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Exceptional Points as Lasing Prethresholds

Alexander A. Zyablovsky, Ilya V. Doronin, Eugeny S. Andrianov, Alexander A. Pukhov,
Yurii E. Lozovik, Alexey P. Vinogradov, and Alexander A. Lisyansky*

The genesis of lasing, as an evolution of the laser hybrid eigenstates
comprised of electromagnetic modes and atomic polarization, is considered.
It is shown that the start of coherent generation at the laser threshold is
preceded by the formation of a special hybrid state at the lasing prethreshold.
This special state is characterized by an enhanced coupling among excited
atoms and electromagnetic modes. This leads to an increase in the rate of
stimulated emission in the special state and, ultimately, to lasing. At the
lasing prethreshold, the transformation of hybrid eigenstates has the features
of an exceptional point (EP) observed in non-Hermitian systems. The special
state is formed when eigenfrequencies of two hybrid states coalesce or come
close to each other. Below the prethreshold, lifetimes of all hybrid states grow
with increasing pump rate. When the pump rate crosses the prethreshold,
resonance trapping occurs with the lifetime of the special state continuing to
increase while the lifetimes of all other eigenstates begin to decrease.
Consequently, the latter eigenstates do not participate in the lasing. Thus,
above the prethreshold, a laser transitions into the single-mode regime.

1. Introduction

Non-Hermitian systems possessmany unusual features.[1–7] One
of themost interesting is the presence of exceptional points (EPs)
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in the parametric space.[8,9] Namely,
reaching an EP results in two or more
system eigenstates becoming linearly
dependent, as their eigenfrequencies
coalesce.[8,9] When an EP is crossed,
the properties of the system change. In
the vicinity of the EP, a state trans-
formation occurs which is a manifesta-
tion of the resonance trapping effect[10–14]

(see also ref. [15] and references in
therein). In this effect, the system eigen-
states are separated into two types, when
the spacing between two eigenstates
becomes smaller than their linewidth.
When the parameter characterizing sys-
tem non-Hermiticity increases, the life-
times of the first type of eigenstates in-
crease, while the lifetimes of the sec-
ond type of eigenstates decrease.[12,15]

Systems with EPs are employed in nu-
merous applications. For example, they
are used to enhance the sensitivity of
laser gyroscopes[16] and sensors,[17–20] to

select modes in multimode lasers,[21,22] and to achieve lasing
without inversion.[23]
The most celebrated laser systems with EPs are lasers having

parity–time (PT) symmetry,[21,22,24–30] which is achieved by bal-
ancing amplifying and absorbing regions. In these lasers, an EP
is associated with breaking the PT-symmetry of eigenmodes.[31]

It is manifested as a dramatic rebuilding of the electromagnetic
(EM) fields in the eigenmodes. Some eigenmodes become pre-
dominantly localized within the amplifying medium, while the
others are mainly localized within the absorbing medium. As a
result, the former eigenmodes have a greater lifetime than the
other eigenmodes. The mode transformation at an EP is used to
achieve single-mode lasing in multimode systems.[21,22,27] In ad-
dition, this transformation can result in a non-monotonic depen-
dence of the lasing threshold on the pump rate [28,29] or losses.[26]

In this paper, we study 1D laser systems with and without
cavity placed in an absorbing environment. We demonstrate that
EPs or at least signatures of EPs occur in the conventional lasers,
which have no particular symmetry. In contrast to PT-symmetric
systems, in lasers, the EPs are not connected with a symmetry
breaking. They appear because the eigenstates of a laser system
are hybrid states of the EM field and the atomic polarization.
Before an EP is reached, the contribution of the atoms’ polar-
ization into all eigenstates increases with an increase in the
pump power. After an EP is crossed, the rate of this contribution
into one of the eigenstates (the special state) increases. At the
same time, the contribution of the atomic polarization into other
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eigenstates decreases. The increase of the atoms’ polarization
contribution into the special state results in the strengthening of
themode-activemedium interaction and the enhancement of the
light amplification in the special state. Consequently, the special
state has the smallest lasing threshold, and a further increase
in the pump rate results in lasing in this state. Therefore, the
pump rate, at which the special state forms, can be considered
as the prethreshold for lasing.

2. The Model

To study a conventionalmultimode laser, we consider a 1Dmodel
of an ensemble of incoherently pumped atoms.We are interested
in system behavior when the pump power is smaller than the
lasing threshold. The light is generated in the volume occupied
by an active medium and is radiated into the environment. We
consider systems with and without resonators.
Following the standard procedure of second quantization,[32]

we assume that the laser is placed in a 1D box (waveguide) of the
size LB. This box plays the role of the Universe.

