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We find the conditions upon the amplitude and frequency of an external electromagnetic field at which the dipole
moment of a Bergman–Stockman spaser oscillates in antiphase with the field. For these values of the amplitude and
frequency the loss inmetal nanoparticles is exactly compensated by the gain. This shows that spasersmay be used as
inclusions in designing lossless metamaterials. © 2011 Optical Society of America
OCIS codes: 240.6680, 350.4238, 240.4350.

Interest in the optics of metamaterials—negative index
materials—has grown explosively over the last decade
(see [1–3] and references therein). One of the most pro-
mising features of metamaterials is the possibility of
achieving super-resolution imaging by creating super-
lenses [4] that transform near-fields into far-fields. Such
lenses must be lossless because both loss and gain de-
stroy the image. Though natural metamaterials have
not been found, artificial composite materials with desir-
able properties could be used for this purpose. Metal
nanoparticles (NPs) have become the most popular com-
ponents of such composites. Using surface plasmons
(SPs) generated in metal NPs has allowed for a host
of innovative applications. The main limiting factor in
using metal NPs is their high level of loss [5,6]. This ob-
stacle can be overcome by introducing a gain medium
into the system [7,8]. The combination of a gain medium
and NPs results in the emergence of spasers first sug-
gested by Bergman and Stockman [5]. Exploiting spasers
opens a groundbreaking way to dramatically reduce loss
in composites incorporating metal NPs [9,10].
The spaser cannot be directly used to amplify an ex-

ternal field oscillating with the frequency ωE because
the spaser is a self-oscillating system and possesses an
inherent frequency ωauto, which we refer to below as
an autonomous frequency [3,11]. Nevertheless, as has
been shown in [12], there is a domain (the Arnold tongue)
of values of the amplitude E of the external wave and of
the frequency detuning Δ � ωauto − ωE at which the spa-
ser becomes synchronous with the driving wave. Outside
of this domain, the spaser exhibits stochastic oscilla-
tions. If Δ ≠ 0, then there is a threshold value of the ex-
ternal field intensity, ESynch�Δ�, below which the spaser
always exhibits stochastic oscillations. The question
remains whether within the Arnold tongue the exact can-
cellation of losses and gain can be achieved.
In this Letter, we study the operation regimes of the

spaser driven by an external optical wave. We find a re-
lationship between the amplitude and frequency of the
field at which the NP dipole moment oscillates with
the phase shift of π relative to the external wave. For
the found set of values of E and Δ, the losses at the
NP are exactly compensated by gain.
The simplest model of the spaser consists of a two-

level quantum dot (QD) of radius rTLS, which is

positioned at a distance r from a metallic NP of radius
rNP. The whole system is immersed into a solid dielectric
or semiconductor matrix with dielectric permittivity εM
[5]. Below, we discuss the excitation of the main, dipole,
mode of the SP at a frequency ωSP.

Following the theory of a usual one-atom single-mode
laser [13], the dynamics of the autonomous spaser can be
described in terms of creation-annihilation operators for
SPs, a

∼

and a
∼
†, and the transition operator σ∼ and σ∼† be-

tween ground jgi and excited jei states of the QD,
σ∼ � jgihej. The Hamiltonian of the system has the form

Ĥauto � ℏωTLS ~σ† ~σ � ℏωSP ~a
†
~a� ℏΩR� ~a† ~σ � ~σ† ~a�;

which in the Heisenberg picture leads to the following
system of equations (see e.g. [6,12])

_̂D � 2iΩR�â†σ̂ − σ̂†â� − �D̂ − D̂0�=τD; �1�
_̂σ � �iδTLS − 1=τσ�σ̂ � iΩRâD̂; �2�
_̂a � �iδSP − 1=τa�â − iΩRσ̂: �3�

In Eqs. (1)–(3) we used the rotating wave approximation
in which operators ~a�t� and ~σ�t� can be represented as
a
∼�t� � a�t� exp�−iωautot� and ~σ�t� � σ�t� exp�−iωautot�,
respectively. Thus, the operator for the dipole moment
of the QD has the form d̂TLS�μμTLS�σ̂exp�−iωautot��
σ̂†exp�iωautot��, where μμTLS � hejerjgi is the QD di-
pole moment matrix element; ΩR �

��������������������������������������
3=�rNPℏ∂εNP=∂ω�

p
�μμTLS · E1� is the Rabi frequency with E1 � −e=r3 � 3�e ·
r�r=r5 being a field of the unit dipole, δTLS � ωauto − ωTLS
and δSP � ωauto − ωSP. The electric field of the SP is char-
acterized by the NP dipole moment, defined by the opera-
tor d̂NP � μμNP�â exp�−iωautot� � â† exp�iωautot��, where

μμNP �
������������������������������������������
1:5ℏr3NP=�∂εNP=∂ω�

q
e. Using permittivity disper-

sion for silver [14] for a NP of radius rNP � 10 nm, one
finds μNP � 200D, which is 10 times larger than a typical
dipole moment of a QD, μTLS � 20D. The operator D̂ �
�σ̂†; σ̂� � n̂e − n̂g describes the population inversion of
the ground n̂g � jgihgj and excited states n̂e � jeihej
(n̂g � n̂e � 1̂) of the QD, D̂0 is the operator, to which
the population inversion operator D tends when ap-
proaching the stationary regime with σ � a � 0
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[13,15], the terms with relaxation times ∝τ−1D , τ−1σ , and
τ−1a are introduced phenomenologically to account for
the relaxation processes of the respective quantities.
As has been shown in [5,16], above the threshold pump
level, Dth � �1� δ2SPτ2a�=�Ω2

