfied in our analysis. In order
to find guided modes of the dipolar chain, one needs to know
two essential characteristics: dipole polarizability of a spheri-
cal inclusion in a MO medium and the Green’s function of an
electric dipole in a MOmedium that includes both far and near
fields. Although dispersion of the guided modes of the SDC
near the light cone is strongly affected by the far-field inter-
action [33], far from the light cone (for wavevectors k ≫ k0,
where k0 � Re�nBi:YIGω∕c� is the wavevector of a plane wave

traveling in the host medium) the dispersion is well described
by near-field interactions of nearest neighbors [23], which we
use below. The dipole polarizability is calculated in the quasi-
static approximation.

The electrostatic potential φ in the surrounding MO host
obeys the equation

divD � ∇ · �ε̂ext∇φ� � 0: (2)

Nondiagonal terms in the permittivity tensor in Eq. (1), ig∂xyφ
and −ig∂yxφ, cancel out, and Eq. (2) transforms into the Lap-
lace equation:

εΔφ � 0: (3)

This allows us to conclude that the near field of a point elec-
tric dipole d in an MO medium is simply the near field of an
electric dipole embedded in an isotropic host medium with
permittivity ε:

Enear�r� � −

d
εr3

� 3
�d · n�n
εr3

: (4)

Now, let us find the polarizability dyadic of an isotropic
sphere with permittivity εint embedded into a MO medium.
The sphere is subjected to an external oscillating homogenous
field Ee−iωt. Below, we omit the harmonic time dependence of
the electric field e−iωt. The electrostatic potential outside the
sphere can be represented as

φext � −Er� �ÂE�r∕r3; (5)

where Â is an unknown tensor, which relates the applied elec-
tric field E and the induced dipole moment of the sphere d.
The electric field in the surrounding medium is given by

Eext � −∇φext � E − ÂE∕r3 � 3�ÂE · n�n∕r3; (6)

where Eext × n � E × n − ÂE × n∕r3. The normal component
of the displacement D, which is needed in the following cal-
culations, can be expressed through the incident field E as

Dext · n � ε̂extEext · n

� ε�E · n� 2ÂE · n∕r3� � Ĝ�E · n − ÂE · n∕r3�; (7)

with Ĝ being the nondiagonal part of the permittivity tensor ε̂.
The electric field inside the spherical inclusion can be written
in the form

Eint � B̂E; (8)

where B̂ is an as yet undetermined tensor. Using electromag-
netic boundary conditions for Maxwell’s equations, we obtain
the system of equations

Î − Â∕R3 � B̂;

ε�Î � 2Â∕R3� � Ĝ�Î − Â∕R3� � εintB̂; (9)

which allows us to determine the tensor Â:

Fig. 1. Geometry of the problem: a periodic array of silver nano-
spheres each of radius R with interparticle distance L embedded into
an MO medium.
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Â � R3�εintÎ − ε̂ext��εintÎ � 2ε̂ext − 3Ĝ�−1: (10)

The dipole polarizability relates the incident field and the in-
duced dipole moment of an NP as d � α̂E. Comparing Eqs. (4)
and (6), we conclude that α̂ � εÂ. Notably, the form of
Eq. (10) differs significantly from the expression for the
quasi-static polarizability of an MO particle inside an isotropic
medium, which takes the form of the Clausius–Mossotti
relation [34]. Unlike the latter, here the antidiagonal term
3Ĝ singles out in the denominator, so that the whole expres-
sion cannot be written in the Clausius–Mossotti form. The
elements of the dipole polarizability dyadic are given by

αxx � αyy � εR3 ε2int � εintε − 2ε2 − g2

ε2int � 4εintε� 4ε2 − g2
;

αxy � −αyx � εR3 3iεg
ε2int � 4εintε� 4ε2 − g2

;

αzz � εR3 εint − ε

εint � 2ε
: (11)

and the polarizability dyadic is represented as

α̂ �
 αxx αxy 0
−αxy αxx 0
0 0 αzz

!
: (12)