[33] For finite LB,
to avoid the impact of the waves reflected from the borders of the
environment, one should work in the time-domain and consider
times smaller than the round-trip time of light in the system. This
requires rather cumbersome calculations. The way around this
difficulty was developed in Refs. [33–35] In this approach, it is con-
sidered that the box is filled with a weakly absorbing medium
and LB is much larger than the decay length of the laser radiation
in the medium. This procedure is equivalent to going over to the
limit LB → ∞. In this case, we can work in the frequency domain.
To describe the evolution of a large (infinite) number of

EM modes with pumped two-level atoms, we use the Maxwell-
Bloch equations[36,37] for corresponding modes interacting with
atoms.[34,38] Since we study an absorbing environment, the fre-
quencies of the EM modes have negative imaginary parts. For
simplicity, we assume that these parts are the same for all modes,
Im𝜔 = −𝛾a.
Using the Maxwell-Bloch equations is justified if the number

of atoms is large (N ≫ 1).[34,36,37] We consider systems having
N > 104 two-level atoms. Then we obtain the following equations

dan
dt

=
(
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2
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(3)

where an is the amplitude of the EM field in the nth mode. The
quantities 𝜎m and Dm are the polarization and the population in-
version of the mth two-level atom, respectively, 𝛾a is the relax-
ation rate of the EM modes of the empty waveguide, 𝛾D and 𝛾𝜎

are the relaxation rates of the population inversion and polariza-
tion of the atoms, respectively, and 𝛾P is the rate of incoherent
pumping of the atoms. The quantity Δn = 𝜔n − 𝜔TLS is a detun-
ing between the frequency of the nth mode 𝜔n and the transi-
tion frequency of the atoms 𝜔TLS; N is the number of two-level
atoms. The Rabi coupling constant of the nth mode with themth
atom is Ωnm(xm) = −En(xm) ⋅ d∕ℏ,[34,38] where xm is the position
of themth atom, En(x) is the electric field “per one photon” of the
nth mode, and d = ⟨e|er|g⟩ is the matrix element of the dipole
moment of a two-level atom having ground |g⟩ and excited |e⟩
states. The EM field distribution in the nth mode, En(x), is deter-
mined by the system configuration and is found by solving the
Helmholtz equations.

3. Lasing Prethreshold in Toy-Model of Laser

We begin our consideration with an analysis of a toy-model of a
cavity-free system consisting of an ensemble ofN two-level atoms
located in a single point, x = 0, of the LB-box. Recently, it has
been shown that even a system having no cavity may lase.[39] We
assume that the total number of two-level atoms is 5 × 105, the
relaxation rates of atoms’ polarization is 𝛾𝜎 = 10−2𝜔TLS, the re-
laxation rates of the population inversion is 𝛾D = 10−6𝜔TLS, and
𝛾a = 2 × 10−3𝜔TLS.
The empty Universe is modeled as a large box. The modes of

the box are standing waves with wavenumbers determined by
the condition kn = 2𝜋n∕LB, where n is an integer. The eigenfre-
quency of the nth mode is 𝜔n = c kn, where c is the speed of light.
Since all the atoms are located at a single point, the field En(xm)
and the coupling constant Ωnm are the same for all the atoms;
and the latter is equal to Ω0 = 3 × 10−6 𝜔TLS. This allows us to
simplify Equations (1–3), by moving from the equations for po-
larizations and population inversions of each atom to the equa-
tions for the averaged over the atom ensemble values of these
variables, 𝜎 = 1

N

∑N
m=1 𝜎m and D = 1

N

∑N
m=1Dm.

Below the lasing threshold, the stationary values of the ampli-
tudes, an, of modes of the EMfield and the average values of atom
polarizations, 𝜎, are zero, while the average value of the atom
population inversion is D = (𝛾P − 𝛾D)∕(𝛾P + 𝛾D).

[36] To find the
eigenfrequencies of small fluctuations of the amplitudes near the
stationary state of the system, we linearize Equations (1–3) near
the stationary state an = 𝜎 = 0 andD = D0 = (𝛾P − 𝛾D)∕(𝛾P + 𝛾D).
As a result, we obtain a closed system of linear differential
equations for amplitudes of small fluctuations, 𝛿an, and the
atom polarizations, 𝛿𝜎, which can be written in the matrix
form

d
dt
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…
𝛿a∞
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… … … …
0 … −𝛾a∕2 − iΔ∞ −iΩ0N

iΩ0D0 … iΩ0D0 −𝛾𝜎∕2

⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎝

𝛿a−∞
…
𝛿a∞
𝛿𝜎

⎞⎟⎟⎟⎠
.

