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Abstract: We show that in plasmonic systems, exact loss compensation can 
be achieved with the help of spasers pumped over a wide range of pumping 
values both below and above the spasing threshold. We demonstrate that 
the difference between spaser operation below and above the spasing 
threshold vanishes, when the spaser is synchronized by an external field. As 
the spasing threshold loses its significance, a new pumping threshold, the 
threshold of loss compensation, arises. Below this threshold, which is 
smaller than the spasing threshold, compensation is impossible at any 
frequency of the external field. 
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1. Introduction 

The problem of loss compensation in plasmonic systems, such as plasmonic composites, 
metamaterials, and plasmonic transmittance lines, has become increasingly pressing as these 
systems gain attention owing to their prospects for attractive applications [1–10]. These 
applications cannot be realized due to the high level of Joule losses in metal components of 
plasmonic composites. To overcome this problem in metamaterials, it has been suggested to 
incorporate gain media (atoms, molecules or quantum dots) into these systems [1–7]. The 
general goal of such compensation is to construct a gain plasmonic material in which the 
electromagnetic response mimics the response of an ordinary composite without loss. In other 
words, such a material should be characterized by a dielectric permittivity. In particular, the 
wave generated by an external harmonic field in this metamaterial should have the same 
frequency as the external field. 

The goal of loss compensation in metamaterials can be achieved with the help of spasers 
[7, 11–15]. Without external field a spaser operating above the pumping threshold (the 
spasing regime) is an autonomic (self-oscillating) system exhibiting undamped harmonic 
oscillations. These oscillations are characterized by their own frequency aω  and the 
amplitude [16–18]. An external harmonic field with frequency ν  can synchronize the spaser 
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forcing it to operate at frequency ν  [12]. However, in this case, an active metamaterial 
cannot be described by a dielectric function because the synchronization is possible only if 
the amplitude of the external field exceeds a threshold value ( )synch EE ∆ , which depends on 
the frequency detuning E aν ω∆ = − . The domain in which ( ) ( )E synch EE E∆ > ∆  is called the 
Arnold tongue [19]. Synchronization inside the Arnold tongue known from the theory of self-
sustained oscillations was also observed for lasers [20]. In addition, for the field not much 
stronger than ( )synch EE ∆ , the response of a synchronized spaser depends only weakly on the 
external field [13]. 

Generally, inside the Arnold tongue the dipole moment of the spaser has a nonzero 
imaginary part. This means that the spaser operates either as a gain or loss inclusion. Exact 
compensation occurs when the amplitude of the wave travelling in an active metamaterial is 
equal to a special value ( )com EE ∆  which depends on the frequency detuning and pump [13]. 
Interestingly, inside the Arnold tongue, the amplitude of the travelling wave reaches 

( )com EE ∆  automatically. If the amplitude of the travelling wave is greater than ( )com EE ∆ , the 
energy is transferred from the wave to spasers and the amplitude of the travelling wave drops. 
In the opposite case, the energy is transferred from the spasers to the wave and the wave 
amplitude grows. Thus, eventually the wave travels with the amplitude independent on the 
external field [14]. 

Below the pumping threshold, Dth, spasers are always synchronized by an external 
harmonic field, and therefore the system can be characterized by an effective dielectric 
permittivity. In this regime, spasers seem to be good candidates for loss compensation if not 
for the apparent energy shortage. Indeed, self-oscillations of a spaser above the pumping 
threshold are due to the energy delivered by pumping which cannot be smaller than Joule 
losses. An external field breaks this balance causing additional losses in the plasmonic 
nanoparticle (NP). Since below the threshold, the pumping does not compensate for losses 
even in the absence of an external field, it may seem that in order to achieve compensation, 
one should pump the driven spaser above the threshold. These arguments qualitatively agree 
with the result obtained in [8] where it was shown that loss compensation occurs 
simultaneously with the start of spasing. On the other hand, in the absence of the interaction 
between plasmonic and active media [1], as well as in the linear regime [7, 11], below-
threshold compensation was predicted. 

