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Magnetic phase transitions with final ordering: Peculiarities in the critical behavior
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Magnetic crystals containing two subsystems of different types of magnetic ions are considered. It is
assumed that the subsystem of the first type of the ions is already ordered at relatively high temperature,
while the ordering temperature of the second subsystem is much smaller. We present an analysis, which
is performed by use of the Landau-Ginzburg method, of the critical behavior of such double magnetic
systems in the vicinity of the ordering temperature of the second subsystem. This temperature is re-
ferred to as the temperature of the final ordering. We demonstrate the suppression of the anomalous
fluctuations near the point of the phase transition of the final ordering. The peculiarities of the critical
behavior in the vicinity of the points of phase transitions of the final ordering in low-dimensional mag-

nets are also discussed.

I. GENERAL CHARACTERISTIC
OF THE OBJECTS

There are a large number of double magnetic systems
that contain two types of magnetic ions, for example,
iron-group, and rare-earth ions. In the case when the or-
dering temperatures of each subsystem are close
(|T,y,—T.,| << T,,) a picture of phase transitions may be
quite unusual. »? In this paper we study an opposite situ-
ation when one of the magnetic ion subsystems is ordered
at a relatively high temperature T,; while the ordering
temperature of the second subsystem 7T, is much lower,
ie.,

T,>T,, . (1)

This relationship is of a principal importance for the fur-
ther analysis. It is exactly the cause of the unusual static
and dynamic critical behavior in the vicinity of the tem-
perature T,,. This temperature we define as the tempera-
ture of final ordering.

Practically, all rare-earth orthoferrites, ferrites garnets,
and a number of related materials belong to this class of
magnetic compounds. As a rule, in such systems the final
ordering temperature T,, which characterizes the rare-
earth subsystem, is by three orders of magnitude smaller
than the ordering temperature of the iron subsystem. A
similar situation takes place in some tetragonal antifer-
romagnets that are the base compounds for the high-
temperature superconducting materials. The systems of
R,CuO, type (Where R is a rare-earth ion) belong to these
compounds. In these compounds the rare-earth subsys-
tem also plays the role of the second magnetic subsystem
that orders at low temperatures. Magnetic ordering in
the first subsystem at T=T,; implies a conventional
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ordering-type phase transition, which we do not consider
here. In this paper we deal with the phase transition at
the critical temperature T, ( <<T;) only.

Within the temperature range of the ordering of the
second subsystem the magnetic sublattices of the first
subsystem are practically saturated, thus they can only
change their orientation with respect to the crystal axes.
Physically this means that the phase transition at T=T,,
has a dual nature: for the second subsystem it is the
phase transition of the ordering type and at the same
time it is the spin-orientation phase transition for the al-
ready ordered first subsystem. It is well known that the
character of the critical behavior corresponding to these
types of transitions is quite different.®”> For the first
phase transition, pronounced critical fluctuations take
place because the Ginzburg parameter may be of the or-
der of unity. For the spin-reorientation phase transitions,
such fluctuation phenomena are practically absent. As a
rule, the Ginzburg parameter is of the order of
107%—107°.%* In the case under consideration the na-
ture of the magnetic phase transition is a combination of
two phenomena, therefore the character of critical
anomalies in the vicinity of the point T,, may be quite
unusual. In the present study we would like to provide
the analysis of these anomalies.

It is evident from the above that the symmetry of mag-
netic subsystems coupling plays a crucial role in this
problem. Omitting the cases that are exotic from the
point of view of symmetry one can distinguish three
different situations:

(i) The saturated sublattices of the first magnetic sub-
system do not reorient due to the appearance of a spon-
taneous magnetic ordering in the second subsystem at
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temperatures below T,.,. For the second subsystem the
phase transition at T=T,, is of the pure ordering type
and the first subsystem plays no role in the formation of a
critical behavior.