In the subspace Ez � 0, we find two eigenvalues of the
polarizability tensor α̂:

α� � αxx � iαxy � εR3 εint − ε� g

2ε� εint � g
;

α
−

� αxx − iαxy � εR3 εint − ε − g

2ε� εint − g
; (13)

so that α̂E� � α�E� and α̂E
−

� α
−

E
−

, where E� � �1; i; 0�T
andE

−

� �1;−i; 0�T are the two eigenvectors of the polarizabil-
ity tensor with Ez � 0. These two eigenvectors correspond to
circularly polarized incident light. The third eigenvalue is equal
to αzz and is of no interest here because it corresponds to the
electric field polarized along the magnetization vector for
which no Faraday rotation can be observed.

3. GUIDED MODES OF A MAGNETO-
OPTICAL SUBDIFFRACTION CHAIN
Having calculated all the quantities in Section 2, one may find
guided modes of an MO SDC. We seek guided solutions in the
form dn ∼ eikzn . As shown earlier [21], SDCs can support
guided modes with both transverse (T) or longitudinal (L)
polarizations. Since we are interested in the Faraday rotation,
which is naturally observed for the T-polarization, we limit
ourselves to analyzing this particular polarization. Polariza-
tions of the electric field and the NP dipole moment for the
T-polarization are E � �Ex; Ey; 0� and d � �dx; dy; 0�, respec-
tively. For the transverse polarization of the electric field
�d · rn� � 0, where rn points along the chain, so that only a
single term remains in Eq. (4).

Consistent analysis of the problem requires calculation of
the total local electric field acting on an NP. This field is the
sum of fields due to all other dipoles in the chain. However, as
noted above, in the region far from the light cone, where
k ≫ k0, the tight-binding approximation gives reasonable

results, which may be utilized to further analyze the problem.
In the tight-binding approximation, the electric field applied to
the nth point dipole is the sum of the fields created by the two
neighboring particles:

En � −

dn−1 � dn�1

εL3 � −

e−ikLα̂En � eikLα̂En

εL3 : (14)

Equation (14) represents an eigenvalue problem for the
polarizability tensor (12) of a metallic inclusion. Substituting
the eigenvalues in Eq. (13) into Eq. (14) for the two different
eigenvectors E� and E

−

, we obtain a pair of dispersion
relations:

E� � −

e−ikL � eikL

εL3 α�E� � −

2 cos kL

εL3 α�E�: (15)

Equation (15) leads to explicit expressions for the guided
mode wavevectors:

k� � 1
L
cos−1

�
−εL3

2α�

�
: (16)

According to Eq. (16), two guided modes, which we refer to as
“+” and “−,” have circular polarizations of the electric field.
Taking into account different values of the Bloch wavevectors
and circular polarization of the electric field, one may antici-
pate that propagation of an excitation along the chain is
accompanied by the Faraday rotation.

First, we present the dispersion curves for the idealized
case of lossless silver NPs embedded into a lossless MO
medium for R � 10 nm and L � 4R. Although lossless materi-
als, especially plasmonic metals, are not available, this consid-
eration allows us to estimate how sensitive Faraday rotation
enhancement is to Joule loss. The two dispersion curves of
guided modes of a 1D chain of silver NPs are shown in Fig. 2.
Experimental data from [35] and [36] were adopted to
approximate permittivity of silver and Bi:YIG, respectively.
One can see that, in a relatively narrow frequency region be-
tween 2.25 and 2.35 eV, the plasmon resonance gives rise to
the propagation band of an array of NPs. The two dispersion
curves are split due to MO activity of the host medium, which
manifests itself in different polarizabilities α� and α

−

.
Note that the dispersion curves obtained from Eqs. (16) re-

present backward waves so that their the group velocity and

Fig. 2. Dispersion curves of the 1D chain of lossless silver NPs
embedded into Bi:YIG. The dashed line indicates the light cone with
jkj � RenBi:YIGω∕c, which separates the regions of localized and leaky
modes.
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the wavevector have opposite signs. In all figures, we plot the
frequency dispersion of MO chain guided modes in such a way
that the group velocity is always positive, whereas the real
part of wavevector is negative.

