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Abstract: We suggest a mechanism by which a superradiant burst emerges 
from a subwavelength array of nonlinear classical emitters that are not 
initially synchronized. The emitters interact via the field of their common 
radiative response. We show that only if the distribution of initial phases is 
not uniform does a non-zero field of radiative response arise, leading to a 
superradiant burst. Although this field cannot synchronize the emitters, it 
engenders long period envelopes for their fast oscillations. Constructive 
interference in the envelopes of several emitters creates a large fluctuation 
in dipole moments that results in a superradiant pulse. The intensity of this 
pulse is proportional to the square of the number of emitters participating in 
the fluctuation. 
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1. Introduction 

Superradiance (SR) is a cooperative spontaneous radiation of photons by an array of emitters 
coupling via a common light field. Different aspects of this phenomenon are reviewed in Refs 
[1–7]. For a subwavelength array of quantum emitters, SR was predicted by Dicke [8]. The 
Dicke model assumes that identical quantum emitters interact via the common field of their 
radiative response. Once excited, the emitters form a special Dicke state [3] and after some 
delay radiate a pulse. It is commonly considered that this delay is a phenomenon that arises as 
a result of the quantum description of dynamics of the Dicke state. Immediately on excitation, 
the dipole moment of a system of N identical two-level atoms is zero [1,4]. During the 
radiation process, the dipole moment amplitude increases. When it reaches its maximum 
value, the superradiant burst appears. The duration of the SR burst is smaller than the 
radiation time of a single emitter by a factor of 1/N. The intensity of the radiation is 
proportional to 2N  and the delay time 0 ~ log /t N N . The Dicke approach only considers the 

dynamics of the population inversion of quantum emitters without discussing their phases. 
The intensity of SR radiation is defined as the time derivative of the total inversion. This is 
correct only if all emitters have the same phase. The formal Dicke approach does not allow 
one to elucidate the physical mechanism of the emitter synchronization. 

Recently [9,10], an unusual realization of the Dicke SR has been theoretically 
demonstrated for a pulse-excited complex spaser, in which an ensemble of quantum emitters 
is placed near a metal nanoparticle. In this case, the plasmon excitation takes place instead of 
radiation of photons. The SR manifests itself in a quick, comparing to the usual rate of 
plasmon excitation, burst of plasmons. For the phenomenon to occur, all emitters must 
initially be in the excited state. In the other words, to exhibit SR, the system must be in the 
Dicke state 

Experimentally creating a Dicke state is not easy. There are only few quantum systems in 
which one can correlate all atoms in the initial moment. One of them is the Bose-Einstein 
condensate. It can be created by cooling atoms in a quadruple trap [11,12]. The condensate is 
described by a common wave function, and even though it differs from a system of two-level 
atoms, a phenomenon similar to SR has been observed [13–20]. Important systems in which 
SR has been observed experimentally are semiconductor structures. In Refs [6,7,21]. it was 
shown that in GaAs/AlGaAs heterostructures, the exciton condensate of e-h pairs can be used 
to form the Dicke state. If the carrier density reaches the critical value, the condensed e-h state 
may be formed in the time interval sufficient for an SR burst. It has also been shown that such 
an SR generation is possible for room temperature. 

In these experiments, however, SR has a more complicated multiple peak structure in 
contrast to the single peak predicted by Dicke. A correlated quantum state can also be realized 
in a system of superconducting qubits. It was shown that in a system of two superconducting 
qubits an intensity increase and a delay time of the pulse occur [22]. 

A phenomenon similar to SR has been demonstrated in a system of organic molecules, J-
aggregates [23] and H-aggregates [24]. In these systems, initially correlated states do not 
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seem exist. Nevertheless, a delayed radiation peak has been observed. This is not a single 
peak, however, and its intensity is not proportional to 2N . 

In large-scale systems with sizes greatly exceeding the optical wavelength, at least in one 
dimension, phenomena similar to SR have also been observed experimentally [3,25,26]. The 
results of these experiments are not unambiguous because, in such systems, a significant 
contribution to radiation may arise from waves originated at one end and then radiated at the 
other [3,27]. Thus, it is hard to separate the contributions of SR and stimulated emission 
[3,25,26]. 