(i) The symmetry of the effective field resulting from
spin-spin interactions in the first subsystem is just the
same as the symmetry of the spontaneous magnetic or-
dering arising in the second subsystem at low tempera-
tures. In this situation the critical point T, is completely
absent since the magnetic sublattices of the second sub-
system are weakly ordered by the exchange field of the
first subsystem in the whole temperature region 7' <T.;.
There is a close analogy between this case and the effect
of the disappearance of the phase-transition point be-
tween paramagnetic and ferromagnetic phases in an
external magnetic field.

(iii) The emergence of magnetic ordering in the second
subsystem leads to the same change of the magnetic sym-
metry as a spin-reorientation in the first subsystem. In
this case both the magnetic final ordering and the change
of orientations for entirely ordered sublattices are two
manifestations of the single phase transition at T=7T,,.
Consequently, these phenomena will accompany each
other. This situation is of primary interest.

Which of the three above-mentioned cases is realized
in the given double magnetic system is determined not
only by the arrangement of magnetoactive ions but also
by the type of magnetic ordering in both the first and the
second subsystems. In particular, all three situations
mentioned above occur in rare-earth orthoferrites.

Situations (i) and (ii) may be considered as the trivial
limiting cases of situation (iii). We shall treat them in
this way in the next section where we start from the case
(iii).

The classification of phase transitions connected with
final ordering given above is purely symmetrical and does
not exhaust all qualitatively different situations. Ex-
change interactions providing the appearance of long-
range magnetic ordering both in the first and in the
second subsystems may be anisotropic in space. In the
above-mentioned tetragonal antiferromagnets R,CuQO,
the exchange interactions between neighboring CuO,
planes are by three or four orders of magnitude smaller
than the exchange interactions taking place inside each
plane, in particular. At the same time the condition (1) is
fulfilled quite well. Naturally, in the case when the mag-
netic order in a magnetic subsystem is quasi-two-
dimensional or quasi-one-dimensional, the character of
the critical behavior will be quite different from the case
of rare-earth orthoferrites or ferrites garnets. In the
latter the exchange integrals in different crystallographic
directions are comparable with each other. These cases
we consider in Sec. III.

II. SUPPRESSION OF ANOMALOUS FLUCTUATIONS

The three configurations of a double magnetic system
are shown in Fig. 1. The sublattice magnetization vectors
of the first and second subsystems are denoted by S; and
S,, respectively. The directions of these vectors are
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FIG. 1. Magnetic state of a double magnetic system at
different temperatures: (a) 7 >T,,, paramagnetic phase; (b)
T,<T<T,, only the first subsystem is ordered; (c)
T <T,<<T., S, deviates from the original symmetry direction
and S, comes to be nonzero. The direction of S, as shown is ar-
bitrary.

chosen arbitrarily. The character of the magnetic ar-
rangement in the subsystems may be both ferromagnetic
and antiferromagnetic and the condition (1) is assumed to
be valid.

The phase transition at T =T, consists in the appear-
ance of magnetic ordering in the second subsystem ac-
companied by the deviation of the magnetization of the
first subsystem sublattices from the primary symmetrical
direction. Let us choose y axis as a direction of this devi-
ation and consider S, as a scalar for the sake of simplici-
ty. From the point of view of symmetry the values S,
and S, are transformed as the phase-transition order pa-
rameter and are proportional to each other in the vicinity
of T,,. In order to simplify notations let us introduce the
following scalar fields

1=S,,/5,00), ¢=S,/5,00), )

where S,(0) and S,(0) are the magnitudes of magnetiza-
tions at 7 =0 of the first and the second subsystem, re-
spectively. One can write the nonequilibrium thermo-
dynamic potential (Landau-Ginzburg functional) which
describes the phase transition at T'=T,, as follows:

Winel= [ d*x{W[n(x)]+W,[(x)]
+ W, [n(x),e(x)]} , 3)

where

Wl[n(x)]zgnz(x)—i—%174()()-!-%[%7():)]2, )

B 4 B 2
R4 (x)+ ) [Ve(x)]°, (5)

Wi [n(x),p(x)]= —An(x)p(x) . (6)