In this paper, within the framework of the single-particle model, we demonstrate that the 
exact compensation of Joule losses can be achieved with spasers in both below and above 
pumping threshold regimes. We show that the synchronizing external field destroys self-
oscillations of spasers transforming them into a nonlinear oscillator with a new pumping 
threshold ( )comp thD E D< . When the pumping rate, D0, exceeds Dcomp, there is a line of exact 
loss compensation, 0( , )comp a EE E Dω ω= − . 

2. Equations of motions for a free spaser and a spaser driven by external optical wave 

We consider a simplest model of spaser as a two-level system (TLS) of size TLSr  placed near a 
plasmonic spherical NP of size NPr  [16, 17]. The energy from the pumped TLS is non-
radiatively transferred to the NP exciting surface plasmons (SPs). At the frequency of the SP 
resonance, the dynamics of the NP polarization is governed by the oscillator equation: 

 2 0.NP SP NPω+ =d d  (1) 

The quantization of this oscillator can be performed in an ordinary way by introducing the 
Bose operators †ˆ ( )a t  and ˆ( )a t for the creation and annihilation of the dipole SP [21, 22]: 
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 ( )†ˆ ˆˆ .NP NP a a= +d μ     

The corresponding Hamiltonian is: 

 ( )† †ˆ ˆ ˆ ˆˆ .
2

SP
SPH a a aaω
= +


     (2) 

To determine the value NPμ , we should equate the energy of a single plasmon to the energy 
of the quant: 

 ( ) 2 2Re ( )1 1 Re ( )Re ( ) ,
2 8 8

SPSP

SP
NP NPdV dV

ωω

ωε ωω ε ωε ω ω
π ω π ω

∂ ∂ = = + ∂ ∂ ∫ ∫E E (3) 

where permittivity NPε ε=  inside the NP and 1ε =  in the surrounding volume, and NPE  is 
the electric field of the NP. In the absence of the external field, for the NP near field we have 
( ) 218 Re 0

SP NP dV
ω

π ε− =∫ E , where NPε ε=  inside the NP and 1ε =  in the surrounding 

volume [23]. The near field is not equal to zero at the resonance frequency only. However, in 
this case, the field vanishes at the infinity and 2Re Re

SP SPNP dV dV
ω ω

ε ε ϕ ϕ∗= ∇ ⋅∇∫ ∫E  

( )Re
SP

dV
ω

ϕ ε ϕ∗= − ∇⋅ ∇∫ . The latter integral is equal to zero both inside and outside the 

NP. Furthermore, Re ( ) / 0NPε ω ω∂ ∂ =  outside of the particle. This modifies Eq. (3) as 

 21 Re ( ) ,
2 8

SP

SP NP
NP

volume
of NP

dV
ω

ω ε ωω
π ω

∂
=

∂∫ E  (4) 

For a spherical NP with the radius NPr , the electric field of the SP with a unitary dipole 
moment, 1μ , is equal to 3 5

1 13( )NP r r− −= − + ⋅E μ μ r r and 3
1NP NPr −= −E μ  outside and inside of 

the NP, respectively. Thus, we obtain 

 
2

3

Re ,
2 6

pl

NPSP
SP

NPr ω

ω εω
ω

∂
=

∂
μ

  (5) 

which gives 

 3 1

1

Re3 / .NP
NP NPr ε

ω
∂ =  ∂ 

μμ
μ

  (6) 

The quantum description of a TLS is done via the transition operator ˆ g eσ =  between 

ground g  and excited e  states of the TLS, so that the operator for the dipole moment of 
the TLS is represented as 

 ( )†ˆ ˆˆ ( ) ( ) ,TLS TLS t tσ σ= +μ μ    (7) 

where TLS e e g=μ r  is the TLS dipole moment matrix element. The Hamiltonian of the 
two-level TLS can be written as 

 †ˆ ˆˆ ,TLS TLSH ω σ σ=  
  (8) 
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where TLSω  is the transition frequency of the TLS. 