As mentioned above, we search for guided solutions only in
the region for which jkj > k0. Such excitations (bound modes)
can propagate along the chain without radiative losses, while
leaky modes with jkj < k0 experience strong radiative decay.
When Joule losses are present in the system, all modes couple
to free space radiation. This happens because the wavevector
of an eigenmode is always complex-valued in the lossy case,
so that there is always energy flow in direction normal to the
chain. Nevertheless, modes with jRe�k�j > k0 experience
much slower radiative decay due to their localized nature,
as indicated in [37]. For that reason, in what follows we refer
to such solutions as localized modes.

In certain cases, the quasi-static approximation is not very
accurate for description of multiple scattering effects, even
for subwavelength scatterers [33,38]. To validate our
assumption, we compare the results of the quasi-static calcu-
lation with the results of the exact calculation, which takes
into account the effect of retardation (i.e., an incident field
is created by all NPs in the chain). The results are calculated
for the case of a lossless nonmagnetic host medium with
isotropic permittivity given by the diagonal element of tensor
(1). Figure 3 shows the quasi-static solution given by Eq. (16)
for nonmagnetic media and the exact retarded solution,
adopted from [23]. Although in [23] the dispersion equation
was obtained for 50 nm NPs, it equally applies to our case
of 10 nm radius particles, since the point dipole approxima-
tion is even more accurate for smaller particles. The results
indicate that in the operation region far from the light line,
the quasi-static and full-retarded solutions show a reasonable
agreement. Although guided modes of a SDC within the oper-
ation region have a lower group velocity than is predicted by

the quasi-static approximation, it should not dramatically
affect the Faraday rotation.

The Faraday rotation of the polarization by anMO chain per
unit length can be estimated as θ � �k� − k

−

�∕2. Indeed, when
a chain is excited at its input by a linearly polarized electric
field Einput � �1; 0; 0�T , which is the most common situation,
this polarization is decomposed into two eigenmodes of a
chain with equal amplitudes:

Einput �
1
2
��1; i; 0�Teik�z � �1;−i; 0�Teik−z�jz�0: (17)

This is similar to the case of a uniform MO medium, for which
the polarization rotation is also given by the above expression.
To obtain an estimate for θ, we the calculate Faraday rotation
per length of the 10-nanoparticle chain, which is given by
θ � 10L · �k� − k

−

�∕2. This estimation is plotted in Fig. 5.
As we can see from Fig. 4, the Faraday rotation is dramati-

cally increased compared to bulk Bi:YIG. Notably, the Faraday
rotation increases even more in the vicinity of the bandgap.
This behavior can be understood from Fig. 2. Indeed, near the
band edge of one mode, while the other is still propagating,
the group velocity, vg � ∂ω∕∂k, of this mode rapidly drops
to zero, which results in a larger distance (and a larger wave-
vector difference) between the two modes. As a consequence,
the Faraday rotation angle θ increases as well.

The remarkable property of dispersion law (16) is its scal-
ing behavior. One may fix the ratio R∕L and tend both NP’s
radius, R, and interparticle distance, L, to zero. Then, wave-
vectors of “+” and “−” guided modes proportionally increase
as 1∕L. The Faraday rotation angle, θ, increases as well. In
fact, the factor, which limits such a scaling behavior, is the
applicability of the concept of permeability. When an NP is
small enough (<5 nm), the description of the NP in terms
of permittivity tensor (1) is not applicable, and its electromag-
netic response can no longer be described by the polarizability
α̂ (13). (We are appreciative to Antonio García-Martín who has
directed our attention to this fact.)

Dispersions of guided modes and the Faraday rotation in
the realistic case of lossy NPs and the host medium are

Fig. 3. Results of the quasi-static calculation (blue solid line) com-
pared with the exact full retarded solution (red solid line) for a
nonmagnetic lossless host medium adopted from [23] adjusted for
NPs size used in our calculations. Within the operation region of
the MO chain, both solutions show reasonable agreement.