At the same time, a number of theoretical considerations have focused on increasing the 
accuracy of the description of a quantum system [3,28,29]. For example, an approach based 
on the density matrix formalism [3,28,30] makes obtained results more rigorous but does not 
reveal their physics. In any case, it has been commonly recognized that for SR to occur the 
quantum emitters need to be in the Dicke state. Much attention has also been paid to the 
mechanism of emitter synchronization or the formation of the Dicke state. This can be 
achieved by forming a Bose-Einstein condensate of emitters [31–34]. Another actively 
explored way for achieving the Dicke state is by a so-called Dicke–Hepp–Lieb superradiant 
phase transition of a two-level system in an external electromagnetic field at finite 
temperature [35–39]. Interesting theoretical studies have been conducted on the excitation by 
a single photon of N being in the the Dicke state [40,41]. The radiation rate of such a system 
increases by the factor of N with no delay time [42,43]. 

A system in which synchronization of emitters can be achieved straightforwardly is a 
nonlinear auto-oscillating system with continuous excitation. Emitters in such a system can be 
synchronized by an external driving force. In this case, all auto-oscillations have the phase 
and frequency of this force [44–46]. In Refs [44–46], the field of the response radiation of a 
collection of auto-oscillating systems (spasers) has been considered as a synchronizing factor. 
The radiation intensity has been predicted to be proportional to the square of the number of 
emitters. However, since the synchronized auto-oscillating process is stationary, it cannot give 
rise to an SR pulse. 

An SR phenomenon is also known for classical systems. According to the antenna theory 
[47, 48], a subwavelength system of N classical emitters oscillating in phase loses energy N 
times faster than a single oscillator. Therefore, when emitters are in the “classical” Dicke 
state, the intensity of the radiation peak increases by a factor of 2N  similar to a quantum 
system [49–51]. SR in a system of classical nonlinear oscillators synchronized by an external 
force has been demonstrated numerically [52]. 

An extensive study of SR in classical systems was carried out by Vainshtein and Kleev 
[51]. In this study, similar to quantum emitters, an ensemble of classical nonlinear emitters 
interacting via their common radiation field was shown to radiate an SR pulse [51,53]. The 
Vainshtein-Kleev model assumes that initially excited classical emitters, which are not 
pumped further, have a random distribution of phases. Computer simulation [51] showed that 
classical linear emitters do not become superradiant, while in the case of cubic nonlinearity 
one pulse or a sequence of pulses may arise depending on the initial phase distribution 
realization. The linear analysis [53] shows that an initial state with randomly distributed 
phases of emitters is unstable. In Ref [53]. the instability was interpreted as emitter phasing. 
This is similar to quantum oscillators, for which the response to a self-consistent field is 
always nonlinear [2,5,54]. Again, the main question is how excited emitters initially having 
different phases evolve into the Dicke state and produce in-phase oscillations. 

In this paper, we demonstrate that an initial Dicke state is not necessary for SR in classical 
systems and suggest a mechanism for the emergence of an SR pulse in an ensemble of 
classical nonlinear dipole emitters. Following Dicke [8] and Vainshtein-Kleev [51], we 
assume that each dipole is in the total field of the radiative response of the whole system. This 
field is produced by all dipoles and depends on their phase distribution. We show that this 
field may arise only due to a fluctuation in the dipole phase distribution that is initially 
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uniform. This field causes a modulation of the fast oscillations of dipoles with a periodic 
envelope. The frequency of the envelope is determined by the initial phase of the dipole 
oscillation. This frequency is much smaller than the frequency of the dipole oscillation. SR 
arises due to constructive interference in long-period envelopes of fast oscillations which 
causes an increase in the amplitude of the oscillation of the total dipole moment of the system. 
The lifetime of the large amplitude oscillations is of the order of the envelope period which is 
much greater than the period of fast oscillations. 

2. Dynamics of interacting classical nonlinear dipoles 

To begin, we briefly discuss the results obtained in Ref [51]. We consider a system of 
oscillating dipoles placed in a subwavelength volume 3V λ<< . We assume that the energy of 
dipoles oscillating with the frequency ω  is much greater than ω , so that the classical theory 
is applicable. We use the model suggested in Refs [51, 53]. to describe the dynamics of these 
oscillators. 

The field of the each oscillator can be expressed via the Hertz vector [55,56]: 

 
1

,
r

t
r c

 = − − 
 

dΠ  (1) 

where d is the dipole moment of an oscillator and r is the distance from the oscillator to the 
observation point. The Fourier component of the vector Π  has the form 

 0exp( )
,

ik r

r
ω

ω = −
d

Π  (2) 

where 0 /k cω= . Since we are interested in the field at small distances, 0 1k r << , we expand 

ωΠ  into a series 

 ( )2 2 3 3
0 0 01 / 2 / 6 ... / .ik r k r ik r rω ω= − + − − +Π d  (3) 

Assuming that all dipoles are directed along the z-axis we find the z-component of the electric 
field: 

 
2 2 2 32 2

2 0 0
5 3

( ) 23
... .