(4)

Now, we trace the dependencies of the eigenfrequencies of
Equation (4) on the pump rate. We begin with studying the dy-
namics of a finite number of modes of the empty box, whose
frequencies are in the range (𝜔TLS − 3𝛾𝜎 , 𝜔TLS + 3𝛾𝜎). To find the
eigenfrequencies of hybrid states, 𝜔j, that include both the EM
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Figure 1. Trajectories of the eigenfrequencies in the complex frequency
plane when the pump rate, 𝛾P , changes from 𝛾D to 1.7 𝛾D. The system size
is LB = 1800 𝜆TLS. Schematics of the system setup is shown in the inset.

field and the polarization of atoms, we calculate the eigenvalues
of thematrix in the right-hand part of Equation (4), 𝜆j = −i𝜔j. We
use Implicitly Restarted Arnoldi Method (IRAM) from the For-
tran library “ARPACK eigenvalues and eigenvectrors of largema-
trices” with double-precision complex arithmetic. This method is
well suited for tackling large-scale problems.[40] The positions of
the eigenfrequencies on the complex frequency plane for differ-
ent pump rates are shown in Figure 1.
One can see that with an increase in the pump rate, the eigen-

frequencies of the laser system move up in the complex plane
(Figure 1). In addition, the real part of eigenfrequencies are
pulled to the transition frequency of active atoms. There is a cer-
tain pump rate, at which two eigenfrequencies closest to the tran-
sition frequency coalesce (see also Figure 2). At this very point, a
special state arises.
Above the pump rate corresponding to the coalescence

point, the phenomenon of resonance trapping is observed.[10–15]

Namely, if below the coalescence point, the imaginary parts of
all eigenfrequencies move up toward the real axis, above this
point, only the imaginary part of the frequency of the special state
continues moving up. At the same time, the imaginary parts of
all other eigenfrequencies move down, away from the real axis.
Thus, with an increase in the pump rate, only the lifetime of the
special state increases. Eventually, the eigenvalue of the special
state reaches the real axis (see Figure 2b), and the special state
starts lasing. This is the reason why we refer to the pump rate, at
which the special state is formed, as a lasing prethreshold.
Such a behavior of the eigenfrequencies in the complex fre-

quencies plane near the lasing prethreshold is characteristic of
an exceptional point (EP).[8,9] The eigenstates, whose eigenfre-
quencies coalesce, are linearly dependent at the EP. To show
that the system under consideration has an EP, we consider
the dependence of the c-products of the left and right vectors⟨eLj | eRj ⟩[9,41] for the eigenstates of Equation (4) on the pump
rate. We denote the matrix in the right-hand of Equation (4)
as M̂. The right and left vectors are defined as M̂eRj = 𝜆je

R
j

and M̂TeLj = 𝜆je
L
j ,
[9,41] respectively. At an EP (in which eigen-

states of non-Hermitian Hamiltonian coalesce), the c-product for
each of coalescing eigenstate ⟨eLcoalescing|eRcoalescing⟩ becomes zero.[9]

The eigenstate ej for which ⟨eLj |eRj ⟩ = 0 is referred to as a self-

orthogonal state.[9] That is, at an EP, the coalescing states are
self-orthogonal.
Thus, we can detect the EP by tracing the dependencies of c-

products for eigenstates ⟨eLj |eRj ⟩ on the pump rate. The dependen-
cies of the c-products for three eigenstates with the lowest relax-
ation rates are shown in Figure 3. One can see that the c-products
for both coalescing eigenstates become zero at the pump rate cor-
responding to the lasing prethreshold (see Figure 3). Thus, in
the toy-model, the lasing prethreshold coincides with an EP. (An
alternative but less rigorous method for detecting an EP is dis-
cussed in Supporting Information.)
Note that such an EP differs from the EPs in PT-symmetric

lasers,[21,22,24–29,42] in which the mode structure also changes at
an EP and the long-living eigenmode forms.[21,22,24–29] In PT-
symmetric systems, EPs appear due to the rebuilding of the
EM field distribution between system regions with gain and
loss.[31,43–49] This redistribution results in the appearance of
eigenmodes localized in both system regions with gain and loss.
The former eigenmodes are long-lived, while the latter are short-
lived.
In laser systems that we consider, there is no symmetry break-