Fig. 4. Estimation for the Faraday rotation in a 1D chain of length
10L of lossless silver NPs (red solid curve) and for bulk Bi:YIG (green
dashed curve). The vertical dashed line separates the localized and
leaky regions of an MO chain. In the leaky region, the Faraday rotation
in an MO chain is shown by a dotted–dashed curve. The Faraday
rotation provided by the bulk MO medium is less than 5 deg in the
whole frequency range.

284 J. Opt. Soc. Am. B / Vol. 32, No. 2 / February 2015 Baranov et al.



presented in Fig. 5. Overall, Joule losses drastically quench the
effect. The propagation band becomes less pronounced. The
propagation length of the guided mode can be estimated as
lprop � jIm kj−1. As seen from Fig. 5(a), the propagation dis-
tance is of the order of the interparticle distance L. Thus, the
wave is absorbed before it reaches the end of the chain. Joule
losses also have strong impact on the Faraday rotation angle:
the maximum value of the Faraday rotation in a chain of lossy
particles is several times lower than that of lossless particles.

The results presented in this section allow us to conclude
that, for the enhancement of the Faraday rotation, it is critical
to have low value of Joule losses. A practical way of achieving
this is compensation of the effect of losses. In the next section,
we show how Joule loss can be minimized in gain-assisted
chains formed by composite core-shell NPs.

4. GAIN-ASSISTED SUBDIFFRACTION
MAGNETO-OPTICAL CHAIN
The problem of compensation for strong attenuation in SDCs
due to Joule damping has been addressed in the literature
[39–41]. In [39], amplification is provided by gain in the host
medium, into which the plasmonic chain is embedded, while,
in [41], the authors consider a chain formed by composite
core-shell NPs in which gain is provided by active cores. In
[40], both approaches are analyzed and compared. We follow
the second approach and consider an SDCmade of composite
gain-assisted NPs. A single composite NP is schematically
depicted in Fig. 6. It consists of the silver spherical core of
radius r1 and the gain shell of radius r2. The layout of a chain
is the same as in the previous section: NPs are embedded into

Bi:YIG with the interparticle distance L and with the magneti-
zation vector of the MO medium parallel to the chain axis.

Combination of a gain medium and a MO plasmonic reso-
nator leads to the formation of the MO spaser [42] (for a
review of spasers, see [43]). Above the threshold, it has two
lasing modes with circular polarizations of dipole moments
and different lasing frequencies. Here, we are concerned with
the below-threshold regime of the MO spaser, when gain is
insufficient to support spasing.

The electromagnetic response of the gain medium below
the lasing threshold can be described with an effective permit-
tivity, which is deduced from the Maxwell–Bloch equa-
tions [44–46]:

εgain�ω� � ε0 � D0
ω0

ω

1

i� ω2
−ω2

0
2ωΓ

: (18)

In the above formula, Γ is the emission linewidth of the gain
medium, ω0 is the emission frequency, and D0 � 4πjμj2n∕�ℏΓ�
is a dimensionless characteristic of the pump rate, which is
proportional to the volume population inversion of the quan-
tum emitters n and squared transition dipole moment of a
quantum emitter jμj2. The gain medium can be realized either
as a collection of dye molecules or quantum dots. However, as
we show below, gain provided by typical organic dye, even at
full inversion of chromophores, is not sufficient for loss com-
pensation. For this reason, quantum dots have to be used in
order to provide gain. In calculations, the value of the emis-
sion linewidth Γ is set to Γ � 20 meV [47], background permit-
tivity of the gain medium is set to ε0 � 4, and its emission
frequency is tuned to the narrow propagation band of SDC.
The radii of the core-shell NP used in the following calcula-
tions are r2 � 10 nm and r1 � 0.8r2, respectively. For the
parameters specified above, the propagation band of the SDC
arises in the frequency region between 2.4 and 2.5 eV; for that
reason, the emission frequency is set to ω0 � 2.45 eV.

