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The correlation function of electromagnetic-intensity fluctuations is calculated in the diffusive regime
in the presence of absorption using the Langevin approach. The results show that reflection of the
boundary may cause drastic changes in the behavior of the correlation function. In the case of low ab-
sorption the spatial-correlation function undergoes a crossover from a quadratic to a linear falloff with
separation as the reflection increases. The autocorrelation function for a medium with highly reflecting
boundaries varies with frequency shift as (Aw) ! instead of (Aw) ~!/? for boundaries with low reflection.

I. INTRODUCTION

The diffusion approximation works surprisingly well in
most cases as a description of wave propagation through
random media.»? This approximation is valid in the case
of weak disorder when the wavelength of the radiation is
much smaller than the elastic mean free path /. It pro-
vides a clear and physically meaningful explanation of
many aspects of wave propagation in random media.
However, some experimental results reveal systematic de-
viation from theoretical predictions. It was only recently
realized that such discrepancies arise because internal
reflection at the boundaries of the random medium,
which is present in almost every experiment due to the
index mismatch, is not taken into account. Lagendijk
et al.* suggested that inclusion of surface reflection into
the diffusion propagator can lead to better agreement be-
tween experiment and theory for pulsed radiation propa-
gating in dense random media. Freund et al.>® have
demonstrated that taking internal reflection into account
substantially reduces the discrepancies between theoreti-
cal predictions and measurements of the optical memory
effect. Garcia et al.” measured the effect of boundary
reflection on the time-of-flight distribution and the
transmission coefficient in a random sample. The angular
correlation functions in the case of high-index mismatch
were measured by Zhu et al.® They also found that by
including the effect of internal reflection it is possible to
obtain agreement between experiment and theory. The
role of internal reflection in coherent backscattering was
demonstrated by Saulnier and Watson.” In measure-
ments of the intensity inside and the transmission
through a random slab with different reflectors at the
boundary, Garcia et al.'® determined the photon mean-
free-path and demonstrated an excellent agreement be-
tween theory and experiment.

Usually diffusion theory considers boundaries of a ran-
dom medium as perfectly absorbing. However, it is in-
correct to take zero intensity at the boundaries for
diffusing photons inside the medium.® To resolve this
problem, an extrapolation length beyond the boundary at
which the intensity drops to zero is generally introduced.
If this length, which is of the order of / for zero boundary
reflection, is much less than the thickness of the random
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media L, then internal reflection can be neglected and the
intensity of the boundary can be assumed to be zero.
However, when the reflection coefficient i is large, the
extrapolation length can become comparable and even
greater than L.710

The main goal of the present paper is to study the
effect of internal reflection upon the spatial and the spec-
tral intensity-intensity correlation functions. Correlation
of classical waves has been the subject of intensive experi-
mental”!' 7% and theoretical®® 3% study in the last few
years. Feng et al.?® have shown that the intensity-
intensity correlation function C(r,r’) consists of three
parts: short range C;, long range C,, and “infinite
range” C;. It has now been established that the short-
range correlation function!#!321:28:30 exhibits exponential
decay with increasing separation between points
Ar=|r—r'| or frequency shift Aw=|w—w’|. The long-
range contribution C, also decays but as a power law
rather than exponentially.?>?® Long-range correlation as
a function of frequency has been observed in mi-
crowave!>!7"1% and optical’® measurements. The C,
term is found to be somewhat analogous to the constant
background.!® The effect of absorption on long-range
correlations was studied in recent papers by Pnini and
Shapiro®! and by Kogan and Kaveh.* They found that
in agreement with experiments by Genack et al.,'” these
correlations continue to exist even for distances much
larger than absorption length. Absorption modifies but
does not completely destroy long-range correlation in the
intensity. The frequency-correlation function in the pres-
ence of absorption was also derived by de Boer et al.?°
for different incident-beam profiles.