Wz[tp(x)]Z%(pZ(x)—}—

The presence of the bilinear coupling of order parameters
@ and 7 in Eq. (6) reflects the combined (from the symme-
try point of view) character of the magnetic phase transi-
tion at T=T,,. Since the parameters a, b, and a charac-
terize the totally saturated first magnetic subsystem, they
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are assumed to be temperature independent. The order
parameter 9 coincides with the angle of rotation of the
sublattice magnetization of the first subsystem. This an-
gle describes the rotation of magnetization with respect
to the original symmetrical direction. Therefore, the
values a@ and b are the anisotropy constants of the first
subsystem, while the parameter a is of the exchange na-
ture and is of the order of

a/d*«T, /d*, o)

where d is the interatomic distance. Let us consider the
conventional situation when exchange interactions in the
first subsystem exceed the magnetic anisotropy energy.
This implies that

a/d*«T, /d*>>a,b . (8)

The ratio of the exchange to the anisotropy energy is of
the order of 102— 10* for the first subsystem in all above-
mentioned materials. This inequality as well as the rela-
tionship given in Eq. (1) are of a principal importance for
our further analysis.

The parameters A4, B, and S in (5) describe the second
magnetic subsystem, which is ordered at low temperature
T << T,,, and are the only parameters depending directly
on the temperature. They do not exceed
T,.,/d3(<<T,;/d?). The same concerns the parameter A
that characterizes coupling between magnetic subsys-
tems. It is easy to show that a large value of A is incom-
patible with condition (1). Thus, A is of the same order as
the parameters of the second subsystem. As a result of
this discussion we have the ultimate condition that
defines the hierarchy of interactions in the system,

a/d*«<T, /d>>>a,b, A,B,A,B/d* . )

This inequality is always satisfied for all above-mentioned
double magnetic systems.

The physical meaning of the inequality (9) is as follows:
The isotropic exchange interaction in the first subsystem
is the most powerful spin-spin interaction in the system
under consideration. It provides a large value of T, and
is responsible for the stiff fixation of the mutual orienta-
tion of the spins in the first subsystem at 7=1T,,. How-
ever, the orientation of sublattice magnetizations with
respect to crystallographic axes may be easily changed
since the anisotropy interactions in the first subsystem,
characterized by parameters @ and b, are much smaller
than the exchange one. This is the reason for the pro-
found influence of the first magnetic subsystem on the
formation of T,, and on the character of the critical be-
havior in the vicinity of T,

To estimate the role of fluctuation phenomena near
T.,, we employ the Gaussian approximation. The point
of the phase transition is defined by the relation

A(T)a=A*, when T=T,,, (10)
or equivalently,
A(T,)=A*=A?/a>0. (11

For the sake of simplicity let us assume that A is the only
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temperature-dependent parameter that characterizes the
ordering subsystem. Taking into account of the tempera-
ture dependence of other parameters leads to somewhat
complex calculations with essentially similar results. Fol-
lowing the standard procedure of calculation of the
spec()iiic-heat correction due to fluctuations, one can ob-
tain™

Acq=—T9’Fy/3T?, (12)

where

= f °d3k Inla, A, —\?| ,

2(2 )3

(13)
koecd ™!,

a,=a+ak?, A,=A(T)+Bk>.

The most singular part of Acgy has the form standard for
the Gaussian approximation
A %a*(dA/dT)?
Cing =
" 16m(Ba’+ar?)?

[A(T)——A*]*l/z ,

when T2T,,. (14)

To estimate the temperature region for anomalous fluc-
tuations let us compare the singular part of the specific
heat (14) with the specific-heat jump Ac calculated in the
framework of the Landau theory,

VT,,

_VTa [da
A 2B

aT (15)

The singular contribution to the specific heat proves to be
essential in the following temperature region

|T—T,,| a’BTe, (16)
— << .
207" 64nHBal+aA?)d A /dT

The right-hand side of this inequality is very small due to
the large value proportional to a® in the denominator.
The numerical estimations carried out for orthoferrites
and ferrites garnets show that the temperature region in
Eq. (16) essential for strongly developed anomalous fluc-
tuations is of the order of 107-107° K.>* It is clear
that there is no critical behavior in a real situation. Let
us emphasize that from the physical point of view the
suppression of critical fluctuations originates in the fact
that the isotropic exchange interaction in the first subsys-
tem is much greater than the other magnetic interactions,
including those which cause the phase transition at
T=T,,. We also note that the strong isotropic exchange
interaction in the ﬁrst subsystem does not affect the mag-
nitude of T,, [Eq. (10)], but suppresses fluctuation phe-
nomena.