32
z z z k r z ikz r

E k d
r rω ω ω ω

 +−= − Π − ΔΠ = + + + 
 

 (4) 

Since d ez=  is the dipole moment of a charge oscillating along the z-axis and /n n n ni z c t∂ ∂  

can substitute for 0
nzk , we obtain 

 
2 2 2 3

2 2 32 3

1 3cos 1 cos 2

3

( )
,

2

( )
z

z z
E e

cr c r t

t

t

t

c

α α − + ∂ ∂= − + +… ∂ ∂ 
 (5) 

where z(t) is an instantaneous position of the oscillator (dipole) and α is the angle between r 
and the z-axis [55,56]. Since the oscillators are confined in a subwavelength volume, the 
retardation effects can be neglected. We omit, therefore, the terms with derivatives higher 
than 3 3/z t∂ ∂  in Eq. (5). In this equation, the first term corresponds to the quasistatic 
Coulomb field and the second term, proportional to 1/r, describes the induction field. These 
fields suppress SR [5]. Since our goal is revealing the SR mechanism, we eliminate all effects 
masking SR. For this purpose, we consider and idealized system in which emitters are 
positioned either in a circle [3] or form an ideal cubic lattice. Of course, it is difficult to 
realize a system of either of these symmetries in experiment. However, for these symmetries, 
the fields associated with the first and second terms in the right-hand side of Eq. (5) turn to 
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zero, eliminating effects that affect SR. Considering systems of more realistic symmetry 
makes the effect weaker and calculations much more cumbersome. The third term, 

 
3

3 3

2
) ,

(
(

3

)
z

e z
E

t

t

c
t

∂=
∂

 (6) 

expresses the field of the radiative response. Due to its active nature, it is in an anti-phase with 
the dipole current. SR cannot be observed for a system of linear dipoles [51]. The simplest 
way to take nonlinearity into account is by adding a cubic term into the equation of motion. A 
physical reason for a dipole nonlinear response on an external perturbation could be either a 
finite number of excitation levels or electron radiation due to its motion in a magnetic field. 
The equation of motion of the nonlinear oscillator due to field (6) has the form 

 
2 3

2 3
2 3

,k e

z z
z z t

t t
ω μ∂ ∂+ + =

∂ ∂
 (7) 

where 2 3 24
0(2 ) / (3 ) (2 ) / 3 6.27 10et e mc r sc −= = = ⋅ , and 2 2 13

0 2. 2 10/ 8r e mc cm−= = ⋅  is the 

classical radius of an electron. Using the smallness of te to estimate 3 3/z t∂ ∂  we can reduce 

the right-hand side in Eq. (7) to 3 3 2/ /z t z tω∂ ∂ ≈ − ∂ ∂ . This can be done when 1
et ω−<< . 

Since 2310~et s− , this condition is fulfilled for both radio and optical dipole frequencies. We 

assume that the parameter of nonlinearity, μ , is small, so that 2 2zω μ>> , where z  is a 

characteristic dipole amplitude (e.g., its initial value). Then, Eq. (7) takes the form 

 
2

2
2

23 .k e

z z
z z t

tt
μ ωω −∂ ∂+ + =

∂∂
 (8) 

For one dipole, the field of the radiative response is defined by Eq. (6). For / 1r cω >> , 
field (6) does not depend on a distance and for N dipoles we have 

 ( )
3

3 1
3

1

2 / 3 ,    .
N

z n
n

z
E e c N z N z

t
−

=

∂= =
∂    

Then for an ensemble of N nonlinear dipoles we obtain a system of equations 

 
2

2 3
2

,k
k k

z z
z z N

tt
ω μ ν∂ ∂+ + = −

∂∂
 (9) 

where 2 2 32 / 3e mcν ω= . 
Now, instead of real quantities zk we introduce complex dimensionless variables, 

envelopes ck: 

 ( ) ( ) ( )0 00*( ) ( ) / 2 (Re ) i t
k k

i t i t
k kt c t e c t e a tz a c e ωω ω− −= + =  (10) 

In Eq. (11), a is the initial amplitude of oscillations, (0)ka z= , which is the same for all k. 