The commutation relations for operators ˆ( )a t  and ˆ ( )tσ  are standard: ˆ ˆ[ ( ), ( )] 1a t a t+ =   and 
† ˆˆ ˆ[ , ] Dσ σ = , where the operator ˆ ˆ ˆe gD n n= −  describes the population inversion of the ground 

ˆgn g g=  and excited states ˆen e e= , ˆˆ ˆ 1g en n+ = , of the TLS. 
We describe the dynamics of the free spaser by the model Hamiltonian [16, 17, 24] 

 ˆ ˆ ˆ ˆ ˆ ,SP TLSH H H V Г= + + +  (9) 

where the operator ˆ ˆ ˆ
NP TLSV = −d E  is responsible for the dipole-dipole interaction between the 

TLS and the NP. Taking into account that 3 5ˆ ˆ ˆ3( )TLS TLS TLSr r− −= − + ⋅E μ μ r r , we obtain 

 ( )( )† †ˆ ˆ ˆ ˆˆ .RV a a σ σ= Ω + +   
  (10) 

where ( )( ) 3
03 /R NP TLS TLS r NP r rΩ = ⋅ − ⋅ ⋅  μ μ μ e μ e   is the Rabi frequency, r0 is the distance 

between the TLS and the NP, and /r r=e r  is the unitary vector. The last term in the 
Hamiltonian (9) is responsible for relaxation and pumping processes. 

Assuming that TLSω  is close to the frequency of the plasmonic resonance, SP TLSω ω≈ , we 
can use the approximation of the rotating wave [25] by looking for the solutions in the form 
ˆ ˆ( ) ( )exp( )aa t a t i tω≡ −  and ˆ ˆ( ) ( )exp( )at t i tσ σ ω≡ − , where ˆ( )a t , ˆ ( )tσ  are slow varying in 

time operators and aω  is the autonomous frequency of the spaser which we seek. 
Disregarding fast-oscillating terms proportional to exp( 2 )ai tω± , the interaction operator 

V̂ may be written the form of the Jaynes–Cummings Hamiltonian [21]: 

 † †ˆ ˆ ˆ ˆ ˆ( )RV a aσ σ= Ω +  (11) 
Using Hamiltonian (9) and the commutation relations for operators ˆ( )a t  and ˆ ( )tσ  we 

obtain the Heisenberg equations of motion for the operators ˆ( )a t , ˆ ( )tσ , and ˆ ( )D t  [17] 

 ( )† † 1
0

ˆ ˆ ˆˆ ˆ ˆ ˆ2 ( ) ,R DD i a a D Dσ σ τ −= Ω − − −


 (12) 

 ( )1 ˆˆ ˆ ˆ ,Ri i aDσσ δ τ σ−= − + Ω


 (13) 

 ( )1ˆ ˆ ˆ.a Ra i a iτ σ−= ∆ − − Ω


 (14) 

where a TLSδ ω ω= −  and a SPω ω∆ = −  are frequency detunings. To take into account 
relaxation processes (the Γ -term in Eq. (9)), we phenomenologically added terms 
proportional to 1

Dτ
− , 1

στ
− , and 1

aτ
−  in Eqs. (12)-(14). The term 0D  describes pumping [21, 25] 

and corresponds to the population inversion in the TLS in the absence of the NP. Since for 
small NPs (~30 nm), which we consider, the Joule losses far exceed the loss due to radiation, 
the latter can be neglected in calculations of 1

aτ
−  [26, 27]. From now on, we neglect quantum 

fluctuations and correlations and consider ˆ ˆ( ), ( ),D t tσ  and ˆ( )a t  as c-numbers. In this case, 
the Hermitian conjugation turns into the complex conjugation [17, 28-30]. Note that the 
quantity ( )D t  that describes the difference in populations of excited and ground states of the 
TLS is a real quantity because the corresponding operator is Hermitian. 

