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Generalized renormalization scheme in the Ginzburg-Landau-Wilson model
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For the n-vector model of the general type a renormalization-group (RG) scheme in momentum space
is developed. Using this scheme we obtain a generalized exact equation of the renormalization group.
The main idea of this approach is not to allow the zero-order critical Hamiltonian to move away from
the critical surface under the influence of the RG transformation. The equation found differs from the
known ones in that all redundant operators are excluded. On the basis of the developed approach we ar-
gue that critical exponents are functionals of some function introducing the cutoff into the phase-

transition theory.
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I. INTRODUCTION

The renormalization group (RG) has proved to be the
most useful technique for the theoretical investigation of
the condensed state in the critical region (for review see,
e.g., Refs. [1-4]). The theory not only elucidated the
essence of the phenomenon, but also allowed one to cal-
culate critical asymptotics; the accuracy of these calcula-
tions is in some cases higher than that of experiments
[5-8]. The explanation of some obscure effects, as well as
the prediction of a number of phenomena later
discovered experimentally (see, e.g., Ref. [9]), is another
important merit of the theory.

Basically there are two distinct kinds of approaches in
the momentum-space RG theory: (i) the approaches that
use different types of perturbation theory [10-14], and (ii)
the approximation schemes [15-18] that exploit the exact
RG equation obtained by Wilson and Kogut [19] (see also
Refs. [20,21]). These approaches, as well as ones based
on a perturbation theory, have led to very good values of
critical exponents [22]. Another important advantage of
using exact RG equations is that they may be useful for a
foundation of perturbation methods used in RG theory.

In this paper we obtain a generalized exact RG equa-
tion. This equation contains an arbitrary function which
can be used to simplify the initial Ginzburg-Landau-
Wilson functional, eliminate redundant operators, and in-
troduce a small parameter for the equation. The ob-
tained equation can serve as a basis for constructing new
approximation schemes in the theory of critical phenom-
ena. One of these schemes, using the exponent 7 as a
small parameter, was developed by authors in Ref. [23].

II. GENERAL RELATIONS

The Wilson functional RG equation for the Landau-
type Hamiltonians H can be schematically written as [19]

dH

a —RiH},

(2.1
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where R stands for some nonlinear operator performing
RG transformations. The Hamiltonian H at the critical
point of a phase transition is determined by

ﬁ{H‘}:O ’ (2.2)

and is called a fixed-point Hamiltonian. This term, how-
ever, has a much wider meaning because not every fixed-
point Hamiltonian describes critical behavior. We will
use the term critical Hamiltonian, which is more restric-
tive. Every critical Hamiltonian belongs to the set of
fixed-point Hamiltonians, but the converse is not true.
We may move from the critical point by choosing
H=H*+AH using two distinct ways. If AH has
nonzero projection on the relevant direction [21], the
transformation (2.1) will lead away from the critical point
with increasing /. In the other case AH will eventually
tend to zero. In the latter case a subset of Hamiltonians
is introduced which, after undergoing an RG transforma-
tion, will turn into critical ones. Traditionally, this sub-
set is called the critical surface. The term should be inter-
preted as a surface in the space defined by all the parame-
ters needed to close an RG transformation. For instance,
the most general Ginzburg-Landau-Wilson functional for
a translationally invariant isotropic system is
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and the vertices g,(q,qg; - - - ;9,9 ), Which are invari-
ant with respect to permutations among pairs of momen-
ta (q;,q;) and (qj,qj—.) and elements within pairs, are the
requisite space defining parameters. In Eq. (2.3) ¢ is an
n-component vector,
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and Vis the volume of the d-dimensional system.

By considering a small deviation from the fixed-point
Hamiltonian one can distinguish different subsets in the
Hamiltonian space defined by Eq. (2.3). Equation (2.1)
gives for a linear deviation

OAH
ol

where L is formally defined as the operator 8R {H } /8H
taken at the point H =H*. The solution of Eq. (2.4) can
be obtamed with the help of the eigenvectors O, of the
operator L

=3 ueo;
A

=L AH , (2.4)

2.5)

where A are the eigenvalues for the eigenvectors O,, and
uy, are the expansion coefficients called the scaling fields
[24].

Depending on the sign of A the eigenvectors are
classified as relevant (A >0), irrelevant (A <0), and mar-
ginal (A=0). The relevant direction mentioned above is
defined (for critical behavior) by the only eigenvector
having positive A. Unfortunately, conventional
definitions of a particular RG transformation allow the
appearance in Eq. (2.5) of more than one eigenvector hav-
ing A >0. Only the one defining the critical exponent v is
physically meaningful, the others should be treated as
redundant with no physical meaning. Wegner [21] sug-
gested some criteria to distinguish the physical operators.
According to Wegner, those operators whose eigenvalues
are dependent on a particular choice of the RG transfor-
mation should be treated as redundant. These operators
must be excluded from the RG procedure with the help
of some additional conditions. In this paper we show
that there is a formulation of the exact RG equation
which leaves no room for additional conditions and,
therefore, it should not contain redundant operators.