ing and the mechanism of the formation of the special state is
not connected with the rebuilding of the EM field distribution.
In these laser systems, an increase in the pump rate results in
the change of the contribution of polarizations of atoms of the
active medium in the hybrid eigenstates (see Figure 4). Below
the lasing prethreshold, the contribution of the atomic polariza-
tions, 𝜎, in all the eigenstates increases with an increase in the
pump rate. Above the lasing prethreshold, the contribution of the
atomic polarization, 𝜎, in the special state continues to grow with
an increase in the pump rate (see the blue solid line in Figure 4).
At the same time, the contribution of the atomic polarizations,
𝜎, in all other eigenstates decreases (see Figure 4). An increase
of the atomic polarization results in a boost to both the interac-
tion between the EM field of the modes and the inverted atoms
and of the energy flow from the atoms into a mode, which is
proportional to −ia∗𝜎.[50] This increasing flow compensates for
losses in the EM mode and leads to an increase in the imag-
inary part of the eigenfrequencies of the respective eigenstates
(see Figure 2b).
Thus, it is the change of the atoms’ polarization that causes the

formation of the special state at a certain pump rate. In the toy-
model of laser, the special state is formed at the EP of the system,
where two eigenstates coincide, and their eigenfrequencies are
equal to each other. When the pump rate increases further, the
lasing begins at this special state.
Note the important role of absorption in the environment (i.e.,

that 𝛾a > 0). If the absorption in the environment tends to zero
(𝛾a → 0), then the lasing prethreshold and the lasing threshold
coincide (see Supporting Information for details). That is, the
pump rate at which the special state forms is equal to the las-
ing threshold for this special state. This situation corresponds
to a cavity-free laser radiating into free space. If the absorption
in the environment is non-zero, then the formation of a special
mode (the lasing prethreshold) occurs prior to the lasing thresh-
old. This situation takes place, for example, in lasers used as
sources in optical communication lines, in which absorption is
always non-zero.
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Figure 2. Dependences of the a) real and b) imaginary parts of the eigenfrequencies of the two coalescing eigenmodes on the pump rate. The modes
are depicted by the blue solid and red dashed lines. The special state arises at 𝛾P = 1.43 𝛾D. The system size is LB = 1800 𝜆TLS.

Figure 3. Pump rate dependencies of absolute values of the c-products,|⟨eLj |eRj ⟩|, for three eigenstates with lowest relaxation rates: two coalescent
eigenstates (shown by the blue solid and the red dashed lines) and the
neighbors (shown by the green dotted line). Above the lasing prethreshold,
the blue solid line corresponds to the special mode.

Figure 4. Dependence of the atomic polarization on the pump rate for
four eigenmodes: two coalescent modes (shown by the blue solid and the
red dashed lines) and their two neighbors (shown by the green dotted
and orange dashed lines). The pump rate, at which the blue solid and red
dashed lines split, is the lasing prethreshold.

4. Independence of the Lasing Prethreshold on the
Box Size

In this section, we consider the effect of the box size, LB, on
eigenfrequencies of the system. Below the lasing prethresh-
old, the eigenfrequencies of all eigenstates have similar depen-
dencies on the box size. The coupling Rabi constant describ-
ing the interaction between a single EM mode and an atom,
Ωn = −En(x = 0) ⋅ d∕ℏ, is proportional to the amplitude of the
quantumof the EMfield in thismode. This amplitude is inversely
proportional to

√
LB.

[34] For this reason, below the EP, the inter-
action between a single EM mode and an active atom decreases
with an increase of LB. Since the volume of the active medium
remains unchanged, the interaction between a single EM mode
and all atoms vanishes in the limit LB → ∞. The EM field distri-
butions in the eigenstates are transformed into the distributions
of the EM modes of the box without atoms. Therefore, in the
complex plane, with an increase in LB, the eigenfrequencies of all
eigenstates move down toward the line 𝜔 = −i𝛾a. There are two
eigenfrequencies that move slower than the rest. The closer the
pump rate to the EP pump rate, 𝛾EP, the slower this movement.
At the EP, the eigenfrequencies coalesce, and the special state
arises. The lasing prethreshold, 𝛾EP(LB) (i.e., the EP pump rate)
and the eigenfrequency of the special state, weakly depend on the
box size, reaching the finite values, 𝛾EP(∞), and𝜔sp at LB = ∞ (see
Figure 5). The eigenfrequencies of the other eigenstates move
down (see Figure 5b) reaching the line 𝜔 = −i𝛾a at LB = ∞.
Above the lasing prethreshold, 𝛾EP(LB), the absolute value of