#185508 - $15.00 USD Received 19 Feb 2013; revised 16 May 2013; accepted 22 May 2013; published 29 May 2013
(C) 2013 OSA 3 June 2013 | Vol. 21,  No. 11 | DOI:10.1364/OE.21.013467 | OPTICS EXPRESS  13471



The system of Eqs. (12)-(14) has stationary solutions, which depend on the pumping level 
0D . For 0D  smaller than the threshold value, 

 ( ) ( )2 2 21 ,th SP a a R aD σω ω τ τ τ = + − Ω   (15) 

there is only the trivial solution 0,a σ= =  0D D= . For 0 thD D>  the second stationary 
solution arises. In this case, the trivial solution corresponding to the absence of SPs is 
unstable, while the stable solution corresponds to laser generation of SPs (spasing) with the 
frequency [17] 

 ( ) ( ).a SP a TLS aσ σω ω τ ω τ τ τ= + +  (16) 
The Hamiltonian of a spaser driven by an external field of optical wave, which is assumed 

to be classical, ( ) cosOWE t E tν= , may be written in the form (see for details [12, 13, 31, 32]): 

 ( )( ) ( )( )† †
1 2

ˆ ˆ ˆ ˆˆ ˆ ,i t i t i t i t
effH H a a e e e eν ν ν νσ σ− −= + Ω + + + Ω + +   

   (17) 

where H is given by Eq. (9), 1 /NPEµΩ = −   and 2 /TLS EµΩ = −   are the coupling constants 
of the external field interaction with the NP and the TLS, respectively. 

As above, the equations of motion for slow amplitudes â , σ̂ , and D̂  can be obtained as: 

 ( )† † † 1
2 0

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ2 ( ) 2 ( ) ,R DD i a a i D Dσ σ σ σ τ −= Ω − + Ω − − −


 (18) 

 1
2

ˆ ˆˆ ˆ ˆ( ) ,E Ri i aD i Dσσ δ τ σ−= − + Ω + Ω


 (19) 

 1
1ˆ ˆ ˆ( ) .E a Ra i a i iτ σ−= ∆ − − Ω − Ω



 (20) 

where E SPv ω∆ = −  and E TLSvδ ω= − . In the next section, using Eqs. (18)-(20) we 
demonstrate that spasers below the pumping threshold can be used for Joule loss 
compensation. 

3. Loss compensation 

Since the energy flows through a spaser, it can be considered as an open system. The flow 
starts at pumping, which causes the population inversion of the TLS, then the nonradiative 
transition of the TLS excites SPs at the NP, and the Joule losses of SPs at the NP finalize the 
flow. In the absence of an external field, the energy of pumping is consumed by SP 
excitations. At fixed pumping, an increase of the SP amplitude is limited by Joule losses at 
the NP. The self-oscillating state of a spaser (spasing) occurs at exact compensation of losses 
with pumping [16, 27]. If losses exceed the energy supplied by pumping, the stationary 
amplitudes of oscillations are equal to zero. The maximum value of pumping, below which 
there is no spasing, is referred to as the threshold pumping. 

The external field performs work on the dipole moments of the TLS and the NP. Thus, 
subjecting a spaser to an external field leads to additional channels of energy flow; namely, 
the energy flows from the field to the TLS and to the NP. These energy flows may close up 
via the interaction of the TLS with the NP and interfere with each other and with the primary 
energy flow from pumping to the TLS and then to Joule losses at the NP. Rather complicated 
dynamics of these flows results in non-zero oscillations of the below-threshold spaser, as 
shown in Fig. 1(a). 

For exact loss compensation, the work performed by the field on the spaser should be 
equal to zero. The time averaged work performed by the external field E on the spaser is 
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( ) *~ TLS NP′′ ′′+ ⋅μ μ E  [33]. Sinceμ E , for non-zero dipole moments, this expression turns to 

zero when ( ) 0TLS NP′′ ′′+ =μ μ  or the phase difference between the field and spaser dipole 
oscillations is equal to π. If the phase difference is greater than π, the wave is amplified 
(negative work). If the phase is smaller than π, the wave attenuates (positive work). In other 
words, for exact loss compensation the sum of the imaginary parts of the dipole moments of 
the TLS and the NP should be equal to zero. It has been shown [13], that above the spasing 
threshold, the imaginary part of the dipole moment of a synchronized spaser is equal to zero 
on the compensation curve ( )0,comp EE E D= ∆  (see Fig. 2). For the fields below this curve, 
the energy pumped into the system exceeds losses; for the fields above the compensation 
curve, the system becomes lossy. Note, that exact compensation can occur only for the fields 
smaller than ( )max 0 0( ) max{ , }comp EE D E E D= = ∆ . 