Let us assume that d > 4. Then any of the Hamiltoni-
ans

(2.6)

'=7fG $(q)l?,

with the propagator G, defined by

—1/2 [ Gg(q,A)|dlQ)?
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where

Zy= [Déexp |—1/2[ Gg'(q,A)d(q)
q
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Golg,A)=q ’S(g*/A%),

are critical provided the function S(x) is monotonous
with S(x =0)=1 and lim, S (x)x™=0, for any m.
The function S(x) provides a momentum cutoff on a
momentum A. Hence there should be such a renormal-
ization procedure for which Eq. (2.2) is satisfied indepen-
dently of a particular choice of the function S (x). Now,
let us decrease the dimension to d <4; then Hamiltonians
(2.6) are no longer critical, but they are still fixed-point
Hamiltonians for the chosen definition of the RG trans-
formation. Therefore, when trying to find critical Hamil-
tonians for d < 4, one should write

d(Hy+H;) _ dH;
dl ~dl
Until now the operator R has not been defined. For

practical purposes its definition is not important. Below
we find the operator R.

=R{H,+H,;}=R{H,} . (2.7

III. RG EQUATION

To derive an RG equation, one has, first of all, to per-
form an integration over short-wave modes in a partition
function. For this purpose, let us note that the partition
function of a system with the functional H =H,+ H; can
be written in the form

—.

Z= [Déexp(—H[$1)=Z,(exp(—H,[$]))
Ezo<w[$])o,/\ ’ 3.1

where

= [ Dgexp(—Hy[)) (3.2)
and averaging ( ), , is performed with the Gaussian
functional at a given value of A.

The following considerations are based on the fact that
the averaging over a Gaussian field ¢ can be replaced
by two independent averages over Gaussian fields ¢, and
¢2, providing ¢ ¢,+¢2 and the sum of the correlators

Golg, A= (|¢1 )2 >0A and Gp,(g,A,)= <|¢z )| >0A
is equal to the correlator of the initial field
Golg, A)=(16(q)1*)o x=G1(g,A) +Ga(g, Ay) -
(3.3)
In other words,
(A5 [wlgi+,], (3.4)
q
(3.5
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and functions G((g,A) and G;(g,A;) satisfy Eq. (3.3).

Let us choose ¢, so that G, (g,A;)=G(g,(1—
aGo(q,A)
Goz(q,A2)=Go(‘IvA)_Gm(‘IaAl)"!gAT
=2£h(q) ,

42N ds(g*/A%)

h(g)=
(q dA?
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E)A), where £ << 1. Then the value G, is of the order of ¢,

In this case, due to the smallness of &, the integration over the field ¢, in Eq. (3.1) can be performed easily,

Z=Z(w[¢1)gr=2Z5'Z5" [ DEDrexp

w[$1]+‘

The operator L 4 in Eq. (3.8) is defined by the relation-
ship

2
LAth(q)—a'a—A,_—q; .

L 3g(q) 54

The RG transformation will be completed by changing
the momentum scale in order to restore the initial value
of the parameter A: q=q'(1+£). In order to restore the
initial functional H, one should also transform the field

#(q),
$(q)=[1+8ey(q")14(q")

(3.9)

(3.10)

1+£ 6'(q) .

)
e¢(q)+q-ga)

If one chooses €4(q)=(d +2)/2 then the functional H,
will be restored. This results in the following equation

wd1=[1+&L+Ly+Ly)w(é], 3.11)
where

~ d—+2 Jd |- 8

L= |4~ 4q= |6(q)—— (3.12)

B 2 3q |”' V" sg(q)

and the operator

9
L,=dv-=
v oV

appears due to the transformation of the volume of the
system.

From Eq. (3.11), using w =exp(—H/ ), we obtain

H,[¢)=(L +Ly+L))H,[¢]

5H1 ] 8H,[4]
hiq
{ 8¢(q 6¢(—q)

or finally,
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Equation (3.13) is an exact RG equation. It differs slight-
ly from the equation obtained in Refs. [19-21]. One can
obtain all known results of RG theory using this equa-
tion. However, this equation is not convenient for practi-
cal uses. As with Wilson’s equation, it contains redun-
dant operators that should be properly excluded to obtain
results having physical meaning.

The RG equation (3.13) found does not determine the
operator R [see Eq. (2.7)]. This equation generates terms
with the vertex g,(q) [see Eq. (2.3)] that must be incor-
porated into the Hamiltonian H,. Therefore, H, changes
under the RG transformation, while the choice of H
defines the operator R and must not undergo any changes
with the RG transformation. The latter can be achieved
if instead of restoring the functional H|, one reduces the
functional Hy+8H, to H,, at each step of the RG pro-
cess with the help of some scale transformation of the
field ¢(q). A few words should be said about the addition
0H,. This term should include only momentum-
dependent parts of the vertex g,(q) because the term with
g,(0)=g o contains a projection on the relevant direction
and, therefore, it cannot be incorporated into the func-
tional H,,.