Now it is necessary to discuss the nature of phase tran-
sition at the point T ,,. This question is important for un-
derstanding the character of the fluctuation phenomena.
If A0, then from the standpoint of symmetry it follows
that the phase transition at low temperatures has a “com-
bined” nature. It is a spin-reorientation phase transition
for the first subsystem and an ordering-type phase transi-
tion for the second subsystem. Therefore, it is natural to
consider two opposite limiting cases.
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(a) The exchange interactions in the second subsystem
are negligibly small. This corresponds to

B=0. (17)

It is clear that in this case the phase transition at T,
manifests itself as a spin-reorientation one, and the spon-
taneous ordering in the second subsystem cannot take
place. The phase transition under consideration is forced
only by the interaction W, in the functional (3). When
the temperature is decreased this interaction begins to
compete with the anisotropy energy in the first subsystem
(i.e., with the positive parameter a). The stability condi-
tion for the symmetric phase,

Aa>M\*, whenT>T,,, (18)

is shown to be violated at the critical point (10). This sit-
uation occurs in the majority of rare-earth orthoferrites
and ferrites garnets. In accordance with the inequality
(16), the temperature region of anomalously developed
fluctuations is negligibly small.

(b) The interaction W, between both subsystems is not
essential. This is usually the result of the fact that the pa-
rameter A is equal to zero,

A=0, (19)

due to the special magnetic symmetry of the system. It is
clear that in this case we deal with an ordering-type
phase transition in the second subsystem and the first
subsystem plays no role. The phase-transition tempera-
ture is determined by the condition,

A=0, when T=T, (and A=0) . (20)

The strongly developed anomalous fluctuations associat-
ed with the ordering-type phase transition should be ob-
served in the vicinity of T,,. Indeed, if A=0, from the in-
equality (16) one can obtain,

B’T%
647°B(d A /dT)

This expression is just the same as the standard estima-
tion%” for the case of one fluctuating field. The magni-
tude of the temperature region (21) is not small and may
be compared with T,.

|T—T,| << (21)

Consequently, we have two trivial limiting cases. In
the first case the phase transition looks like a spin-
orientation one and fluctuation phenomena are absent.
In the second case we deal with a phase transition of a
pure ordering type, and the typical picture of highly
developed critical fluctuations for the system character-
ized by a small value of the Ginzburg parameter takes
place.

The intermediate case, when the low-temperature
phase transition is of a truly combined nature, is expected
to be the most interesting. Here the parameters A anji

2

VT2 [A(T)]7'?, A(T)> A%,

=~ 167TB3/2

dA

ACﬁ ‘d'?

L[ —=24(T)+3A*/a]™'?, A(T)<A*"’
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B/d* may be comparable. Due to the inequality (16), the
region of strongly developed critical fluctuations will be
smaller than the one in the case (a) of the pure spin-
reorientation phase transition. If the symmetry of the
system allows an existence of the interaction Wi,, the
presence (or absence) of the term Ba? in the denominator
on the right-hand part of the inequality (16) plays no role
since in any case aA?>>Ba?. Therefore, the role of fluc-
tuation phenomena in the case A0 may seem to be
negligibly small irrespective of the exchange interactions
in the second subsystem which undergoes ordering. But
it is not quite so because the estimations, based on the re-
lations (14-16), take into account only the contribution
to the specific-heat singularity at the T, point. This con-
tribution is really very small for A#0. But in the special
situation under consideration we should carry out a de-
tailed study of Egs. (12) and (13) for the fluctuation con-
tribution into the specific heat, not restricting ourselves
by the singular part (14) at T=T,,. The simplest way to
do this is to regard the limiting case

a— o , (22)

which is naturally connected with the conditions (1) and
(9). It reflects the predominance of exchange interactions
in the first subsystem over other magnetic interactions in
the system.