the imaginary part of the eigenfrequency of the special state de-
creases with an increase in the pump rate. At the pump rate (the
threshold), at which the imaginary part of this eigenfrequency
becomes zero, the lasing begins (see the blue solid line in Fig-
ure 2b). Both the lasing threshold and the eigenfrequency of the
special state weakly depend on LB, approaching finite limits at
LB = ∞ (see Supporting Information for details).

5. Lasing Prethreshold in the Distributed
Cavity-Free System

In the previous section, we consider the formation of a special
state in a toy-model of a laser, in which all active atoms are
located at a single point. In a general case, when the active
atoms occupy a region of a finite length, eigenfrequencies and
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Figure 5. a) Dependence of the pump rate (the lasing prethreshold), at which the EP arises, on the box size, LB. The dashed horizontal line shows
the limit value of the lasing prethreshold as LB → ∞ (see Supporting Information). b) Positions of the eigenfrequencies above the prethreshold for
different box sizes: LB = 1800 𝜆TLS (blue dots), LB = 3600 𝜆TLS (green dots), and LB = 5400 𝜆TLS (red dots). The pump rate is 1.46 𝛾D. The large orange
dot corresponds to the special state. Its position does not depend on the box size.

Figure 6. Systemwith the distributed activemedium showing the signature of the EP. a) The trajectories of the eigenfrequencies in the complex frequency
plane when the pump rate, 𝛾P , changes from 𝛾D to 1.7 𝛾D. b) The dependencies of imaginary parts of the special state and the second eigenmode with
the lowest relaxation rates on the pump rate. The length of the active layer is l = 10 𝜆TLS and LB = 1800 𝜆TLS. Schematics of the system setup is shown
in the inset in (a).

eigenstates of the system are determined by the same Equa-
tions (1–3). The main difference is that the coupling constants,
Ωnm, depend on atom positions, and the equations for the
polarization and the population inversion of each atom cannot
be reduced to equations for average values of these variables.
When the region occupied with active atoms has a finite

length, there are interfaces between the region and environment.
In this case, the laser is not cavity-free. The interfaces cause the
reflectance so that the formation of the Fabry-Perot resonator. At
sufficiently high gain, lasing may occur.[51,52] However, the gen-
eration of coherent radiation can occur at the pump rate, which
is several orders of magnitude smaller than that required for
lasing due to the Fabry-Perot resonator.[39] Thus, at such pump
rates, the system may be considered as a cavity-free. This situa-
tion is realized if we assume that two-level atoms are uniformly
distributed within the region of the length l = 10 𝜆TLS, where
𝜆TLS = 2𝜋c∕𝜔TLS is a wavelength at the transition frequency of
atoms. The other parameters of the active atoms are the same as
in the toy-model of laser.
The dependence of eigenfrequencies on the pump rate is

shown in Figure 6. An EP, in which eigenfrequencies coalesce,
arises only for a special set of parameters of the system. For an
arbitrary length of the active layer, the eigenfrequencies do not
coalesce (see Figure 6a). However, even if an EP is absent, its sig-
nature remains visible. The dependencies of the imaginary parts
of the eigenfrequencies on the pump rate are similar to those for

the toy-model (compare Figures 2b and 6b). At a certain pump
rate, the special state is formed. At a further increase of the pump
rate, the lasing begins at this special state. Thus, even in the ab-
sence of EP, the prethreshold exists.
The exact value of the pump rate corresponding to the las-

ing prethreshold can be defined as the pump rate, at which the
eigenfrequencies of all eigenstates except for the special state
change the direction of their movement in the complex fre-
quencies plane. Another way to define the lasing prethreshold
is based on the behavior of the c-product of the left and right
vectors ⟨eLj | eRj ⟩ for the special state. The numerical simulation
shows that the absolute value of c-product for the special state
reaches its minimum at a certain pump rate (Figure 7). In the
toy-model, the same behavior takes place at passing through the
lasing prethreshold, which coincides with the EP. For this reason,
we can identify the lasing prethreshold as the pump rate at which|⟨eLj | eRj ⟩| reaches its minimum. Note that both definitions lead
to the same value for the prethreshold pump rate.
A signature of the EP does not disappear with an increase