Let us define the function €,(g) introduced in Eq. (3.10)
as

e¢(q)=-d—_;l—n(q) . (3.14)

Then instead of Eq. (3.11) we have
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w'[] where the operator L} is defined as
" ’ 1 — Y
= 1+& L +Lp+Ey+= [ 796Gy (g MdlQ)l2 5
[ 2 o= [ m—q—¢(q)+q (g 1.8 (316
p 9q S5¢(q)
———fn ¢ | (wlé], (3.15) .
Using Egs. (3.15), (3.1), (3.9), and (3.16) we find
J
N, dH,[¢] —
H[$)=Vd———+— f 7(q) %f 7(9)Gy '(g,A)|d(q)]?
d+2-1(q) - 34(q) [“J 8H/[¢)  8H,[$] 8H($]
+f ———El‘g—¢(q)+q %q = fh(q) = I—» - —-I : —{ = g{HI}
g q d¢(q f 54(q)-0¢(— 5¢(—q) d¢(q)
(3.17)
[
Again we have obtained the exact RG equation. This where the function Q (q) is given by
equation is a generalized form of Eq. (3.13), which en-
ables us to carry out the reduction of Hy+06H, to the f h(p)[ng,(—p,p; —q,q)+2¢,(—p,q;p, —q)] .
H,. Equation (3.17) contains an arbitrary function 7(q)
that accounts for this. 3.21)

The following steps are of crucial importance and quite
clear. First of all, let us separate terms of zeroth and first
order in ¢? in the functional H,,

H [#1=bV+1 [ g(@lg(q)*+H" . (3.18)

Now let us separate the part dependent on momenta
from the vertex g,(q)=g,,+g1(g). Equations for go
and g(g) can be written in the form

q 810=[2—7(0)]g;, +Q(0)—2h(0)gy , (3.22)
Then', using Eq. {3.17) for the funct'iongl (2.3), one obtains glg)= —1(g)Gy (g, A)—[n(g)—n(0)]g o
the simple equation for a renormalization of the constant
b, +Q(g)—Q(0)—2[h(g)—h(0)]g
b=db+1i [ n(g)+n [ higg(g) . (3.19 ,98] (q)
2{’” { 7814 ) 20> =11 2n(gig(g) - (3.23)
The equation for g,(q) has the form o o .
Our objective is to eliminate the generation of the g-
. _ 3 dependent part of the vertex g, in the RG equation pro-
= — 1 — a2
&9 1(q)Go (g, A)+ 12—n(g)—2q ag? g1(q) vided that its initial value does not depend on momentum
li.e., £1(g)=0, g1(g)=0]. Using Eq. (3.23), we can easily
+Q(q)—2h(q)g(q) (3.20) find the function 7(g) which ensures such behavior,
_J
Q(g)—Q(0)—2go[h(g)—h(0)]+5(0)G; '(g,A)
7(q)=7(0)— — 0 : (3.24)
GO (q,k)—gm
f
In addition, if we demand that IV. CONCLUSION
d —
70)=—-[Q(q)—2h(q)g10]g=0 (3.25) Finally, we have obtained the operator R as an opera-
dg’ tor R, {H;} but with the function 7(q,]) defined by the
then the expansion of 7(g) will start from g*. This com-  Egs. (3.24) and (3.25). Insofar as the Hamiltonian H, is

pletes the procedure of reducing H,+8H|, to the H, sim-
ply by fixing 8H,=0. Now the function 7(q) depends on
all higher vertices and has clear physical meaning: at a
stable fixed point (critical behavior) 7*(0) is equal to the
Fisher exponent, i.e., at the crmcal point the correlation
function {$(q)-¢(—q)) <gq~ 247%0),

given, this RG transformation is unique and, therefore, it
does not contain any redundant operators. In compar-
ison with the traditional RG equations [19-21,17] in the
Wilson approach the developed scheme must seem to be
a little cumbersome. This is not really the case because
the traditional approach, having a simpler definition of
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the RG transformation [like the one in Eq. (3.13)],
transfers the difficulties to the problem of excluding the
redundant operators. In fact, the scheme suggested in
this paper was already exploited by the authors to con-
struct a new perturbation theory using [7*(0)]'/? as a
small parameter [23].

In conclusion it is interesting to compare some formal
aspects of the Wilson approach and the generalized
scheme developed here. In the Wilson approach one has
to deal with some arbitrary function defining an RG
transformation. By the procedure of excluding some of
the redundant operators (in the general case we have
infinite umber of redundant operators), one may restore
this function. In the generalized scheme the RG pro-
cedure is defined uniquely but this definition depends on
the choice of the function S(x). Therefore, in this
scheme all eigenvalues A of the linear RG operator [see
Eq. (2.4)] are functionals of S(x) and universality is lost.
The latter accounts for the introduction of a new dimen-
sionless scale x,. This is the scale on which the function

8529

S(x) goes to zero with increasing x. The loss of univer-
sality is not a big problem because it can be immediately
restored simply by letting xy—> . In this limit all the
RG defining Hamiltonians give the same results.
Nonetheless, this argumentation shows that if one calcu-
lates exactly the critical exponents for d =2 and n =1
they might not coincide with the exponents of the Ising
model. This accounts for the fact that Ising model keeps
H, (or x,) fixed, while traditionally we put x,— . The
latter, of course, should be considered not as a strictly
proved fact, but rather as the authors’ supposition.
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