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Zeroth law of thermodynamics for thermalized open quantum systems having constants of motion
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We study the evolution of an open quantum system described by a dynamical semigroup having the Lindblad
superoperator as a generator. This generator may have an eigenfunction with a zero eigenvalue referred to as a
constant of motion (COM). An open quantum system has a unique stationary state if and only if it has no COMs.
A system with multiple stationary states has a basis of COMs, any COM of the system is a linear combination of
the basis COMs. The basis divides the space of system states into subspaces. In each subspace, its own stationary
state is formed, and any stationary state of the system is a linear combination of these states. Usually, neither the
basis of COMs nor even their number is known. We demonstrate that finding the stationary state of the system does
not require looking for COMs. Instead, one can construct a set of “invariant” subspaces. If the system evolution
begins from one of these subspaces, the system will remain in it, arriving at a stationary state independent of
evolution in other subspaces. We suggest a direct way of finding the invariant subspaces by studying the evolution
of the system. We show that the sets of invariant subspaces and subspaces generated by the basis of COMs are
equivalent. A stationary state of the system is a weighted sum of stationary states in each invariant subspace;
weighting factors are determined by the initial state of the system.
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I. INTRODUCTION

Recently, the applicability of the laws of thermodynamics
to open quantum systems interacting with reservoirs has been
actively discussed [1–13]. This issue is interesting not only
from a fundamental point of view but is also important for prac-
tical purposes. Many applications require creating a system
state with desired properties, e.g., quantum entanglement of a
large array of qubits for quantum computer elements [14–16],
antibunched photons for quantum cryptography [17,18], and a
coherent state of an electromagnetic field for nanoscale radi-
ation sources [19–22]. Attaining, as well as retaining, desired
states of an open system is a difficult problem because the
system interacts with an external reservoir, and the outcome of
this interaction is constrained by the laws of thermodynamics.
First, the laws of thermodynamics determine possible system
states. Second, according to thermodynamics, any state should
relax to the stationary state determined by coupling with the
reservoir. This significantly limits the number of desirable
states.

However, the applicability of the laws of thermodynamics
to quantum systems is still not clear. Under the assumption
that the density operators of the system and the reservoir are
always separable, that the reservoir state does not change in
time (the Born approximation), and that the system dynamics
is local in time (the Markov approximation), one can obtain
the master equation for the density matrix ρ̂S (t ) of the system
in the Lindblad-Gorini-Kossakowski-Sudarshan (LGKS) form
[23–27]:

∂ρ̂S (t )/∂t = L[ρ̂S (t )]. (1)

For any Hamiltonians of the system ĤS , the reservoir ĤR ,
and the interaction between them ĤSR , the Lindblad superop-
erator L̂ should preserve the norm and positive definiteness of
the operator ρ̂S (t ). It has been shown [25] (see also [28,29]) that
these requirements are satisfied if the Lindblad superoperator
L̂ has the following form:

L̂(Â(t )) = −i[ĤS, Â(t )] + 1

2

N∑
i1,i2=1

([
F̂i1i2 , Â(t )F̂ †

i1i2

]

+ [
F̂i1i2Â(t ), F̂ †

i1i2

])
, (2)

where Â is a positively defined operator, [, ] denotes a commu-
tator, and F̂i1i2 are arbitrary operators. For a physical system,
these operators are determined by the Hamiltonians ĤS and
ĤSR . We consider N-dimensional Hilbert space, where N can
be arbitrarily large. This is a good approximation for interacting
quantum systems (see, e.g., Ref. [30]). Examples of such
systems are interacting molecules that include two-, three-,
or four-level subsystems and systems or interacting qubits
[26,31,32].

Usually, it is assumed that the Hamiltonian of the interaction
between the system and the reservoir has the form ĤSR =
h̄λŜR̂ [26,33,34], where Ŝ and R̂ are dimensionless operators
that only depend on dynamical variables of the system and
the reservoir, respectively, and the interaction parameter λ has
the dimension of frequency. In such a case, the operators F̂i1i2

are determined by the operator Ŝ through the equality F̂i1i2 =√
G(ωi1i2 )〈ki1 |Ŝ|ki2〉|ki1〉〈ki2 |, where |ki〉 are the eigenstates of

the system Hamiltonian ĤS , ωi1i2 = ωki2 − ωki1 , and G(ω) is
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the reservoir correlation function. In Eq. (2), the summation
is taken over all couples of eigenstates {|ki1〉, |ki2〉}. For such
a form of the interaction Hamiltonian, the first law and the
second law in the Clausius form follow from Eq. (1) [6,26,28],
whereas the zeroth law, which affirms that the stationary
state of the system has a unique Gibbs distribution with the
reservoir temperature (system thermalization), follows from
LGKS Eq. (1), if and only if the system does not have constants
of motion (COMs) [28,29,35].