Following the same procedure as in Section 3, we find
the dispersion law of guided modes in the tight-binding
approximation:

k� � 1
L
cos−1

�
−εL3

2αcore-shell�

�
; (19)

where αcore-shell� are eigenvalues of the dipole polarizability ten-
sor of the composite core-shell NP placed in the MO medium.
This tensor is found in the same fashion as for the case of a
simple spherical NP in a MO medium. Expressions for these
two eigenvalues can be found in Appendix A.

Basically, in most applications, a nonzero output signal and
dipole moments of NPs are only generated by a nonzero input
signal. At the same time, in gain systems, when the pump rate
exceeds the threshold, an electrodynamic system of dipole
scatterers may have lasing states, at which the system pos-
sesses nonzero dipole moments without any incident radia-
tion. Such a regime of operation is inappropriate for the
purpose of the polarization control. Below, we assume that
the pump rate D0 is smaller than the specific lasing threshold.

The threshold of a single NP appears as a pole of dipole
polarizability, namely, as a pole of one of its eigenvalues.
Since dyadic α̂core-shell has three different eigenvalues corre-
sponding to different polarizations of incident light, each

Fig. 5. (a) Dispersion of guided modes of lossy MO chain. Real and
imaginary parts of the Bloch wavevectors k� are shown by solid and
dashed curves, respectively. Black dashed line is the light line; modes
below this line are localized modes. (b) Estimates for the Faraday
rotation angles per length 10L for a lossy MO chain (solid curve)
and for bulk Bi:YIG (dashed curve).

Fig. 6. Schematic of a gain-assisted core-shell NP constituting a gain-
assisted MO chain.
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eigenvalue has its own threshold and corresponds to the
unique configuration of the lasing mode. To prevent lasing,
one should choose the pump rate D0 below the lowest thresh-
old Dmin.

The situation changes for a system of interacting NPs with
gain. In such a system, due to the effect of multiple scattering,
thresholds for each mode change. In this paper, we do not es-
tablish a general condition for lasing in a system of interacting
dipoles [48]. Instead, we use a less general but more strict
condition, which guarantees that no lasing occurs in a peri-
odic chain.

The scattering behavior of a composite NP is described by
dipole polarizability α̂core-shell. This dyadic may be diagonalized
so that scattering may be described by its three elements in
the diagonal basis: αcore-shell� , αcore-shell

−

and αcore-shellzz . When
imaginary parts of these quantities are all positive,

Imαcore-shell� > 0; Imαcore-shell
−

> 0; Imαcore-shellzz > 0; (20)

scattering of incident light for any possible polarization is
accompanied by dissipation, since the dissipated power is
given by

W � ω

2
�Im αcore-shell� jE�j2 � Im αcore-shell

−

jE
−

j2

� Im αcore-shellzz jEzj2�: (21)

On the other hand, for a system of dissipative dipole scatter-
ers, a lasing mode cannot arise regardless of the value of gain
in each NP. Indeed, under this condition, the total dissipated
power in the system is always positive, and a lasing mode can-
not exist.

Relying on this simple argument, we limit the range of the
pump rate to the values for which inequalities (20) hold.
The maximum value of the pump rate, at which these three
conditions are satisfied, we denote by Ddiss. For values of
the pump rate such thatD0 < Ddiss, the core-shell NP is strictly
dissipative. Although we cannot analytically establish the
value of Ddiss due to the very complex form of the expression
for α̂core-shell, numerical calculations for parameters of the NP
introduced above indicate that 0.3 < Ddiss. From Fig. 7, one
can see that for D0 � 0.3, all three eigenvalues demonstrate
dissipative behavior. For any D0 < 0.3 < Ddiss, all three eigen-
values have positive imaginary parts.

In Fig. 8, we plot dispersion of guided modes of the gain-
assisted MO chain for zero pump rate, Figs. 8(a) and 8(b),

and for the optimal value of the pump rate D0 � 0.3 < Ddiss,
Figs. 8(c) and 8(d). The interparticle distance is L � 4r2. Over-
all, patterns of dispersion curves and the Faraday rotation in
a passive configuration with zero pump rate follow that of a
passive chain of silver NPs [see Figs. 5(a) and 5(b)]. Real and
imaginary parts of the wavevector have similar values; thus,
the propagation distance of the guided mode is of the order of
Bloch wavelength 2π∕Re k.