In recent theoretical studies of correlation phenomena,
the Langevin approach proved to be useful for obtaining
long-range spatial and spectral correlation functions. It
was first proposed by Zyuzin and Spivak for a study of
the conductance fluctuations?* and then applied to classi-
cal waves.?® This method was later successfully used by a
number of authors®®2%31:32 for photon intensity correla-
tions in random media. According to this approach, the
fluctuating part of the intensity 81 =I —(I) can be
found as a solution of the diffusion equation with a ran-
dom source. In all the above-mentioned studies of inten-
sity correlations it was assumed that boundaries are total-
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ly absorbing. In the present study we show that taking
account of the internal reflection leads to qualitative
changes in both spatial and spectral correlation func-
tions. These changes are due to the “surface” term in the
correlation function which is due to fluctuations on the
surface of the media. We show that in the case of low
internal reflection, the surface term becomes small and
we recover previous results. 332 In the case of high inter-
nal reflection, however, the surface term dominates the
correlation function and we obtain completely new be-
havior for both spatial and spectral correlation functions.

II. BASIC EQUATIONS

We consider a wave equation for a scalar mono-
chromatic field ¥,(r) of frequency o,

(V2+Kk2[1+e(r)]+ik /1, }¢,(r)=0, (1

where /, is an absorption length, kK =w/c, c is a speed of
propagation in the random medium, and &(r) is the fluc-
tuating part of the refraction index. &(r) is assumed to be
a Gaussian random variable with zero mean,

(e(r))=0; (e(r)e(r))=edlr—r'). ()

We start our calculations from the Bethe-Salpeter
equation for the field-field correlation function?®

(P (0)E(r)) =P (1)) PX(r'))
+fdr,drzdr3dr4(~;m(r,r1)(7;(r’,rz)
X U(r,,15, 13, 1) U, (r3)0%(1,)) ,
(3)

where G, is the average Green’s function of Eq. (1), U is
the irreducible four-point vertex function, and the in-
tegration is taken over the scattering volume occupied by
the disordered medium. The function G _(r,1r') in Eq. (3)
has been calculated for infinite medium by many au-
thors?!?228 and has the form

G, (r,r')= exp{iklr—r'|—|r—r'| 72T} , 4)

1
4rir—r'|

where T=(1"'4+1,1)"1. The term {(¢,){¢*) in Eq. (3)
is exponentially small when both r and r’ are taken in the
bulk of the medium and is usually neglected.?®?® An al-
ternative approach is to consider this term as a source
function of photon intensity Q. (r) located near the in-
put boundary at a distance of the order of the mean free
path. In the weakly scattering regime, kI >>1, in the
leading order in (k! )~ 1, the irreducible vertex function
U(ry,r,,13,14) can be taken as

U(r,1,,13,14)= iIES(rl—rz)B(rl —r3)8(r,—r1,) . (5)

The Bethe-Salpeter equation (3) for the field-field auto-
correlation function (I, (r))= {4, (r)¢*(r)) can then
be reduced to the differential equation?®
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1

VA oy (1)) = (2= 2B Ly (1)) == 5 Quy(x) , (6)

where D =1cl is the diffusion coefficient, a=(Il,)"'/?
and 2=(w—w')/2D. This equation is valid as long as
1/1, <<1 and BI << 1, otherwise (I, (r)) changes with r
too rapidly for the above expansion to hold. If o'=w,
Eq. (6) reduces to the conventional diffusion equation for
the photon intensity {7, (r))={|¢(r)[?),

VAL, (0) —aX( (1) == =0(x) . ™

In order to solve Eq. (6) we first need to specify the
boundary conditions and second, to define the source
function @, (r). We consider a random sample located
along the z axis between 0<z <L with reflection
coefficients R at the input and output boundaries. We as-
sume that the coherent radiation incident on the sample
becomes randomized within a distance z,, which is of the
order of mean free path. We replace the incoming
coherent flux by a source of diffusive radiation at the
plane z =z, with a strength equal to the incident flux. z,
is viewed as an adjustable parameter of the theory. For
the sake of the simplicity we consider a plane wave in-
cident on the sample surface. In this case, the source
function can be written as Q,,,,(r)=q8(z —z,), where g is
a constant.

Since we assume that there is no incoming flux through
the boundaries, the only flux going from the boundary to-
wards the inside of the slab is the reflected part of the
outgoing flux. This gives boundary conditions in the
form”?

J(z=0")=—RJ_(z=0");
J_(z=L7)=—RJ,(z=L7),

(8)

where J, and J_ are diffusive fluxes in the positive and
negative z directions, respectively. Using the relationship
between the diffusive flux and the photon intensity, !