As mentioned above, this amplitude is constrained by the inequality 2 2aμ ω<< . Now the 

dynamics of each dipole is defined by the quantity ( )( ) ( ) exp ( )k k kc t c t i tϕ= , where 

( )( ) arg ( )k kt c tϕ = . 

Due to the nonlinear character of Eq. (10), by using Eq. (11) we introduce two variables 
( )kc t  and ( )k tϕ  (or Re kc  and Im kc ) instead of one real variable ( )kz t . By solving Eq. 

(10) one cannot find both functions. It is only possible for a linear equation with constant 
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coefficients when ( ) constk tϕ = . To eliminate the arisen ambiguity, we should impose an 

additional condition. A convenient choice of such a condition is (for details see Refs [57].): 

 0 0

*

0.i t i tk kc c
e e

t t
ω ω−∂ ∂

+ =
∂ ∂

 (11) 

This additional condition gives us the second equation to determine both unknown functions 
( )kc t  and ( )k tϕ . Moreover, the choice of this condition in form (12) allows one to eliminate 

terms containing second derivatives from Eq. (10) after substitution (11) is performed. Indeed, 
differentiating Eq. (11) we obtain 

 ( )0 0 0 00
*

*( ) ( ) ( )
( ) ( ) .

2 2
i t i t i t i tk k k

k k

z t a c t c ta
c t e c t e e e

t t

i

t
ω ω ω ωω − − ∂ ∂ ∂

− + + ∂
−

∂
= ∂ 

  

Thanks to condition (12), the last term vanishes from this equation. Therefore, ( ) /k t tz∂ ∂  

does not have terms proportional to ( ) /kc t t∂ ∂  and 22 ( ) /k t tz∂ ∂  does not contain terms 

proportional to 2 2( ) /kc t t∂ ∂ . By using Eqs. (11) and (12) one can reduce Eq. (10) to 

 

0 0 0 0

0

2
2 2 2 42 2 2 2 * 3 2 * *2 *3

0 0 0

2*
0 0

1 1
( ) ( ) ( 3 3 3 )

2 2 8

( ).
2

i t i t i t i t
k k k k k k k k k

i t
k k

k

a
i c c c e c e c c c c e c e

i c i c e

ω ω ω ω

ω

μω ω ω ω ω

ν ω ω

−− + − + − + + + +

= − − +



 Then, by averaging this equation over the period of fast oscillations, 02 /T π ω= , and 

assuming 2 2 2 2
0 3 / 8aω ω μ= −  we obtain one equations for a complex unknown or two 

equations for two real unknowns: 

 ( )2

0

1
,

2
1k k

kc
c c

t
i c Nχ νω∂

−+ = −
∂

 (12) 

where 2 2
03 8aχ μ ω=  is the coefficient of non-isochronism [53]. By using dimensionless 

parameters, 

 ( ) ( )0/ / 2,   2 / ,  2 / ,N Nt N t N Nτ τ ν τ ν θ χω ν= = = =  (13) 

for slowly varying amplitudes, Eqs. (13) can be simplified 

 ( )2
1 ,k

k k

dc
i c c c

d
θ

τ
+ − = −  (14) 

where the parameter θ may be either positive or negative. Equation (15) with θ = 0 describes 
linear oscillators. Since we assume that in the initial moment of time (0) 1kc =  for all 

emitters, their dynamics is defined by initial phases, ( ) ( )0 ~ exp (0)k kc iϕ . So far, the 

frequency 0ω  is arbitrary; its value is determined later from convenience considerations. Note 

that all phase detunings are included into the complex amplitude. Fast oscillations that fill the 
envelope are in phase. 

When choosing 0ω  as 2 2 2 2
0 3 / 8aω ω μ= − , in the initial moment of time, in which 

2
(0) 1kc = , Eq. (15) becomes linear. This allows us to develop a mean field theory (see Sec. 

3). 
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In Ref [51], for computer simulations of Eq. (15), the initial phase of each emitter has 
randomly been chosen from the interval [ ]0, 2π  employing uniform probability distribution. 

The obtained results qualitatively agree with the Dicke model. This solution shows one or 
more delayed SR pulses. Тhe number of pulses, their intensity, and the delay times depend on 
a particular realization of initial dipole phases. To elucidate the mechanism of SR and the 
random character of peaks, we conduct additional studies. The results of our computer 

simulations for dependencies of the average intensity, 
2

kc , and the average energy, 

2

kc , on time qualitatively agree with that of Ref [51]. and are shown in Fig. 1. 