in the box size, LB. Regardless of the box size, the dependence
of the imaginary part of an eigenfrequency of the special state
demonstrates the threshold behavior. Below the lasing prethresh-
old, with an increase in the box size, eigenfrequencies of eigen-
states move toward the line 𝜔 = −i𝛾a. However, above the lasing
prethreshold, there is one eigenstate - the special state - whose
eigenfrequency does not depend on LB. Thus, the signature of
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Figure 7. The system with active atoms distributed in a finite layer. The
pump rate dependencies of absolute values of the c-products, |⟨eLj |eRj ⟩|,
for the special state (blue solid line) and two neighboring eigenstates (the
red dashed and green dotted lines).

an EP plays a role similar to that of the EP discussed above. The
pump rate at which an EP signature appears defines the lasing
prethreshold.

6. Lasing Prethreshold in a Distributed System
with Cavity

In this section, we consider the formation of a special state in a
system having a layer of an activemediumplaced in a Fabry-Perot
cavity with semi-transparent mirrors. We assume that the layer
of an active medium consists of N two-level atoms uniformly
distributed in the range from −l∕2 to l∕2. This region is inside
the Fabry-Perot cavity of the length lcav = l. The Fabry-Perot cav-
ity is located in a uniform absorbing environment with the size
LB ≫ lcav.
To find eigenfrequencies and eigenstates of the system, we use

linearized Equations (1–3). The coupling constants,Ωnm, depend
on atom positions and on the spatial distribution of EM modes.
Thus, the geometry of the optical system is specified by the cou-
pling constants,Ωnm. We take into account a finite number of the
EM modes of an empty box, whose frequencies are in the same
range as considered above: (𝜔TLS − 3𝛾𝜎 , 𝜔TLS + 3𝛾𝜎).
To begin with, we consider the case in which only one of the

Fabry-Perot resonator modes lies within the linewidth of the ac-
tive medium. We assume that lcav = l = 10 𝜆TLS, the reflection co-
efficient of both mirrors forming the Fabry-Perot cavity is equal
to 0.9 i; the parameters of the active medium are the same as in
the previous section.
Positions of the eigenfrequencies in the complex frequency

plane for different pump rates are shown in Figure 8a. Similar
to the case of an extended cavity-free system, an EP may only
exist at specific system parameters. However, the EP signature
and the lasing prethreshold, are always present. When the pump
rate exceeds the prethreshold, the imaginary part of the eigenfre-
quency of the special state rapidly increases (see Figure 8). When
the imaginary part of the eigenfrequency of the special state turns
to zero, in this eigenstate, the lasing begins. In addition, similar
to the case of an extended cavity-free system, for the special state,

|⟨eLj | eRj ⟩| is minimal at the lasing prethreshold (Figure 9). Thus,
the process of the formation of the special state is similar to the
one in the extended cavity-free system.
Now, we consider the case when several Fabry-Perot modes lie

within the linewidth of the activemedium. To do this, we increase
the length of the active medium to lcav = l = 50.25 𝜆TLS; all other
parameters remain the same. The length increase results in the
appearance of a number of special states at corresponding lasing
prethresholds. In particular, we observe two prethresholds (see
Figure 10). Similar to the case of the EP signature in the single-
mode lasers, the prethresholds appear at the pump rates, at which
eigenfrequencies of all hybrid states except for the special states
change the direction of movement in the complex plane. The
movements of eigenfrequencies caused by changes in the box
size, LB, are similar to that in the previously considered systems.
The final regime of the operation is determined by themode com-
petition mechanism.[37]

7. Consideration of Experimental Observation of
the Lasing Prethreshold

In previous sections, we predict the formation of special states
at the lasing prethresholds in the various systems. The lasing
prethreshold can be detected by tracking the temporal dynamics
of the EM field evolving from the stationary lasing regime after
turning off the pump.
We consider a laser consisting of a layer of an active medium

placed in a Fabry-Perot cavity with semi-transparent mirrors. We
assume that the total number of two-level atoms is 6 × 105, the
relaxation rates of the atoms’ polarization, the population inver-
sion, and the EM modes are 𝛾𝜎 = 10−2𝜔TLS, 𝛾D = 10−6𝜔TLS, and
𝛾a = 0.9 × 10−4𝜔TLS, respectively, the coupling constant is Ω0 =
4.7 × 10−5 𝜔TLS. We use Maxwell-Bloch Equations (1–3) for the
simulation of the evolution of the laser intensity.
In the initial state of the system, the pump rate is set above the

lasing threshold. After the stationary lasing regime has been es-
tablished, the pumping should be turned off. After that, the EM
field intensity, the atoms’ polarization, and the population inver-
sion of the active medium decrease over time. The relaxation rate
of the population inversion is usually much lower than the relax-
ation rates of the EM field in the cavity and the polarization of ac-
tive atoms (i.e., 𝛾D << 𝛾𝜎 , 𝛾a).