(I(r))c+£ aI(r)) ) )

4 2 oz

the boundary conditions of Eq. (8) can be rewritten as”®

Ji(r)=

i(I(z))—j—<1(z)) =0;
z, dz .
(10)
1 d _
[—(I(z))+_—(l(z)> =0,
z, dz -
where
_2,1+R
20—31——-—1_§R . (11)
The solution of Eq. (6) can be written in the form
{I,,(2))=(q/D)G,,(2,2,) , (12)

where G,,(z,z") is the Green’s function of Eq. (6) with
the boundary conditions of Eq. (10),
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1 ) . —1 |Pap(2)Pp, (L —2'); z<Z'
Gyo(2,2 )_a(Aa)) [1+a (Aa))zo]31nh[a(Aw)L]+20(Aw)zocosh[a(Aco)L]] P, (2')Py,(L —2); z>2' (13)
[
where C,(Aw;z >z,)
P, (x)=sinh[a (Aw)x]+a(Aw)zocosh[a (Aw)x] ; 12_ cosh[2y (L —z)]— cos[2y _(L —z)] 19)
14 = ,
a¥(Aw)=a*—2iB . (14) c? cosh(2y 4 L)— cos(2y _L)
When Aw=0, Eq. (12) gives diffusive intensity distribu- where v ;. are defined as
tion inside the slab and we can check the existence of the 7’21 =1[( at+4pH 2 +a?] . 20)

extrapolation length by solving the following equations:

<Iw=m'(2:_zb)>|z<0=0 5

(I ew(z=L—2z,))|,5,=0. 1
We find that when i <R, defined as
1—2al
R.= +2al ’ (16)
Egs. (15) have the solution
zb=—21:x—ln :izzz (17)

If, however, i >R, an extrapolation length does not ex-
ist because the intensity extrapolated beyond the boun-
daries never becomes zero. In the absence of absorption,
when a—0, z, =z, and for zero reflection boundary con-
ditions Eqgs. (10) give z, =2//3. This is consistent with
transport theory which gives the more precise Milne’s re-
sult, z,=0.7104..

II1. FIELD-FIELD AUTOCORRELATION FUNCTION

Now we consider the squared field-field autocorrelation
function defined as

Cy(Aw,2)={I,,(z))|?, (18)

where (I,(z)) is given by Eq. (12). The effect of the
internal reflection on the autocorrelation function can be
easily seen when analyzing Egs. (12) and (13). For low
surface reflection, when zy~/ and zpa <<1,z,8<<1, we
recover the result obtained by many authors, 23132

In the absence of absorption, C, decays exponentially
with frequency shift Aw. However, this behavior changes
if reflection becomes large, z,8>>1. Assuming that
z,a<<1and zpB << 1 still hold, we obtain

_ ¢ Vaiag
D* 4Bt
cosh[2y (L —z)]+ cos[2y _(L —z)]
cosh(2y . L)— cos(2y _L)

C(Aw;z >z,

(21)

Due to the prefactor (a*+4p*)172/B* which in the ab-
sence of absorption is (Aw)~ 1, autocorrelation function
falls off much faster than in the case of small reflection.

IV. INTENSITY-INTENSITY LONG-RANGE
CORRELATION FUNCTION

In this section we consider correlations of the intensity
in a tube with a diameter much less than its length L.
We may therefore consider the correlation function in-
tegrated over the cross section of the tube. According to
the Langevin approach, intensity fluctuations &7
=] —(I) obey the diffusion equation®"?® with a random
source j,(z),

(V—a?)8I,(z)=(1/D)V-j,(z) . (22)

The correlator of the random function j,(z) has the form
Y mlc? 2800

(je(z2)jB.(z")) 8“’33sz [{I,,(2))|*8(z—2"), (23)

where A is the cross section of the tube. In order to solve
Eq. (22), we apply the same boundary conditions as for
Eq. (7).