A COM Î (t ) is an eigenoperator of the evolution generator
exp(L̂t ), for which the eigenvalue is equal to unity (the
eigenvalue of the generator L̂ is zero). It has been shown
[29] that Î (t ) should be invariant under the action of the
Lindblad superoperator (2). We assume that the dimension
of the Hilbert space of the problem is finite. The interaction
parameter λ has the dimension of frequency. An operator Î (t )
is a COM, if L̂[Î (t )] = 0. Below we show that in the model of
evolution considered here, Î (t ) commutes with both the system
Hamiltonian and the operator Ŝ.

Since a COM Î (t ) commutes with HS , these two operators
have a common set of eigenvectors, referred to below as basis
vectors. Following the general theory [29], we need to find a
basis of COMs, the linear combinations of which generate all
possible COMs of the system. In Ref. [29], it has also been
shown that the basis of COMs is mapped into the family of
projection operators that divides the space of system state into
subspaces. The existence theorem (see Ref. [29]) establishes
that in each subspace, its own stationary state is formed and
that any stationary state of the system is a linear combination
of these states. In other words, the determination of stationary
states requires knowledge of the COMs. However, there are
no general recipes for finding COMs or even for determining
their total number [36–41].

It seems that the only way for the implementation of this
highly abstract theory is to run over all possible operators
to find COMs. Since a COM is diagonal in the basis of
eigenvectors of HS , a general form of a COM is a diagonal
matrix containing n ones and N − n zeros that occupy arbitrary
places, where N is the rank of system state space. The total
number of such matrices is 2N . To choose COMs of 2N

matrices, one needs to make sure that they satisfy the equation
L[Î (t )] = 0.

The next step is to determine the basis COMs. If there is
only one COM, then the states with a certain eigenvalue of this
COM can be separated as a subspace. Thus, each COM leads
to a division of the state space into subspaces. The division
that corresponds to the basis COMs is the intersection of
all subspaces of all COMs. Finally, the eigenvalues of HS ,
which correspond to the eigenvectors belonging to one of
such subspaces, determine the partition function and the Gibbs
distribution in the subspace.

In this paper, we propose a way of determining stationary
states of an open system of finite dimension. The developed
approach only requires the knowledge of the Hamiltonians of
the system and the system-reservoir interaction; it does not
require knowing either COMs or their number. Moreover, the
proposed method enables one to find all basis COMs. The
method is based on the determination of invariant subspaces.
These are such subspaces that if the system evolution begins
from one of them, the system remains in this subspace reaching

the stationary state. We also show that the sets of invariant and
basis subspaces are equivalent. The behavior of the system
inside a subspace is equivalent to the behavior of the system
without COMs, and according to Ref. [29], its stationary state
would be described by the Gibbs distribution. The stationary
state of the whole system depends on the projection of the initial
state onto the subspaces. It is a weighted sum of the stationary
states in each invariant subspace. The weighting factors are
determined by the initial state of the system.

II. MASTER EQUATION FOR OPEN QUANTUM SYSTEM

Let us consider the finite-dimension system S with non-
degenerate spectrum described by the Hamiltonian ĤS. The
system interacts with the reservoir R having the Hamiltonian
ĤR via the interaction Hamiltonian ĤSR = h̄λŜR̂ discussed
above. The dynamics of the system and the reservoir is
described by the von Neumann equation for the density
matrix ρ̂:

dρ̂(t )

dt
= i

h̄
[ρ̂(t ), ĤS + ĤR + ĤSR]. (3)

One can eliminate the reservoir degrees of freedom and
reduce Eq. (3) to the master LGKS Eq. (1) that describes the dy-
namics of the system density matrix ρ̂S = TrRρ̂ [6,23,26,28].
The operator L[ρ̂S (t )] from Eq. (1) may be presented in the
following form:

L[ρ̂S (t )] = − i

h̄
[ĤS, ρ̂S] + λ2

∑
k1,k2

G
(
ωk1 − ωk2

)

× ([
Ŝk1k2 , ρ̂S (t )Ŝ†

k1k2

] + [
Ŝk1k2 ρ̂S (t ), Ŝ†

k1k2

])
. (4)

In Eq. (4), the operators Ŝk1k2 = Sk1k2 |k1〉〈k2| are connected
to operator Ŝ as,

Ŝ =
∑
k1,k2

Sk1k2 |k1〉〈k2|, (5)

where |ki〉 (i = 1, ..., N ) are nondegenerate eigenstates of the
system Hamiltonian ĤS, ωki

are eigenfrequencies correspond-
ing to these states, and the function

G(ω) =
∫ ∞

−∞
exp(iωτ )TrR ( ˆ̃R(t ) ˆ̃R(t + τ )ρ̂R )dτ

is the Fourier transform of the reservoir correlation function

ˆ̃R(t ) = exp(iĤRt/h̄)R̂ exp(−iĤRt/h̄).

Note that if the reservoir has the temperature T , i.e.,

ρ̂R = exp(−ĤR/kT )/Tr exp(−ĤR/kT ),

then the Kubo-Martin-Schwinger condition,

G(ω) = exp (h̄ω/kT )G(−ω), (6)

is satisfied.
Now we show that a COM commutes with both ĤS and Ŝ.

By definition, a COM, such as Î , should stay invariant under
the action of the Lindblad superoperator, i.e.,L̂[Î ] = 0. This
means that d〈Î 〉/dt should be equal to zero.
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The dynamics of the expected value of the operator Î is governed by the equation

d

dt
〈Î 〉 = TrS

(
d

dt
ρ̂S Î

)
=

∑
k1k2

TrS
(
iIk1k2

(
ωk1 − ωk2

)|k1〉〈k2|ρ̂S

)

+ 1

2

∑
k1,k2

γk1k2

∣∣Sk1k2

∣∣2
TrS

((
2Ik1k1 |k2〉〈k2| −

∑
k

Ik2k|k2〉〈k| −
∑

k

Ikk2 |k〉〈k2|
)

ρ̂S

)
, (7)

where γk1k2 = λ2G(ωk1 − ωk2 ) � 0 and time evolution of the density matrix is governed by Eq. (1). Since Î is a COM, we have
d〈Î 〉/dt = 0 at any moment, including the initial moment. At the initial moment, we may arbitrarily choose ρ̂S . In particular,
at the initial moment, we choose the system to be in a pure state |kα〉, then the density matrix has a form ρ̂S = |kα〉〈kα| and the
equality of the right-hand side of Eq. (7) to zero reduces to∑

k1

γk1kα

∣∣Sk1kα

∣∣2(
Ik1k1 − Ikαkα

) = 0, α = 1, ..., N. (8)

Equations (8) holds for arbitrary kα . Thus, we have a system of N equations. Since the operators in Eqs. (8) do not depend on
time, this system is valid at any time.

Now we prove that the term in the sum in each equation of system (8) is zero. Since N is finite, quantities Ikakα
can be ordered as

Ika1 kα1
� Ika2 kα2

� ... � IkaN
kαN

. First, we consider the equation from system (8) for α = α1, i.e., Ikα1 kα1
is the smallest. Because

γk1kα
� 0, all the terms in Eq. (8) are non-negative and this equation is valid only if each term is equal to zero∣∣Sk1kα1

∣∣2(
Ik1k1 − Ikα1 kα1

) = 0 (9)

for arbitrary k1. As a result, all the terms with α = α1 drop out from system (8). Then, we repeat the procedure for Ikα2 kα2
. This

excludes terms with k1 = α2. After N iterations, we obtain that for all diagonal terms |Skα2 kα1
|2(Ikα2 kα2

− Ikα1 kα1
) = 0.