In the limiting case (22) the contribution of fluctuations
into the specific heat turns out to be nonsingular at
T—T,,. In fact, using Egs. (12) and (13) with a— o we
obtain,

VT d*
An= =y ar
Since only the second subsystem fluctuates in the limiting
case (22), parameters characterizing the first subsystem
have dropped out from Eq. (23). In other words, it is
only the ordered second subsystem that fluctuates in the
limiting case a— co. But at the same time the presence
of the first subsystem considerably affects the location of
the critical point T,, [see the Eq. (10)] and “provokes”
the phase transition before the point corresponding to the
temperature at which the fluctuations of the order pa-
rameter ¢(x) would become anomalously large. Indeed,
the expression (23) for the first specific-heat correction
exactly coincides with the similar formula for the case of
one fluctuating field. On the other hand, according to
Eq. (11), the value of the parameter A4 is nonzero at the
critical point (10). Therefore, in the limiting case (22) the
fluctuation contribution to the specific heat turns out to
be finite at the critical point. However, the specific heat
may possess a noticeable maximum caused by fluctua-
tions in the second subsystem.

The contribution Acy (23), which increases most
strongly in the vicinity of T.,, is caused by the long-
wavelength fluctuations in the rare-earth subsystem and
is described by the expression:

k
[Tf dk KAn(A+BK2) | . (23)
0

(24)
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FIG. 2. Critical behavior of the specific heat in the vicinity of
T,, for a— : (a) =0, a pure spin-reorientation phase transi-
tion; (b) A=0, an ordering-type phase transition in the second
subsystem. This is a standard dependence for the case of three-
dimensional fluctuations; (c) A0, 870, a magnetic phase tran-
sition of combined nature. A specific-heat jump, as in the Lan-
dau theory, against a background of a pronounced maximum.
If we put A—0 the case (c) transforms into (b). Taking into ac-
count the finite value of a leads to the divergence of ¢(7) near
the critical point, but in an extremely narrow temperature re-
gion.
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The limits of Acy when T—T,, are different on the left
and on the right of the critical point,

Acg(T=T,,—0)=4Acy(T=T,,+0)
_ VTh(dA/dTY
4733/2(A2/a )1/2 *

Thus, the fluctuations increase the jump of the specific
heat at the temperature 7., predicted by the Landau
theory. The formulas (24) and (25) describe the main
contribution to the specific heat only in the case, when

ro N T=T,)=\/Ba)/? <<kyxd ™!, (26)

(25)

where r, is the fluctuation correlation length in the
second subsystem. This condition is fulfilled if the main
reason of the phase transition at T=1T,, is the ordering
of the second subsystem. In other words, from the quan-
titative point of view this phase transition is of the
order-disorder type rather than spin-reorientation one.
On the other hand, if A is too small the fluctuations in the
vicinity of T,, will be too large to be adequately described
in the framework of the Gaussian approximation. Never-
theless, the conclusion about the finite value of the
specific heat at T=T,, for the limiting case a—
remains valid for any nonzero value of A.

If spin-spin interactions inside the second subsystem
are negligible it is possible to set =0 in (23). This limit-
ing case can be adequately described in the framework of
the mean-field approximation. It is senseless to distin-
guish the fluctuation contribution to the thermodynamic
values in this case, because this contribution has no
singularity at T—T,,. This particular case was studied
in Refs. 3 and 4.

In Fig. 2, three types of temperature dependencies of
the specific heat in the vicinity of T, for the limiting case
a— o are presented. Case (a) corresponds to the phase
transition of the ordering type (A=0); case (b) corre-
sponds to the spin-reorientation type; and case (c) is attri-
buted to the phase transition of combined nature. All
three above-mentioned possibilities are realized in rare-
earth orthoferrites at low temperatures.