The formal solution of Eq. (22) gives

1 . . 1 pL,,. ., d ,
alw(z)z_B[GAu=0(z;L)Jm(L)_GAar—-O(Z;O)Jw(o)]+5‘fo dz'j,(z )37 Caa=0(z;27) . (24)

The first term in this expression depends upon values taken on the slab surface. Though it is usually neglecte

d.’ 28,31,32 it

becomes important when surface reflection is large, so we retain it below. As a result, the correlation function splits

into two parts: a surface term C'5) and a volume term C

wa'(zl;zz):Cﬁ'(lﬁzz)‘*c%}'(ll;zz) >

89)

o'

(25a)
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1 rL,, dGap=0(2152") dGyu=o0lz;2") | o
CL%'(ZI;ZZ):—FIO dz GAw=O(22;L)T+GAw=0(Zl;L)~T (JolL)jy(2))
dGAm:()(Zz;ZI) dGAa):O(Zl;Z’) . . ,
= |Garo=0(z530)0 "=+ Gay=0(2;0) 2 (Jol0)jy(z)) |5 (25b)
1 rL dGa,—0(z1;2") dGp,—o(z5;2") .
(%) . —_ ’ " . ’ "
T fo dz'dz - o Golz)juz™) . (25¢)

In Egs. (25b) and (25c¢) only terms corresponding to long-range correlation are taken into account. Using Eq. (13), after

some tedious algebra we obtain the following expression for the normalized long-range correlation function:

C,,(z,=L —R;z,=L)

C,(Aw,R)= TN —R) =C®(Aw,R)+CY(Aw,R) ; (26a)
6mazl | Py,_olL —R)P,,_o(L)| Py (2,)]?
(S) — 0 Aw=0 Aw=0 Aw'\“p _ 2] .
Cy’(Aw,R) X (Ao) Pr_o(R) +azy|P,y, (L zp)| ; (26b)
37 a?
C(ZV’(Aa);R)=2K(Aw) Vi |Pro(L —2,)12[I(z,)—J(2,)+1,(z,)—J,(z,)]
+|Pao(z)P[I3(L —z,)—I3(R)—J3(L —z,)+J3(R)+I,(L —z,)
—I4(R)—J4 (L —z,)+J,(R)]
|Py(2,)|]*Py,—o(L —R)
_ Ta0i%p TAe=0 [I(R)—J5(R)+I(R)+J4(R)] | . (260)

The function P, (z) is defined by Eq. (14), and functions
K (x),I;(x), and J;(x) are given in the Appendix. Since
our expression for C,(Aw;R) is rather complicated, we
consider below important limiting cases for intensity-
intensity spectral and spatial correlation functions sepa-
rately.

First we consider the spatial correlation function when
Aw=0. When absorption is strong, aL >>1,aR > 1, and
a(L —R)>1, photons are effectively absorbed inside the
slab before reaching the boundary at z =L. In this case
even large surface reflection should not affect the correla-
tion function. Indeed, we find that the surface term

z3 z
coR)=-ST o __Fo 27)
k14 (z5+z,)" (1+azy)

is less than the volume term

C(R)= 413;;/1 —R+%a Y, azg<<1;  (28a)
c” )—422/1 —R—%a Y, azo>>1.  (28b)

Equation (28a) coincides with the corresponding expres-
sion of Refs. 31 and 32. The linear decay of C,(R) in the
case of a strong absorption was observed experimentally
by Genack et al.'” The dependence of the cross-

PAw=0(R)

correlation function upon separation and reflection
coefficient is shown in Fig. 1. The dependence of C, on R
demonstrates a maximum at R =R, where R, is defined
by Eq. (16). This maximum is due to the surface term of
the correlation function. This term, as one can see from
Eq. (24b), is proportional to the photon flux. The flux is

FIG. 1. Long-range spatial correlation function C,(R,}) in
the case of strong absorption (a/ =0.1). In this and subsequent
figures all lengths are measured in mean-free-paths and we use
following values of parameters L =100, z, =1,k =8.25, 4 =20.
For both small (azy<<1) and large (az,>>1) reflection
coefficients C,(R,R) is a linear function of R in accordance with
Egs. (34) and (35). C, as a function of # shows nonmonotonic
behavior with a maximum at R=R_ for any value of R. The
dependence C,(R,R=NR,) is shown by the thick line.
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an increasing function of the reflection coefficient for
small reflectivity and it decreases when reflectivity is very
high. For zero-frequency shift it reaches maximum at
R.. Such a maximum always appears in the dependence
|
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of the correlation function upon the reflection coefficient.