 

Fig. 1. The average intensity, 
2

kc , (the solid red line) and the average energy, 
2

kc , 

(the dashed blue line) as functions of time τ calculated for the random distribution of initial 
phases. The value of θ = 10 and the number of dipoles N = 250 are the same as in Ref [51]. The 

delay time of the superradiant burst is 0 1.9τ ≈ . 

The dependencies shown in Fig. 1 are in qualitative agreement with the usual picture of 
the Dicke SR in which the first large peak of the intensity has the duration of ~ 1s N Nτ τ , and 

its delay time is 0 ~ log Nτ  (see Fig. 2). Note that the dimensional delay time has the same 

dependency on the number of emitters as in the Dicke model, 0 0 ~ log /Nt N Nτ τ= . 

 

Fig. 2. The dependence of the delay time 0 0 / Ntτ τ= on the number of dipoles for the 

random initial phase distribution in the interval [–π, π]. The approximation line 
0

log Nτα  

with 
0

0.5τα ≈  is shown in red. 

Even though our computer simulation predicts an existence of an SR pulse and a delay 
time, it differs from the intensity dependencies on N  predicted by Dicke. In the Dicke model, 
the intensity of the SR peak is proportional to N2, while our numerical calculations do not 
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show a power dependence of the intensity on the number of emitters (see Fig. 3). Moreover, 
we obtain that a realization of the SR burst depends on a particular phase distribution at the 
initial time. In contrast to the Dicke model, we can observe one burst or a set of bursts. 
Furthermore, for the regular uniform distribution of initial phases, the burst does not arise at 
all. 

 

Fig. 3. The dependence of the peak intensity of radiation on the number of dipoles for the 
random distribution of initial phases in the interval [–π, π]. 

To clarify the cause of the discrepancies between the quantum Dicke model and the 
classical model, we simplify the model of Ref [51]. by using the mean field (MF) 
approximation. This allows us to reveal the mechanism of the SR burst. 

3. Fluctuation theory of classical superradiance 

The average value of the dipole 1

1

N

k
k

c N c−

=

=  , in the right-hand side of Eq. (15), determines 

the MF affecting all dipoles. For the random distribution of initial phases of dipoles, one can 
expect that 0c = . However, since we deal with a finite number of dipoles, N, the average 

dipole moment is never zero. Thus, dipoles are always in a nonzero MF. If we choose the 
regular uniform distribution of initial phases, then 0c =  and an SR pulse does not arise. 

Therefore, a fluctuation of the initial phase distribution, which creates 0c ≠ , is necessary 

for SR. 
Initially, while an SR pulse is not developed, the radiation intensity is proportional to the 

number of particles N , with ~ 1/c N , and the radiation time is the same as that of a 

single dipole. All the quantities can be considered constant at the timescale 0τ τ<<  that we 

are interested in. During the SR pulse, the characteristic time of change of all quantities 
including the MF, c , decreases by the factor of N . During this short interval of time, a 

number NΔ  of dipoles participating in the SR burst loses their energy, and their contributions 

to the MF, c , vanish. Nonetheless, we begin with considering a simplified MF model in 

which c  does not change. Later, we check the obtained results by using a full description in 

which c  evolves with time. 

After c  is replaced by a constant, c E= , the emitters become independent, and the 

dynamics of each of them is described by the equation 

 ( )2
1 ,

dc
i c c E

d
θ

τ
+ − = −  (15) 
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where E is a complex-valued constant corresponding to the value of the MF. This constant is 

equal to the average initial values of amplitudes (0)kc : 1

1
(0)

N

kk
NE c−

=
=   with (0) ~ ki

kc e ϕ . 

The constant E depends on the total number of emitters. In our computer simulations we use 
250N = . 

Since we are interested in the physics of the formation of an SR peak, we investigate the 
dynamics of the systems for the timescale 0τ τ<  during which the emitters are not yet in 

phase. For this timescale, 1

1
( ) ( ) 1/ (0)

N

kk
E N EN cτ τ−

=
≈ ≈=   and, therefore, the MF 

approximation in the form of Eq. (16) is applicable. As the comparison with numerical 
simulations shows, this model can be used for a description of the mechanism of the emitter 
phasing. Of course, the MF theory that we develop breaks down when emitters begin to phase 
and an SR burst arises. 