 
Fig. 1. The dependencies of spaser’s parameters (in arbitrary units) on the amplitude of the external 
field (a) below and (b) above the pumping threshold 0.1thD = . The NP dipole moment, the TLS dipole 
moment, and the inversion are shown by solid, dashed, and dot-dashed lines, respectively. The values 
of pumping for Figs. (a) and (b) are 0 0.07btD =   and 0 0.12atD = ,  respectively. The irregular behavior 
of NP and TLS dipole moments at small fields corresponds to spaser stochastic oscillations outside the 
Arnold tongue [12]. Note, that the ratio of max 0( )E D  below and above 

threshold 12 1
max 0( ( ) / 0.8 10bt

TLS E D sµ −= ⋅  and 12 1
max 0( ) / 1.1 10at

TLS E D sµ −= ⋅ , respectively) is of the 
order of the ratio of corresponding pumping values.  

. 

 

Fig. 2. Fig. 2. The dependence of 1tan (Im / Re )spaser spaserd dφ −=  on the amplitude of the 

external field E and the detuning E∆  for above-threshold pumping. The smooth part of the 
surface corresponds to the Arnold tongue where the spaser is synchronized by the external 
field while the speckle structure at low field corresponds to the spaser’s stochastic behavior. At 
the discontinuity line, on which φ π= , loss is exactly compensated. In this and subsequent 
figures, except for the value of pumping, 0 0.12D = , the calculations are made for the 

following values of parameters: 1410a sτ −= , 1110 sστ
−= , 1310D sτ −= , and 13 110R s−Ω = . 
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The possibility of loss compensation below the threshold can be illustrated in a simple 
limiting case of a vanishing interaction between the TLS and the NP. In this case, we deal 
with an heterogeneous system in which plasmonic and gain ingredients do not interact. The 
pumping threshold depends on the coupling constant RΩ  (see Eq. (15)). For 0RΩ →  the 
threshold tends to infinity. Such a spaser cannot spase. In such a TLS-NP couple, the TLS and 
the NP are independent and play opposite roles when they interact with the external wave. 
While the TLS amplifies the wave’s field, losses in the NP weaken it. In the limit 0RΩ = , 
Eqs. (18)-(20) are reduced to: 

 ( )† 1
2 0

ˆ ˆ ˆˆ ˆ2 ( ) ,DD i D Dσ σ τ −= Ω − − −


 (21) 

 ( )1
2

ˆˆ ˆ ,Ei i Dσσ δ τ σ−= − + Ω


 (22) 

 ( )1
1ˆ ˆ .E aa i a iτ −= ∆ − − Ω



 (23) 

The stationary solution of these equations is: 
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 (26) 

The sum of imaginary parts of the TLS and NP dipoles moments, which are proportional to 
Ima  and Imσ , respectively, vanishes if 

 
( )2 22 2 1

2
0 2 2

4 /
,E TLS DNP

TLS a E a

E
D σ σσ τ δ µ τ τµ τ

µ τ τ

− −

−

+ + 
=   ∆ + 



 (27) 

 / 0.E E aσδ τ τ−∆ + <  (28) 
In this case, the contradiction with the energy shortage is resolved if we notice that the 

pumping energy should not compensate for Joule losses in the NP caused by the TLS field. 
The energy of pumping is transferred to the field by the TLS. At the same time the NP 
absorbs the field energy. If Eqs. (27) and (28) are satisfied, then the total energy transfer to 
the system is zero. Note that since the pumping threshold in this toy model ( 0RΩ = ) is 
infinity, loss compensation occurs below the pumping threshold. 

In a sense, the spaser with 0RΩ =  is similar to the system suggested in [1] in which gain 
and plasmonic media are confined to different layers of one-dimensional photonic crystal. 
Thus, there is no direct near field interaction between the media and, as a consequence, no 
spasing. The necessary condition for lasing arises when the energy delivered by pumping 
exceeds loss at plasmonic layers. 