In the case of the weak absorption, aL <<1,aR <<1,
azy<<1, the correlation function takes the following
form:

COR)= 6 z3 (L +zo)(L —R +2z5) (L +zy—2z,)z, ; (29)
kYA (L +2z,) R +z, (zo+2,)?
3 3
2mr 1 23 (L +2z;) 23
CY(R)= +(L +zy—z, ) |L +2z,— —z3—(L +2z,)(R +z,)*| . (29b)
k24 (L+2z, | R+zg o % (2,420 0 0 0

When internal reflection is weak, z, <<L,z, <L —R, the
surface term can be neglected and we obtain the well-
known result, 3132

R 2
1 _——

L2

2wL

CY(R)=
k%A

(30)

In the case of strong internal reflection, z, >>L,z,>>R,
the surface term dominates.

37z _

COR)= 0 |4 LR (31a)
k<l A Zy
mZ _

CO(R)=—L LZ2R (31b)
k-“lA Zy

and we find a linear falloff of the spatial correlation func-
tion. For highly reflecting boundaries, the degree of
correlation increases by the factor of ~L /z,. The cross-
over from quadratic to linear decay of the spatial correla-
tion function with increasing reflection coefficient can be

FIG. 2. Long-range spatial correlation function C,(R,R) in
the case of the weak absorption (a/ =0.001). A crossover from
a quadratic falloff in the case of low internal reflection
[azy << 1, Eq. (36)] to a linear falloff in the case of strong inter-
nal reflection [az,>>1, Eq. (37a)] is evident. The maximum of
C, with respect to R is not shown since for small absorption it
occurs at a very high reflection coefficient #=R_=~0.999. The
values of parameters L,z,,k, and 4 are the same as in Fig. 1.

seen in Fig. 2, where we plot C, as a function of R and R.
We note that for small reflection #,—1 and the max-
imum of the correlation function with respect to R ap-
pears for very high reflection coefficients.

We will now consider the spectral-correlation function
C,(Aw;R =0). As in the case of the cross-correlation
function, for strong absorption, aL >>1 and a>>f3, we
do not expect a strong dependence upon R, except for the
maximum at #~R_,. This dependence is shown in Fig. 3.
Let us assume that the frequency shift Aw is large
enough, B>>a and BL >>1, but limited by the condition
Bl << 1, so that Eq. (6) is valid. In this case, the correla-
tion function has the form

3

3 ) 1
CSAw)= ; (32a)
K14 (z9+2z,)* 1+2Bzo+2B%]
14+2Bz,z% /(z5+2,)?
CV(Aw)= 3r_1 Popza 02 zp (32b)
k14 B 1+42Bz4+2P%2f

Two limiting cases can be distinguished. The first corre-
sponds to small surface reflection when Bz, <<1. In this
case we obtain

FIG. 3. Dependence of the long-range spectral correlation
function C,(B3,R) upon B/ and R for the case of strong absorp-
tion (¢=0.1). It also shows a weak maximum at R=R_.. The
dependence C,(B,R=R.) is shown by the thick line. The
values of parameters L,z,,k, and 4 are the same as in Fig. 1.
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FIG. 4. (a) Dependence of the long-range spectral correlation
function C,(B,R) upon Bl and R for the case of weak absorption
(@=0.001). (b) Functions BIC,(Bl,R=0), shown by the solid
line, and BIC,(BI,R=R_), shown by the dashed line, demon-
strate the crossover from the 1/ dependence of the correlation
function for small reflection to 1//3? for strong reflection. Both
functions are normalized by their values at 3=0.2. The values
of parameters L,z,,k, and A are the same as in Fig. 1.

3

3 Zp
C¥Aw)~ — L (1—2Bz,) ; (33a)
= UA gtz E P00
z224z0z +z2
CVMo)m—T L\ g ZOTEE TR | a3y
2k%l4 B (zot+z,)

The volume term is greater than the surface term by a
factor (f8z,) ! and the leading term in Eq. (33b) gives the
well-established result C, < (Aw)~'2. If we neglect small
corrections of the order of Bz, and Bz,, then Eq. (33b)
coincides exactly with the result first obtained by Pnini
and Shapiro.?®

J
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For high surface reflection, Bz, >>1, however, the fre-
quency dependence changes dramatically.