As the pump rate increases, the propagation band of an MO
chain becomes narrower and more pronounced [Fig. 8(c)].
Note that, due to the gain layer at the surface of the silver NP,
the plasmon resonance frequency slightly detunes from that of
a bare silver NP immersed into a MOmedium. This results in a
different frequency region of the propagation band. At the
same time, the Faraday rotation also increases with the rise
of the pump rate D0. For D0 � 0.3, the Faraday rotation is
comparable or greater than that in a lossless SDC [Fig. 8(d)].

Introducing gain allows one to increase the propagation dis-
tance of the guided modes [see Fig. 8(c)]. Due to our concerns
on lasing mentioned above, we consider the case when both
Im α� and Im α

−

are strictly positive. Therefore, the propaga-
tion length lprop � 1∕Im k� is always finite. The minimal value
of the imaginary part of the wavevector, which we observe in
the narrow propagation band of the gain-assisted SDC, corre-
sponds to Im k�;−L∕π < 0.03. Let us estimate the fraction of
the energy that reaches the end of chain of length l � 10L.
Neglecting reflections from both ends of the 10-particle chain,
the electric field intensity I ∼ E2 at the output of the chain can
be estimated as Iout � I in exp�−2 Im k · 10L� ≈ 0.2I in. Thus,
for the configuration considered here, approximately 20%
of light would propagate along the chain to experience the
Faraday rotation of approximately 90 deg, which is sufficient
for applications in optical isolator schemes.

The pump rate of D0 � 0.3 corresponds to the bulk gain
coefficient k00 � Im ���������

εgain
p

ω0∕c ≈ 104 cm−1 at the resonance
frequency. This level of gain is unattainable for organic
dye, for which the maximum value of gain is of the order
of 1.5 × 103 cm−1 [49]. However, for commercially available
CdSe quantum dots, such value of the gain coefficient is easily

Fig. 7. Eigenvalues of polarizability dyad α̂core-shell for the pump rate
D0 � 0.3. Since imaginary parts of all three eigenvalues are positive,
the system is dissipative and does not lase.

Fig. 8. Left panel: dispersion of guided modes of composite core-
shell NPs embedded into YIG. Black dashed line is the light cone.
Right panel: the Faraday rotation along the chain of length 10L.
Top: passive SDC with zero pump rate. Bottom: gain-assisted SDC
with pump rate D0 � 0.3.
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achievable (see, e.g., [50]). Note that, due to quenching (non-
radiative spontaneous decay of quantum emitters placed in
close proximity to the plasmonic sphere), the resulting density
of the population inversion n is smaller than for the case of an
active medium in free space. As a result, polarizabilities of the
composite particles as well as the dispersion curves may
change. We simulated the effect of quenching by placing an
additional layer of passive material with a dielectric constant
ε0 between the metal and the gain medium of thickness
t � 3 nm. Calculations show that higher levels of the popula-
tion inversion and gain D0 are required for loss compensation;
nevertheless, it is still attainable with CdSe quantum dots.

Figure 9 shows the Faraday rotation as a function of the
frequency and the pump rate D0. As the pump rate increases,
the rotation angle also gradually increases within the propa-
gation band. When the pump rate reaches the value close to
D0 � 0.3, the fine structure with two distinct peaks becomes
visible. These peaks, as argued previously, correspond to the
propagation band edge, at which the group velocity of one of
the modes drops to zero.

5. CONCLUSION
We have carried out a theoretical study of the enhancement of
the Faraday rotation in a 1D periodic chain of plasmonic NPs
embedded into an MO medium. Using parameters for silver
NPs and Bi-substituted yttrium iron garnet MO, we show that
in this system, the angle of rotation of the direction of the
NP dipole polarization increases by an order of magnitude
compared to a bulk MO medium. Joule losses, however,
substantially suppress this effect. We propose a way of
compensating for these losses by covering NPs with gain
layers, so that each NP turns into an MO spaser. The pump
rate should be smaller than the spasing threshold. When
the pumping frequency is tuned to the surface plasmon reso-
nance, the imaginary part of the wavevector of the guided
mode decreases, and the Faraday rotation is resonantly
enhanced by an order of magnitude.