Having 0RΩ =  is sufficient but not necessary for loss compensation below the spasing 
threshold. As it is shown in Fig. 3(b), in the case 0RΩ ≠  below the spasing threshold, there 
are frequencies for which the spaser’s dipole moment is zero and the energy is not transferred 
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to or from the system. There are also frequencies for which the imaginary part of the NP 
dipole moment is negative, so that the NP releases energy to the wave. The reason of such 
unexpected behavior is interference of energy fluxes similar to the case of the Fano resonance 
[34]. 

The analogy with the Fano resonance clearly manifests itself for low pumping ( 0 ~ 1D − ) 
when there is still no loss compensation (Fig. 3a). In this case, the spaser response to the 
external field is practically linear and we can consider the system as two coupled resonators. 
The first resonance with a low Q-factor is the SP resonance at the NP, the other is the high-Q 
resonant transition of the TLS. The response of such a system on the external force has the 
shape of the Fano curve [35] 

 ( ) ( )2/ 1 ,f qω ω= + +  (29) 

where q describes asymmetry of the line. 

 

Fig. 3. The dependencies of imaginary parts of dipole moments of the whole spaser, which has 
0.1thD = , on the frequency detuning (dot-dashed  lines) in the external field for the level of 

pumping of (a) 0 0.9D = −  and (b) 0 0.08D = . Solid and dashed lines show imaginary parts of 
dipole moments of the NP and the TLS, respectively. The imaginary part of the dipole moment 
of the NP not interacting with the TLS in the external field is shown by the double dot-dashed 
line. This dependency is very slow and looks like a horizontal line at the scale of the figure. 

In the case of the spaser with a low level of pumping, 0 ~ 1D − , at a στ τ , the frequency 
dependence of the imaginary part of the total dipole moment of the spaser can be obtained as 

 
( )

( )( )

2
0 0

22 2 2 2
0

/ /
Im .

1/
E R TLS NP a

tot

E a a R E

D D

D
σ

σ

µ µ τ τ
µ

τ τ τ

∆ +Ω +
≈

∆ − +Ω + ∆
 (30) 

Though the explicit dependence on E∆  differs from Eq. (29), it qualitatively reproduces the 
Fano curve. The asymmetry factor q is equal to 0 /R TLS NPD µ µΩ , which strongly depends on 
the interaction of the NP and the TLS with the external field. 

As one can see in Fig. 3(a), for low pumping, Im 0totµ > , so that the system is lossy for 
any frequency. At the same time, the minimum of losses is significantly lower than that for an 
isolated NP. When pumping increases, the resonant line still resembles the Fano resonance 
line but the minimum value of Im totµ  becomes negative (Fig. 3(b)), so that for a range of 
frequencies the spaser releases energy. The compensation curve, ( )0,compE E D= ∆ , also 
exists in this case (see Fig. 4). As in the case of the above-threshold spaser, this curve lies 
below some value of the electric field ( )max 0E D . The main difference between spasers in the 
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above and below threshold pumping regimes is that in the latter case, the Arnold tongue 
occupies the whole half-plane, i.e., the spaser is always synchronized. Below the threshold, 
the synchronized spaser is not a self-oscillating system but it is rather a non-linear oscillator. 
Thus, again we arrive at the contradiction of the shortage of the pumping energy [8, 36, 37]. 

This contradiction is resolved, if one notices that for the fields in which loss compensation 
exists ( ( )max 0E E D< ) the absolute values of the dipole moments of the above-threshold 
spaser is greater than that for the below-threshold spaser (see Fig. 1). As a result, below the 
pumping threshold, losses of the TLS field in the NP are smaller than that above the 
threshold. Thus, the energy of pumping is sufficient to compensate for these losses as well as 
for additional Joule losses due to the external field. If ( )max 0E E D> , the dipole moments of a 
spaser above and below the threshold are nearly the same. As a consequence, for these fields 
pumping greater than the threshold is needed for loss compensation. Therefore, ( )max 0E D  is a 
critical amplitude of the external field, for which the dipole moments of the below-threshold 
spaser become comparable with those of the free above-threshold spaser. If the external field 
exceeds ( )max 0E D , losses in the NP of the field generated by the TLS exceed the energy 
supplied by pumping and the energy of pumping below the threshold becomes insufficient for 
loss compensation. 