37 1 1
CNAw)~—5— -——1; (34a)
A Bzy | Bzo a
CY(Aw)= 1—— |, (34b)

37z 1 1
4k A Bz} Bz,

and now the surface term dominates again and decays as
1/Aw rather than as (Aw)~'/? as occurs in the case of
small reflection. The degree of correlation for small S is
~L /z, times greater than in the case of high internal
reflection. We plot the autocorrelation function
C,(Aw;0) as a function of the variables Aw and R in Fig.
4.

V. CONCLUSIONS

In conclusion, we have calculated the long-range con-
tribution to the spatial and spectral intensity-intensity
correlation functions in the presence of internal
reflection. We show that internal reflection can be incor-
porated into the long-range correlation function using
proper boundary conditions. We find that in the presence
of internal reflection there is an additional surface term in
the long-range correlation function when intensity fluc-
tuations at the sample surface are included. When inter-
nal reflection is weak, this term is small in comparison
with the volume term and our results exactly coincide
with previous results. In the presence of strongly
reflecting boundaries, the surface term dominates and we
obtain qualitatively different dependences of the correla-
tion functions upon frequency shift and a spatial separa-
tion.
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APPENDIX

Here we give definitions of functions K (x), I;(x), and
J;(x) appearing in Eq. (26).

K (Aw)=k*AP},—(z,){[(1+a’z})*+4B*2§ | [cosh(2y L L)— cos(2y _L)]+4(y% +y2)z5[cosh(2y L L)+ cos(2y _L)]
+4[y 1 zo(1+a%23)+2B% _z3 Isinh(2y L L) +4[y _zo(1+a?23)—2B*y Lz} 1sin(2y _L)} ,

(A1)
sinh(2y . x) 1 sinh[2(y . +a)x] sinh[2(y , —a)x]
I(x)=[1+(y%4 +y2)z3] t(l—azzé)T‘i‘z(l-Falzg) v ta + v —a
[ inh2 2
sinh*[(y 4 +a)x sinh“[(y ;. —a)x
+la20 [(y+ ] . [y 4 ] ) (A2)
2 v+ta Y+ a
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sinh®(y .x) 1 sinh?[(y, +a)x]  sinh?[(y , —a)x]
I(x)=2y ,zy |(1—a’z}) ————+ —(1+a%23) +
2 Y +Zo 0 7. D) 0 7. +ta v.—a
sinh[2(y . ta)x sinh[2(y . —a)x
+ Loz, [2(y + ] sinh[2(y 4 ] ’ A3)
2 Y4+ ta Yy—a
sinh(2y . x) 1 sinh[2(y  +a)x —2aL] sinh[2(y , —a)x +2aL]
- 2 2,2 22 1 2,2
Ii(x)=[1+(y5 +v2)z5 1 {(1—a’2§) . +4(1+a z5) v ¥a v —a
1 cosh[2(y . +a)x —2aL] cosh[2(y —a)x +2aL]
——azg — , (A4)
2 v+ta Y+~
sinh’(y . x) 1 cosh[2(y , +a)x —2aL] cosh[2(y . —a)x +2aL]
I(x)=2y 2y |(1—a’z§) —————+—(1+a%z}) +
¢ Vo 0 Y+ 4 0 Y+ ta Y+~ a
1 sinh[2(y ; +a)x —2aL] sinh[2(y, —a)x +2aL]
——az, — , (A5)
2 V+ta Y+~
sinh(2y , x)
I (x)=[1+(y4 +7y2)z3] [(1+azz(2))cosh(aL)+2azosinh(aL)]Ty+
+
sinh[(y ;. +a)x]cosh[(y . +a)x —aL
+L1—a23) [+ Jcosh[(y + ]
2 Y+ta
sinh[(y . —a)z]cosh[(y ;. +a)x +aL
4 [y ] [(y+ ] ’ (A6)
Y+
- ) sinh(2y , x)
I{(x)=2y .z, |[(1+a zo)cosh(aL)+2azosmh(aL)]T
+
1 sinh[(y ; +a)x]sinh[(y ; +a)x —aL] sinh[(y, —a)x]sinh[(y  +a)x +aL]
+—(1—a’z}) + ,
2 v+ ta Y+«
(A7)

and functions J;(x) can be obtained from I;(x) by substitution of —iy _ for y ..
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