[36,37] For this reason, one can study
a local variation of the EM mode amplitudes, an, and the atoms’
polarization, 𝜎m, at some time tc, neglecting the time variation of
the population inversion. To do this, in the Tailor series forDm(t),
we only retain the zeroth-order term D(c)

m = Dm(tc). Then, in the
vicinity of tc, Equations (1) and (2) for the EM mode amplitudes,
an, and the atoms’ polarization, 𝜎m, become linear and can be
written in the matrix form

d
dt

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a−∞
…
a∞
𝜎1

…
𝜎N

⎞⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−𝛾a∕2 − iΔ−∞ … 0 −iΩ−∞1 … −iΩ−∞N

… … … … … …
0 … −𝛾a∕2 − iΔ∞ −iΩ∞1 … −iΩ∞N

iΩ−∞1D
(c)
1 … iΩ−∞ND

(c)
N −𝛾𝜎∕2 … 0

… … … … … …
iΩ∞1D

(c)
1 … iΩ∞ND

(c)
N 0 … −𝛾𝜎∕2

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a−∞
…
a∞
𝜎1

…
𝜎N

⎞⎟⎟⎟⎟⎟⎟⎟⎠

.

(5)
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Figure 8. a) Trajectories of the eigenfrequencies in the complex frequency plane when the pump rate, 𝛾P , changes from 𝛾D to 1.7 𝛾D. The lasing prethresh-
old is 1.31 𝛾D. b) The dependencies of the imaginary parts of two eigenmodes with the lowest relaxation rates on the pump rate. The absolute value of
the reflectance of the mirrors in the Fabry-Perot cavity is 0.9, the length of the active layer is l = lcav = 10 𝜆TLS and LB = 1800 𝜆TLS. Schematics of the
system setup is shown in the inset in (a).

Figure 9. The system with active atoms distributed in a finite layer placed
in a cavity. The pump rate dependencies of absolute values of the c-
products |⟨eLj |eRj ⟩| for the special state (blue solid line) and two neigh-

boring eigenstates (the red dashed and green dotted lines).

Ultimately, we can introduce instantaneous eigenstates and
eigenfrequencies, 𝜔j, which are functions of D

(c)
m = Dm(tc). Note

that the current values Dm(t = tc) are found by solving Maxwell-
Bloch Equations (1–3).
Now we track the evolution of the instantaneous eigenstates

and eigenfrequencies over time, starting with the stationary las-
ing state. This means that right after turning off the pumping,
one of the instantaneous eigenfrequencies should be on the real
axis (see Figure 11). We identify it as an eigenfrequency of the
special state. The other eigenfrequencies lie near the line 𝜔 =
−i𝛾a.
During the system relaxation, the imaginary part of the instan-

taneous eigenfrequency of the special state decreases (Figure 12),
and it rapidly moves fast down in the complex frequency plane.
Simultaneously, the instantaneous eigenfrequencies of the other
eigenstatesmove up (Figure 11). Themotion of the eigenfrequen-
cies allows one to determine the signature of the EP. At time,
tpre, the instantaneous eigenfrequencies of the special state and
the neighboring eigenstate become close to each other (see Fig-
ure 12). This is the time at which the signature of an EP and the
lasing prethreshold are observed. At t > tpre the imaginary parts
of the eigenfrequencies of all eigenstates decrease (Figure 12).

Figure 10. Trajectories of the eigenfrequencies in the complex frequency
plane when the pump rate, 𝛾P , changes from 𝛾D to 1.7 𝛾D. The first lasing
prethreshold is 1.11 𝛾D; the second lasing prethreshold is 1.13 𝛾D. The ab-
solute value of the reflectance of themirrors in the Fabry-Perot cavity is 0.9,
the length of the active layer is l = lcav = 50.25 𝜆TLS and LB = 1800 𝜆TLS.
Schematics of the system setup is shown in the inset.

Figure 11. The trajectories of the eigenfrequencies in the complex fre-
quency plane after the pumping is turned off.