APPENDIX A: POLARIZABILITY OF A
CORE-SHELL NANOPARTICLE IN A
MAGNETO-OPTICAL MEDIUM
Consider a core-shell NP in an MO medium with inner and
outer radii r1 and r2, respectively. To find polarizability dyadic
of a composite core-shell NP embedded into an MO host in
the quasi-static approximation, we write the electric field in
the outer region (the MO host medium) as

Eext�r� � E −

ÂE
r3

� 3
�ÂE · n�

r3
n: (A1)

The electric field in the shell can be represented as a sum of a
homogenous field and point dipole-like contribution:

Eshell�r� � B̂E −

ĈE
r3

� 3
�ĈE · n�

r3
n: (A2)

In Eqs. (A1) and (A2), tensors Â, B̂, and Ĉ are unknown. The
electric field in the core is represented only by the homog-
enous term, related to the incident field by another unknown
tensor:

Ecore�r� � F̂E: (A3)

In the outer region, the near field of the NP has the same
structure as that of a solid metallic NP in an MO medium
[see Eq. (6)]; therefore, dyadic polarizability is expressed
as α̂core-shell � εÂ, and our goal is to find this tensor from
the Maxwell’s boundary conditions.

Again, normal and tangential components of the electric
field and displacement, respectively, in the outer, shell, and
core regions are expressed as

Eext × n � E × n − ÂE × n∕r3;

Dext · n � ε�E · n� 2ÂE · n∕r3� � Ĝ�E · n − ÂE · n∕r3�;
Eshell × n � B̂E × n − ĈE × n∕r3;

Dshell · n � εgain�B̂E · n� 2ĈE · n∕r3�;
Ecore × n � F̂E × n;

Dcore · n � εcoreF̂E · n: (A4)

Substituting these expressions into the boundary conditions,
we arrive at the system of equations determining all intro-
duced tensors:

Î − Â∕r32 � B̂ − Ĉ∕r32;

ε�Î � 2Â∕r32� � Ĝ�Î − Â∕r32� � εshell�B̂� 2Ĉ∕r32�;
B̂ − Ĉ∕r31 � F̂ ;

εshell�B̂� 2Ĉ∕r31� � εcoreF̂ : (A5)

Finally, from this system we find tensor Â and dipole
polarizability α̂core-shell. Explicit expressions for polarizability
eigenvalues are

αcore-shell� � r32ε

�
1� 3ε�εcore�r31 − r32� � εshell�r31 � 2r32��

εcore��2ε� g��r31 − r32� − εshell�2r31 � r32�� � εshell�−�2ε� g��r31 � 2r32� � 2εshell�r31 − r32��

�
;

αcore-shell
−

� r32ε

�
1� 3ε�εcore�r31 − r32� � εshell�r31 � 2r32��

εcore��2ε − g��r31 − r32� − εshell�2r31 � r32�� � εshell�−�2ε − g��r31 � 2r32� � 2εshell�r31 − r32��

�
;

αcore-shellzz � r32ε

�
1 −

3ε�εcore�r31 − r32� � εshell�r31 � 2r32��
2εshell�ε�r31 � 2r32� � εshell�−r31 � r32�� � εcore�2ε�−r31 � 2r32� � εshell�2r31 � r32��

�
; (A6)

Fig. 9. Faraday rotation provided by a 10-particle chain as a function
of frequency and the pump rate, D0. The white dashed line indicates
frequency-dependent rotation for D0 � 0.3 used in Fig. 8(d).
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where αcore-shell� correspond to polarizations of incident light
E � �1;�i; 0�T and αcore-shellzz corresponds to incident light
polarized along the magnetization vector of the MO host
medium.
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