 

Fig. 4. The dependence of 1tan (Im / Re )spaser spaserd dφ −=  on the amplitude of the external field 

E and the frequency detuning E∆  in the below-threshold pumping, 0 0.08D = . The Arnold 
tongue occupies the whole half-plane, so that the spaser is always synchronized by the external 
field. At the discontinuity line, on which φ π= , loss is exactly compensated. 

As pumping decreases, the compensation curve monotonically shrinks toward the line 
0E =  disappearing at some level of pumping (Fig. 5). The dependence ( )max 0E D , shown in 

Fig. 6, is characterized by the new pumping threshold, compD , below which no compensation 
is possible. As shown in Fig. 7, compD  is never greater than the spasing threshold. 

Above and below the threshold, the compensation line originates from the points 0,E =  
0∆ =  and 0, 0E = ∆ > , respectively (see Fig. 8). The pumping 0 thD D=  is the smallest 

pumping at which compensation at zero frequency detuning is possible. This is the case 
considered in [8, 38]. For 0comp thD D D≤ < , compensation can only be achieved for 0∆ > . 
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Fig. 5. The dependence of 1tan (Im / Re )spaser spaserd dφ −=  on the amplitude of the external field 

E and the detuning E∆  in the below-threshold pumping, 0 0.05D = . The pumping is 
insufficient for loss compensation, so that the compensation line doesn’t exist. 

 

Fig. 6. The maximum value of the external field at which exact compensation takes place as a 
function of pumping. 

 

Fig. 7. The dependencies of compD  (solid line) and thD  (dashed line) on RΩ . 
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Fig. 8. Part of the compensation curves for small frequency detuning. Solid (red), dashed 
(blue), and dot-dashed (green) lines correspond to the pumping above (D0 = 0.12), at (D0 = Dth 
= 0.10.1), and below (D0 = 0.08) the threshold, respectively. 

4. Conclusion and discussion 

Synchronizing a spaser to an external field leads to the destruction of the spaser as a self-
oscillating system and to its transformation into an active nonlinear driven oscillator. Indeed, 
after synchronization, the qualitative differences between below- and above-threshold spasers 
disappear; the remaining differences are merely quantitative (i.e., the ratio of dipole moments 
is of the order of the ratio of pumping values). 

The threshold pumping thD  of a free spaser loses its significance. In particular, the exact 
compensation of losses by a spaser is realized over a wide range of pumping values above and 
below thD . A new pumping threshold, the threshold of compensation compD , arises. Below 
this threshold compensation is impossible at any frequency of the external field. 

Only in the absence of the external field and at zero frequency detuning, the pumping 
threshold may coincide with compD . This coincides with conclusion of [8]. 

Below the threshold, loss compensation by a spaser is only possible if the frequency of the 
external field is greater than the transition frequency for the TLS. In this connection, it is 
interesting to consider the results of [7], in which it is shown numerically that below-
threshold compensation is achieved at frequencies below the transition frequency. 
Nevertheless, if we take into account the Lorentz shift of the resonant frequency 

24 / 3Ne mω π∆   (see, e.g., [39]) appearing due to the difference between local and 
average fields (in [7], the concentration of active molecules is 18 36 10N cm−⋅ ), we obtain 

13 13 10 sω −∆ ⋅ . This is in good agreement with our conclusion that below-threshold 
compensation is possible for positive detuning only. Thus, there is no contradiction between 
the results of [7] and [8]. 

Recently, in [9, 10], it was demonstrated that in injection pumped spasers, the threshold 
current density may reach unsustainable values. On this basis, concerns of possibility of loss 
compensation spasers were raised. As we discussed in [40], for dye-based spasers pumped 
optically, which we consider in the current paper, the situation is different. For our system, 
both the pump power and the electric field strength for the pumping wave have reasonable 
values of 510 W−  and 100 V/m, respectively. 

In conclusion, when pumping is below the spasing threshold, spasers may be used for 
compensation for Joule losses over a range of frequencies once the necessary pumping 
exceeds a new compensation threshold compD , which is smaller than the spasing threshold. 
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