The description of the system by the MF model is qualitatively correct. If the initial 
distribution of phases is uniform, the exact model [51] predicts 0E =  and no SR. In the MF 
model, if we set 0E = , we also obtain that there is no SR. On the other hand, for 0E ≠  
even for the uniform distribution of initial phases, an SR pulse is observed (see Fig. 4). 

 

Fig. 4. The intensity of radiation of the system of non-interacting dipoles (the MF model) with 
0.1 0E = ≠  and the uniform distribution of initial phases. The delay time of the SR burst is 

0 0.4τ ≈ . 

However, the intensity of SR radiation is not proportional to N2. The reason for this is that 
only a fraction of all emitters participates in SR (see Fig. 5). In the MF model, for the regular 
uniform distribution of initial phases, there are neither fluctuations in the phase distribution 
nor interactions between emitters. The SR burst arises because there are emitters with 
characteristic initial phases that form an SR pulse. These characteristic phases are properties 
of a single independent emitter only. Therefore, to understand the origin of SR, we have to 
investigate how the dynamics of a single emitter depends on its initial phase. 
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Fig. 5. The dynamics of phase oscillations of the envelopes for non-interacting dipoles (the MF 

model) with 0.1E = . Dotted lines show trajectories of aφ
 and rφ . The delay time of the 

SR burst is 0 0.4τ ≈ . The trajectories of dipole phases participating in the fluctuation 

forming SA are shown by blue solid lines. 

The dynamics of each dipole varies due to differences in dipole initial conditions. These 
differences and nonlinearity result not only in a simple phase shift but in a more complicated 
behavior. Indeed, Eq. (10) is the Duffing equation whose solution may be high frequency 
oscillations modulated by a low-frequency envelope [57]. In this case, Eq. (16) describing the 
envelope evolution has a periodic solution with a period determined by initial conditions. This 
is illustrated in Fig. 6 which shows that periods of oscillations of dipoles depend on initial 
phases. 

 

Fig. 6. Dependencies of periods of dipole oscillations on time. All dipoles have the same initial 
amplitude but different phases: Arg(c) = 0 (the red line), Arg(c) = π/10 (the blue line), and 

Arg(c) = π/5 (the green line). The dipoles are at the same MF, 0.1E = , / Ntτ τ= . 

Here we note that, as one can see from Fig. 5, the characteristic time of the SR burst is 

0 0.5τ ≈ . At the same time, the characteristic period of slow oscillation envelopes is 5≈  (see 

Fig. 6). This means that during the SR burst, phases of emitters with different initial phases 
change weakly. Therefore, only a fraction of emitters, which phases get coordinated, 
participates in the SR burst. As we show below [see Eq. (18)], only emitters which phases 
belong to a characteristic interval φΔ  participate in SR. 

To investigate an effect of the distribution of initial dipole phases on SR, we represent 
amplitudes of envelopes and the field as ( )( ) ( ) exp ( )i i ic с iτ τ ϕ τ=  and 0 exp( )E E iψ= , 

respectively. Now, Eq. (16) can be reduced to the equation for the phase dynamics: 

 ( ) 0

2
( 1 sin( ) ( .) / )i

ii i

d
с E

d
сτϕ θ ψ τϕ

τ
+ − = −  (16) 
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At some values of (0)iϕ , the phase derivative in Eq. (17) turns to zero. Since all 
2

1(0)iс = , 

to find these values of ( )0iϕ  we have to solve the equation 0 sin 0iE φ =  with i iφ ϕ ψ= − . 

Near the solution of this equation, 0iφ = , at 0τ = , the time derivatives of iφ  are negative for 

0iφ <  and positive for 0iφ > . Thus, the trajectories ( )iφ τ  diverge from the point 0iφ = . 

Near another solution, 2 , 0, 1,...i n nφ π π= + = ± , the situation is opposite so that the 

trajectories converge towards iφ π= . The dependencies of /i τφ∂ ∂  on the initial phase 0φ  

and iφ  on time shown in Fig. 7 illustrate our arguments. 

 

Fig. 7. (a) The dependence of the rate of change of iφ on the initial phase 0φ  and (b) the phase 

dynamics for small times. 

Thus, the initial distribution of dipole phases determines the phase ψ  of the MF, which in 

turn, determines positions of attraction and repulsion points, 2 , 0, 1,...a n nϕ ψ π π= + + = ±  

and rϕ ψ= , in the initial moment of time, 0τ =  (see Fig. 7). These results allows us to 

evaluate the size of fluctuation forming an SR burst as i a rφ φ φ πΔ ≈ − = . 