Rτaτσ�, the spaser oscillates
with the autonomic frequency ωauto � �ωSPτa � ωTLSτσ�=
�τa � τσ�.
Below we neglect quantum fluctuations and correla-

tions and consider â�t�, σ̂�t�, and D̂�t� as complex valued
quantities (C-numbers), so that we can use complex con-
jugation instead of the Hermitian conjugation [5,16–18].
The population inversionD�t�must be a real valued quan-
tity because the respective operator is Hermitian. The
quantities σ�t� and a�t� are the complex amplitudes of
the dipole oscillations of the QD and SP, respectively.
Let us consider the dynamics of the NP and QD forced

by the field of the external optical wave E�t� �
E�exp�iωEt� � exp�−iωEt��=2. Assuming that the exter-
nal field is classical and taking into account the dipole
interaction only, we can write the Hamiltonian in the
form

Ĥef � Ĥauto � d̂NPE�t� � d̂TLSE�t�: �4�

As before, we use the Heisenberg equations for the
operators â, σ̂, and D̂ to obtain equations of motion
for slowly varying amplitudes:

_̂D � 2iΩR�â†σ̂ − σ̂†â� � 2iΩ2�σ̂ − σ̂†� − �D̂ − D̂0�=τD; �5�

_̂σ � �iδ − 1=τσ�σ̂ � iΩRâD̂� iΩ2D̂; �6�

_̂a � �iΔ − 1=τa�â − iΩRσ̂ − iΩ1; �7�
where Ω1 � −μNPE=ℏ, Ω2 � −μTLSE=ℏ, δ � ωE − ωTLS,
and Δ � ωE − ωSP are detuning of frequencies.
It is worth noting that, in the absence of the QD

(σ̂ � 0, ΩR � 0), the stationary solution, _̂a � _̂σ � 0, to
Eqs. (5)–(7) gives the following expression for the NP
polarization:

α=r3NP � 3
2�∂ε=∂ω��Δ� i=τa�

:

For small detuning, Δ ≪ 1, in the slowly changing am-
plitudes approximation, this expression coincides with
the classical expression αclassr−3NP � εNP�ω�−εext

εNP�ω��2εext, where εext
is the permittivity of the matrix, surrounding the NP.
Without pumping, the frequency dependence of the di-

pole moment of the NP is similar to that of a classical
dipole: its real part may be positive or negative depend-
ing on the detuning, Δ, whereas the imaginary part is al-
ways positive due to losses. When the pumping is
present, the imaginary part of the dipole may change sign
and become negative for some values of Δ (see Fig. 1)
signifying the amplification of the incident wave.
Figure 1 shows that, for fixed E, there are two values of

Δ for which an exact compensation of losses can be
achieved. These points form a single curve in the
fE;Δg plane (Fig. 2). The equation of this curve E�Δ� is

�μNPE=ℏ�2 � f−�τ3σ=τa�Δ4 � �D0Ωτ3σ�μTLS=μNP�=τD�Δ3

− ��τσ=τD� − Ω2D0τaτ2σ=τD�Δ2g
× �4�τσΔμTLS=μNP � τaΩ�2�−1:

AsΔ → 0 this expression transforms into �μNPE=ℏ�2 �
�D0 − Dth�Δ2�τ2σ=�τDτa��, where Dth � 1=�τστaΩ2� is the
threshold pumping. Having estimated ΩR ∼ μNPμTLS=
�ℏr3� ∼ 5 · 1012 s−1 (r ∼ rNP), we obtain Dth � 0:4.

In Fig. 2, where the dipole phase as a function of E and
Δ is shown, the curve E�Δ� is seen to be a discontinuity
line. This line corresponds to a phase difference of π
between the NP dipole moment and the external field.
On this curve, the system has neither loss nor gain,
both of which destroy the perfect image of a subwave-
length lens.

The detailed investigation of the dependence of the
plasmon dipole moment on the amplitude of the external
field for different values of the detuning shows that there
are three regimes. For E < ESynch�Δ�, the point �Δ; E� is
outside of the Arnold tongue and the spaser is in the sto-
chastic regime. Inside the Arnold tongue, for weak fields,
the amplitude of the dipole moment of the NP depends

Fig. 1. (Color online) Dependences of the real (solid line)
and imaginary (dashed line) parts of the NP dipole moment
on the frequency detuning Δ for a value of the amplitude of
the external field greater than the synchronization threshold,
E > ESynch�Δ�.

Fig. 2. (Color online) Dependence of ϕ � tan−1�ImdNP=
RedNP� on the amplitude of the external field E and the detuning
Δ. The smooth part of the surface corresponds to the Arnold
tongue where the spaser is synchronized by the external field.
At the discontinuity line, on which ϕ � π, the loss is exactly
compensated.
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mainly on pumping and weakly on the amplitude of the
external electromagnetic field (Fig. 3). Finally, the linear
response regime occurs for very high values of the elec-
tric field E > 0:5 × 106 V=m when the coupling of the NP
with external field becomes comparable to the coupling
between the NP and the QD.
While the composite, represented by a matrix filled

with spasers, may amplify or weaken the external field
in the general case, there is a combination of the ampli-
tude and frequency of the external field that provides
exact cancellation of losses and gain and results in
antiphase oscillations of the spaser dipole moment. Such
a composite would be a nonlinear medium which may
follow the frequency of the controlling signal. The
properties of the medium may differ from the properties
of a single spaser due to possible mutual syn-
chronization. We plan to study this problem in the near
future.
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Fig. 3. (Color online) Dependence of the plasmon dipole mo-
ment on the amplitude of the external field for zero frequency
detuning (Δ � 0).
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