III. LOW-DIMENSIONAL MAGNETS

In a number of magnetic crystals spin-spin interactions
are sharply spatially anisotropic. These compounds are
called low-dimensional (quasi-two-dimensional or quasi-
one-dimensional) magnetically ordered crystals. A lot of
papers are devoted to studies of such objects. In particu-
lar, the above-mentioned tetragonal antiferromagnets of
R,CuO, type belong to these systems. In these antifer-
romagnets the temperature of the magnetic ordering of
the first subsystem (the copper subsystem) is two or three
orders of magnitude greater than the final ordering tem-
perature of the rare-earth subsystem (see Refs. 8—12, and
the references therein). In these compounds the energy
of the exchange interactions of the copper spins inside
the tetragonal planes x-y is two or four orders of magni-
tude greater than the binding energy between spins be-
longing to the neighboring x-y planes. Naturally, the
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character of the critical behavior of low-dimensional
magnets differs considerably from the ordinary three-
dimensional case. It relates to both of the critical points
T., and T,,. We consider only the low-temperature
phase transition at T=1T,, <<T,,, because only this one
is of the final ordering type.

The most evident is the case when low-dimensional or-
dering is only the spin arrangement in the second subsys-
tem and ordinary three-dimensional ordering takes place
in the first subsystem. The limiting case a— o is not
essentially different from the one considered in the previ-
ous section. As before, the first subsystem does not take
part in the nonuniform fluctuations in the vicinity of T,,.
However, it affects considerably the value of T,,. This
leads to the phase transition that happens, in accordance
to the inequality (11), before the moment when the pa-
rameter A4 turns to zero. To estimate the fluctuation con-
tribution to the thermodynamic parameters it is neces-
sary to substitute the value of 4, = A4 +Bk? in Eq. (23)
by

Ay=A+Pk} or A =A+Pki+k2), 27

for one-dimensional and two-dimensional ordering in the
second subsystem, respectively. Of course, it intensifies
fluctuation effects in the vicinity of T.,, but with respect
to analogy with the limiting case a— o the fluctuation
corrections accessible to experimental measuring are non-
singular.

Let us consider the inverse situation when the low-
dimensional ordering takes place at T=17,,>>T,,. In
this case the gradient invariant in Eq. (4), describing the
nonuniform exchange interaction in the first subsystem,
has to be presented in an anisotropic form. Then it is
necessary to substitute the factor a, =a +ak? in Eq. (13)
by

a,=a +a”kz+al(kf+ky2) . (28)

B VT}a'(d A /dt)
% 16m(Ba’+a,A?)(Ba’+a )2

Ac [A(T)— A*]

Comparing Acg,, with the specific-heat jump (15) pre-
dicted by the Landau theory, we obtain the following ex-
pression for the region of strongly developed fluctuations:

a®B?T?
647 (Ba’+a, A (Ba*+ar*)d A /dT
31

| T—T,| <<

The comparison of the inequality (31) with Eq. (15) for
the three-dimensional case shows that in the low-
dimensional one (when only one of the components a or

The inequality a;>>a, corresponds to the one-
dimensional ordering in the first subsystem; o <<« is at-
tributed to the two-dimensional one.

According to Egs. (12) and (13) the fluctuation correc-
tion to the specific heat is determined by the expression,

d’k a}
ay Ak _)\,2)2 ’

(29)

VT*dA/dt)? ko
ACﬂ: fo (

2(27)?

that has already been used while obtaining the expres-
sions (14) and (23). But then we used the expression
a, =a+ak? However, the latter is invalid in the cases
when the magnetic ordering in the first subsystem is
quasi-one-dimensional or quasi-two-dimensional. Now
we will consider just these two cases.