Now, let us model the exact system. The results of computer simulations for the time 
dependence of the phase shown in Fig. 8 demonstrate the presence of attraction and repulsion 
points corresponding to different values of the initial phase. The phases of envelopes of the 
dipole oscillations originating near the attraction point draw close forming a “time speckle” 
near 0.4aφ π≈ . At this moment, constructive interference in these envelopes occurs. 

Moreover, high-frequency oscillations interfere constructively as well because, as noted 
above, all fast oscillations are in phase. 

 

Fig. 8. The dynamics of phase oscillations of the envelopes for the exact model, 
0 (0) 0.9r rϕ ϕ ψ π≡ = ≈

, 
0 (0) 0.1a aϕ ϕ ψ π π≡ = − ≈ −

. Dotted line are trajectories 

of aϕ
 and rϕ

 which are terminated at the points 0.4aϕ π≈  and 1.1rϕ π≈  at the 

moment of time 0 1.9τ ≈  at which the SR burst occurs. 
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The existence of condensation points in the initial moment 0τ =  does not guarantee their 
presence for 0τ > . However, computer simulation shows that these points do exist in later 
times. In Fig. 8, the dynamics of repulsion, rϕ , and attarction, aϕ , points is shown. As 

discussed above, in the initial moment of time, 0 (0)r rϕ ϕ ψ≡ =  and 0 (0)a aϕ ϕ ψ π≡ = − . 

Then, these points change their positions. For an SR pulse to arise, the existence of the 
repulsion and attraction points is essential while their positions is not important. 

A comparison of Figs. 1 and 8 shows that the phase condensations and SR peaks occur at 

the same time, 0 1.9τ ≈ . This leads to the conclusion that SR pulses arise due to the 

constructive interference in the envelopes ( )ic τ  of dipoles which initial phases belong to the 

interval ϕ φΔ = Δ . The lifetime of the phase fluctuation is of the order of the period of 

envelope oscillations, envτ , which is much greater than the main period of dipole oscillations. 
In Fig. 6, ~ 5envτ  while the period of dipole oscillations is ( ) 3~ 1/ 10d Nτ ωτ −≈ . During envτ , 

emitters have enough time to superradiate and to lose their energy. We emphasize that not all 
dipoles take part in the SR pulse shown in Fig. 5. Obviously, the phenomenon is more 
pronounced if the number of dipoles with initial phases in the interval φΔ  increases. 

Let us estimate the size of the fluctuation forming an SR peak. During the time 0τ , when 
this peak is formed, the phases of a maximum number of dipoles must converge. Since 

~ 1iA , then from Eq. (17) one can obtain an estimate for an “optimal” size of the initial phase 

fluctuation 

 0 0~ .Eφ τΔ  (17) 

For a greater value of ϕΔ , phases do not have enough time to converge. For smaller ϕΔ , the 

number of dipoles taking part in the SR decreases. Fluctuations much smaller than the optimal 
one do not affect the system dynamics because the energy that they radiate is small and the 
time of radiation is much longer than the lifetime of the SR fluctuation. The numerical 

calculations show that the intensity of the radiation, 
2

ii
I c=  , depends quadratically on the 

number of dipoles participating in the SR fluctuation (see Fig. 9). 
Let us now estimate the delay time of the first SR peak. In both Dicke [8] and Vainshtein-

Kleev [51] models, the dimensionless delay, 0τ , is proportional to log N . In the MF model 

described here, the delay time weakly depends on the number of dipoles forming the SR 
fluctuation. As a result, the delay time does not depend on the number of dipoles in the 
system. However, one needs to take into account that in, our model, the MF depends on the 
number of dipoles in the system. The numerical experiment shows (Fig. 10) that the delay 

time depends on the MF as ( )0 0~ , 0.5E
ατ α− ≈ . Thus, the greater the MF is, the faster 

emitters are phased. Assuming that ( ) 1/2

0 ~E N
−

 we obtain ( ) / 2 0.25
0 ~ ~N N

ατ −
. This 

dependence is close to logarithmic. 
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Fig. 9 . The dependence of the oscillation intensity on the squared number of dipoles forming 
the SR fluctuation in (a) the MF model and (b) the exact model. 

 

Fig. 10. The dependence of the delay time 0τ  on the MF 0E . 