Now we show that all nondiagonal Ikβkα
are zero. If at the initial moment we choose ρ̂ = (a|kα〉 + b|kβ〉)(a∗〈kα| + b∗〈kβ |),

then from Eqs. (7) and (8) we obtain

ab∗Ikβkα

(
i
(
ωkα

− ωkβ

) −
∑
k1

γk1kβ

∣∣Sk1kβ

∣∣2 −
∑
k1

γk1kα

∣∣Sk1kα

∣∣2

)

+ a∗bIkαkβ

(
i
(
ωkβ

− ωkα

) −
∑
k1

γk1kβ

∣∣Sk1kβ

∣∣2 −
∑
k1

γk1kα

∣∣Sk1kα

∣∣2

)
= 0. (10)

Because the coefficients a and b and the eigenstates |kα〉 and |kβ〉 are arbitrary, it follows from Eq. (10) that

Ikβkα

[
i
(
ωkα

− ωkβ

) −
∑
k1

γk1kβ

∣∣Sk1kβ

∣∣2 −
∑
k1

γk1kα

∣∣Sk1kα

∣∣2

]
= 0 (11)

for any nondiagonal element Ikβkα
of the operator Î . Note, that

each term, γk1kβ
|Sk1kβ

|2, in the sums in Eq. (11) is real. Since
we consider the Hamiltonian ĤS , for which the spectrum is
nondegenerate, then i(ωkα

− ωkβ
) �= 0. Thus, in Eq. (11), the

expression in the brackets has a nonzero imaginary part and,
consequently, Eq. (11) holds only if Ikβkα

= 0. This means that
the operator Î is diagonal in the basis of the eigenvectors of
ĤS , Î = ∑

k Ikk|k〉〈k|. Thus Î and ĤS commute.
Using the diagonal representation of the operator Î , Î =∑
k Ikk|k〉〈k|, the commutator of Î and Ŝ may be expressed as

[Î , Ŝ] =
∑

k

Ikk|k〉〈k|
∑
k1,k2

Sk1k2 |k1〉〈k2|

−
∑
k1,k2

Sk1k2 |k1〉〈k2|
∑

k

Ikk|k〉〈k|

=
∑
k1,k2

Sk1k2

(
Ik1k1 − Ik2k2

)|k1〉〈k2|. (12)

Using Eq. (9) we arrive at the commutativity of the operators
Î and Ŝ, [Î , Ŝ] = 0. Thereby, the COM Î commutes with both
ĤS and Ŝ; analogously, one can obtain that any operator that
commutes with ĤS and Ŝ is a COM.

It can be shown that Eqs. (1) and (4) ensure that the first and
the second laws of thermodynamics are satisfied [6,23,26,28].
Usually, it is assumed that if a system has a COM, the zeroth
law of thermodynamics is violated. It implies that there are
many stationary states of the system. Below we show how to
construct these stationary states.

III. SUBSPACES GENERATED BY SYSTEM-RESERVOIR
INTERACTION AND CONSTANTS OF MOTION

If in the basis vectors |ks〉, the matrix Ŝ defined by Eq. (5)
has a block-diagonal form, then the whole space of the system
states is a direct sum of subspaces corresponding to blocks of
the matrix Ŝ. If the initial system state belongs to one of such a
subspace, then the system does not leave this subspace during
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the evolution. Indeed, using Eqs. (1) and (4) for diagonal and
nondiagonal elements of the density matrix, we obtain

ρ̇
(k1k1 )
S =

N∑
k2=1

γk2k1

∣∣Sk2k1

∣∣2
ρ

(k2k2 )
S − ρ

(k1k1 )
S

N∑
k2=1

γk1k2

∣∣Sk1k2

∣∣2
,

(13)

ρ̇
(k1k2 )
S = −i

(
ωk1 − ωk2

)
ρ

(k1k2 )
S

− 1

2

N∑
k=1

(
γkk1

∣∣Skk1

∣∣2 + γkk2

∣∣Skk2

∣∣2)
ρ

(k1k2 )
S . (14)

From Eq. (14) one can see that any nondiagonal element
ρ

(k1k2 )
S decays exponentially and does not interact with other

elements. Equation (13) shows that diagonal elements ρ
(k1k1 )
S

interact only with other diagonal elements ρ
(k2k2 )
S for which

Sk2k1 �= 0. This means that only intra-subsystem transitions
that are determined by the matrix elements related to a given
subspace are possible. Thus, it is the form of the matrix of the
operator Ŝ that determines the subspaces, in which the system
evolves.