Following the logic of the previous section, the most
interesting is the analysis of two contributions to the fluc-
tuation correction to the specific heat. The first contribu-
tion is the most singular in the vicinity of T, and, as a
rule, this contribution is analyzed while studying the role
of fluctuation at second-order phase transitions. In the
case of three-dimensional ordering in the first subsystem
the contribution to thermodynamic values singular at
T=T,, is negligible [see Refs. 3 and 4 and the inequality
(16)], that is why it cannot be observed experimentally in
principle. It is connected to the practically total suppres-
sion of nonuniform fluctuations in the first subsystem by
the large exchange interaction a. In the case of low-
dimensional magnetic ordering in the first subsystem, the
effect of suppression will not be total just because some
diagonal components of tensor & are not large, and even
in the limit @j— o or a;— o the nonuniform states are
possible in this subsystem. Let us pick out the most
singular part of (29) without a concrete determination of
the relation between o and a,. Instead of Eq. (14) we
have

172 when T2T,, . (30)

a, is large) the region of strongly developed anomalous
fluctuations is considerably larger. Nonetheless, as be-
fore, the denominator of the right-hand side of inequality
(31) contains the very large parameter o in the case of
quasi-two-dimensional ordering in the first subsystem, or
a; in the case of quasi-one-dimensional one.

If one of the parameters o or «, is large enough to
neglect the singular contribution to the specific heat (13)
it is necessary to consider the limiting case &, — « in the
quasi-two-dimensional situation or a;— o in the quasi-
one-dimensional one in correspondence with the main
idea of the previous section. Carrying out a proper limit-
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ing transition we obtain the expression (23) for the fluc-
tuation correction to the specific heat connected with the
fluctuations in the second subsystem under ordering. The
formulae (24)—-(26) are also valid. Thus the only fluctua-
tion correction that can be measured experimentally is
nonsingular in these cases, and this exactly corresponds
to the case of three-dimensional ordering in the first mag-
netic subsystem.

ACKNOWLEDGMENTS

The authors wish to thank M. Rafailovich for reading
and commenting on the manuscript. One of the authors
(V.S.) acknowledges the support from the National Sci-
ence Council of Taiwan by NAC Grant No. 81-0208-K-
002-520. This work at Queens College was supported by
PSC-CUNY under Grant No. 662373.

1Yu. M. Ivanchenko, A. A. Lisyansky, and A. E. Filippov, Fiz.
Tverd. Tela (Leningrad) 28, 1087 (1986) [Sov. Phys. Solid
State 28, 608 (1986)].

2Yu. M. Ivanchenko, A. A. Lisyansky, and A. E. Filippov,
Theor. Math. Phys. 66, 183 (1986).

3L. Levinson, M. Luban, and S. Shtrikman, Phys. Rev. 187, 715
(1969).

4A. K. Zvezdin and V. M. Matveev, Zh. Eksp. Teor. Fiz. 62, 260
(1972) [Sov. Phys. JETP 35, 140 (1972)].

SI. M. Vitebskii and N. M. Lavrinenko, Fiz. Nizk. Temp. 13, 79
(1987) [Sov. J. Low Temp. Phys. 13, 43 (1987)].

6S.-k. Ma, Modern Theory of Critical Phenomena (Benjamin,
New York, 1976).

7A. Patashinskii and V. Pokrovskii, Fluctuation Theory of the
Phase Transitions (Science, Moscow, 1982).

8S. Skanthakumar, H. Zang, T. W. Clinton, W.-H. Li, J. W.
Lynn, Z. Fisk, and S.-W. Cheong, Physica C 160, 124 (1989).
9S. Skanthakumar, J. W. Lynn, Z. Fisk, and S.-W. Cheong, J.

Appl. Phys. 69, 4866 (1991).

10K . Yamada, M. Matsuda, K. Kakurai, T. R. Thurston, Y. En-
doh, H. Kadovaki, Y. Hidaka, T. Murakami, R. J. Birgeneau,
P. M. Gehring, and G. Shirane, J. Magn. Magn. Mater. 90,
683 (1990).

K. Yamada, K. Takada, S. Hosoya, Y. Watanabe, Y. Endoh,
N. Tomonaga, T. Suzuki, T. Ishigaki, T. Kamiyama, H.
Asano, and F. Izumi, J. Phys. Soc. Jpn. 60, 2406 (1991).

12y Blinkin, I. Vitebskii, O. Kolotii, N. Lavrinenko, V. Semino-
zhenko, and V. Sobolev, Zh. Eksp. Teor. Fiz. 98, 2098 (1990)
[Sov. Phys. JETP 71, 1179 (1990)].