Note that the rate of this decrease is significantly lower than the
rate of the decrease for a special mode at t < tpre.
Unfortunately, the motion of instantaneous eigenfrequencies

𝜔j cannot be measured directly in experiment. However, the
change in the imaginary parts of the eigenfrequencies affects the
relaxation rate of the EM field intensity, I(t) =

∑
n |an(t)|2.
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Figure 12. Time dependence of the imaginary parts of instantaneous
eigenfrequencies of two coalescent modes.

Solving Equations (1–3) we obtain the dependence I(t)
(Figure 13a). Immediately after the pumping is turned off, the
EM field distribution in the laser coincides with that in the
special state. During the system evolution, the EM field distribu-
tion changes only slightly, remaining almost the same as in the
special state. The relaxation rate of the EM field intensity is deter-
mined by the imaginary part of the eigenfrequency of the special
mode. A change of the imaginary part results in the change of
the relaxation rate of the EM field intensity. As a result, the EM
field intensity decays non-exponentially over time (Figure 13a)
until the time when the prethreshold is reached (t < tpre). After
crossing the lasing prethreshold, the imaginary part of the
eigenfrequency of the special mode almost stops changing over
time (Figure 12). The imaginary parts of all eigenfrequencies
become practically the same and are equal to 𝛾a (Figure 12). As
a result, the EM field energy begins decaying exponentially over
time (Figure 13a). Thus, the transition from non-exponential
to exponential decay can be interpreted as passing through
the lasing prethreshold. Note that the change in the EM field
dynamics is not accompanied by a change in the dynamics
of the population inversion, which slowly decreases over time
(Figure 13b).

8. Conclusion

We demonstrate that in conventional 1D laser systems with and
without a cavity, in addition to the ordinary lasing threshold,
there is a lasing prethreshold, at which a special state arises. In
a cavity-free system, at the lasing prethreshold, the spectrum of
the eigenstates changes drastically. Below the lasing prethresh-
old, the lifetimes of all eigenstates increase with a pump rate. At
the prethreshold, two of the eigenmodes coalesce, forming an EP
or coming close to each other (a signature of an EP). Above the
lasing prethreshold, the coalesced eigenmodes split again, and
the lifetime of the special state continues to increase. At the same
time, the lifetimes of all other eigenstates decrease manifesting
the resonance trapping.[10–14] When the pump rate reaches the
lasing threshold, lasing in the special state begins. The other
eigenstates do not participate in the lasing. Thus, above the lasing
prethreshold, a laser transitions into a single-mode regime.
In a system with a cavity, in which a distance between the

frequencies of cavity eigenmodes is greater than the atomic
linewidth, similar behavior is observed. If a distance between the
frequencies of the cavity eigenmodes is smaller than the atomic
linewidth, several special states are formed at their own lasing
prethresholds, which corresponds to multimode laser genera-
tion.
We demonstrate that the existence of the lasing prethreshold

(and the EP) is connected with the hybrid nature of the eigen-
states of the laser system, which are comprised of EM modes
and atoms’ polarization. Below the threshold, an increase in
the pump rate slightly increases the polarization contribution
into eigenstates. Above the prethreshold, the contribution of the
atoms’ polarization into the special eigenstate increases rapidly
with an increase of the pump rate, while such a contribution into
the other eigenstates decreases. That is, at the EP, the coupling
between the EM field and atom’s polarization begins to change.
Below the prethreshold, the contribution of the atoms’ polariza-
tion into the hybrid eigenstates is small and the interaction be-
tween the EM field and active atoms is weak. Above the lasing
prethreshold, the contribution of the atoms’ polarization into the
special hybrid state becomes greater. As a result, in the special
hybrid state, the coupling between the EM field and active atoms
is intensified leading to lowering of the lasing threshold for this
state.

Figure 13. Time dependencies of a) the EM field energy and b) the population inversion. The left and right vertical black dashed lines show the time
moments at which the laser crosses the lasing threshold and prethreshold, respectively. The red dashed line shows the exponential decay with the
decrement 𝛾a.
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When the pump rate reaches the lasing threshold, the lasing in
the special state begins. Note that the lasing threshold calculated
for the special state coincides with that for the threshold lasing
modes,[35] which are found by considering the poles of the system
scattering matrix at real frequencies.[53–57]

We emphasize that without additional studies, our results are
not directly applicable to two- or 3D lasers or to random lasers,
which have complex frequency dependences of the local density
of state of EM field.
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