In summary, the MF model shows that there is an “optimal” number of dipoles 
participating in forming an SR peak. Initially, the phases of these dipoles are spread in the 
interval defined by Eq. (18). As a result, the time delay of the SR peak does not depend on the 
total number of dipoles. In the exact model, this dependence is weak (logarithmic) which may 
be related to the probability of forming the optimal fluctuation. 

Thus, the MF model reflects the main feature the exact model. If the initial phase 
distribution is uniform, then the field of the radiative response is zero, and there is no SR. 
However, if there is a fluctuation in the initial phase distribution, then the field of the radiative 
response is nonzero leading to oscillating envelopes and their constructive inference forming 
an SR burst. 

It is expected that there should be an optimal size ϕΔ  of the fluctuation that leads to the 

maximum intensity in the SR burst. The MF model predicts ϕ πΔ = . To evaluate the real size 

of the fluctuation, we study the system with the uniform distribution of the initial phases 
which is disturbed by an artificially made fluctuation. We start with 1N  dipoles with the 

uniform phase distribution in the interval from 0 to 2π . To this set we add 2N  dipoles which 

phases are uniformly distributed in a smaller interval Δ . Note that this fluctuation forms the 
attraction point aϕ . Now, we check how the parameters Δ  and 2N  affect the SR peak. The 

value of ψ  should be inside the interval Δ . 

We vary parameter Δ  keeping the fluctuation size as 2 1/ 0.1N N = . The results of 

numerical simulations are shown in Fig. 11 confirm that that there is an optimum width Δ  at 
which the SR effect is the most pronounced. 

From Fig. 6, one can expect that constructive interference of all emitters occurs after the 
time interval much greater than the oscillation period of ( )c t . However, since only emitters 

that belong to the interval Δ , which is a small fraction of all emitters, interfere constructively, 
the delay time of an SR burst is much smaller than this period. Moreover, there exists an 
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optimal fluctuation that gives an SR burst of the maximum intensity. As one can see from Fig. 
11, an increase of Δ  does not lead to an increase in the intensity. 

 

Fig. 11. The intensity of the first SR peak as a function of the width, Δ , of the fluctuation. 

4. Conclusions 

The suggested mechanism for the formation of an SR burst is based on the possibility of a 
fluctuation in the distribution of initial phases of dipoles. If phases of nonlinear dipoles are 
distributed uniformly in the interval ( , )π π− , i.e. the number of dipoles ( )dN ϕ  having the 

phase ϕ  in the interval dϕ  is / 2Ndϕ π , then SR does not occur. If there is a finite interval 

of phases ( )1 1,ϕ ϕ  in which the number of dipoles 
1 2

Nϕ ϕ  is greater than ( )2 1 / 2N ϕ ϕ π− , then 

over the time 
1 20 ~ lnt Nϕ ϕ , an SR peak with the intensity 

1 2

2~ Nϕ ϕ  will arise. In particular, this 

explains the SR peak in a system of dipoles with a random distribution of initial phases. Thus, 
the SR observed earlier in numerical experiments on the dynamics of a subwavelength array 
of classical nonlinear dipoles [51] is a purely classical phenomenon. It is not necessary to 
assume that emitters are identical. In our study, we assume that all dipoles have the same 
frequencies and coupling constants but we do not assume that they have the same phases. In 
contrast to quantum mechanical results, in classical physics, the evolution of each emitter, its 
phase and amplitude change, can be traced. Note that for linear oscillators the proposed 
mechanism would not work because the dipole phase depends linearly on an external force. If 
a phase fluctuation arises, its lifetime would be of the same order as the period of fast 
oscillations of an emitter. This cannot result in noticeable radiation of the field. 

It is worth emphasizing that in Ref [53]. the validity of the MF approximation was 
questioned because the linear approximation cannot be applied to large amplitudes. The linear 
analysis only allows one to predict an exponential instability of the unperturbed solution. To 
elucidate the mechanism of phasing, nonlinear terms have to be taken into account. For this 
purpose, in our study, the MF approximation is applied without the linearization of the 
equations of oscillations. 

Thus, SR arises as a result of the low-frequency modulation of oscillations of a nonlinear 
dipole acted upon by the field of its neighbors. The frequency of the modulation depends on 
both the initial phases of the oscillator and the near-field of radiation. The SR peak is the 
result of the constructive interference in slow envelopes of the dipole oscillations. SR arises 
when dipole phases coincide. The duration of the SR burst is determined by the frequency of 
the envelopes of the fast dipole oscillations. 
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