In 1937, Krylov [42] developed a special algorithm to
construct the subspaces generated by an operator Ŝ. A direct
application of this algorithm, however, is not suitable for our
purpose, because it includes the transition to new basis vectors.
Since the LGKS equation implies the use of the basis vectors
|ks〉 of ĤS , then to reveal the block-diagonal form of the
operator Ŝ, we can only rearrange these vectors. Below, we
modify Krylov’s procedure in a way that the same basis vectors
can be retained. This modification rearranges the basis vectors
for the matrix of the operator Ŝ making it block diagonal.

To construct the first subspace, we have to find the set of the
basis vectors B1 = {|ki〉}1, forming the first block of the matrix
Ŝ. The set B1 should be constructed in a way that if some basis
vector |ki〉 belongs to B1, then Skikj

= 0 for any |kj 〉 /∈ B1. The
number of vectors in B1 we denote as N1 � N , where N is the
dimension of the whole space. We need to renumber the basis
vector to place the vectors of B1 at the beginning of the basis.
This creates the first block in the upper-left corner of the matrix
Skj ki

. Then, we have to repeat this procedure for the remaining
basis vectors to create the next block and continue doing this
until the whole matrix becomes block diagonal.

To implement this recursive procedure, we start with some
eigenvector |k1〉 of the Hamiltonian ĤS and construct the vector
Ŝ|k1〉. Since ĤS and Ŝ do not commute, the vector Ŝ|k1〉
may not be an eigenvector of ĤS . In this case, Ŝ|k1〉 can be
represented as Ŝ|k1〉 = ∑n1<N

i=1 Skik1 |ki〉 with Skik1 �= 0. This
sum is a linear combination of n1 basis vectors corresponding
to nonzero elements in the k1-th column of the matrix Skik1 .
These n1 � N vectors form the set B1. For the next step,
we decompose each vector |ki〉 of the set B1 as Ŝ|ki〉 =∑N

j=1 Skj ki
|kj 〉. If in the decompositions, vectors |kj 〉, which

do not belong to B1, arise, then we should add them to B1.
The procedure is repeated until on some step no new vectors
arise in the decompositions. This completes the construction of
the set B1 containing N1 vectors. Then, we should rearrange
the basis vectors in a way that all vectors of B1 take the first

N1 positions in the basis. As a result, in the upper-leftcorner
of the matrix Skj ki

, we form a diagonal block.
If N1 = N , then the dimension of this block is equal to

the dimension of the whole space. If N1 < N , then the above
procedure should be repeated with the vector |kN1+1〉 in the
rearranged basis. We obtain the next block and so on. This
construction ensures that in the rearranged basis, the matrix of
the operator Ŝ has a block-diagonal form. By construction, this
decomposition of the system state space is invariant.

Now we show that the constructed subspaces determine all
possible COMs. First, we show that for any subspace Bl0 , the
operator

Î = I (l0 )
∑

k
(l0 )
i ∈Bl0

∣∣k(l0 )
i

〉〈
k

(l0 )
i

∣∣ = I (l0 )P̂l0

(where I (l0 ) is some c-number) is a COM. For this, we have to
prove that Î commutes with both ĤS and Ŝ. Note that P̂l0 is the
projection operator onto the l0-th subspace, i.e., it is a unitary
operator in Bl0 and is zero in other subspaces. Because Î is
diagonal in the basis of eigenvectors of ĤS , then [Î , ĤS] = 0.

Next, in the rearranged basis, the operator Ŝ is block
diagonal, therefore Ŝ = ∑

l

∑
k

(l)
i1

,k
(l)
i2 ∈Bl

Si1,i2 |k(l)
i1

〉〈k(l)
i2

|. Then

[Î , Ŝ] = I (l0 )

⎡
⎢⎣1̂l0 ,

∑
k

(l0 )
i1

,k
(l0 )
i2

∈Bl0

Si1,i2

∣∣k(l0 )
i1

〉〈
k

(l0 )
i2

∣∣
⎤
⎥⎦ = 0. (15)

Thus, Î = I (l0 )P̂l0 is a COM. As a consequence, any oper-
ator, which can be decomposed as

Î =
∑

l

I (l)P̂l, (16)

where I (l) are arbitrary c numbers, which are fixed for a given
subspace, is also a COM as a linear combination of COMs.

Now, we show that there are no other COMs apart from
those having the form (16). Let us assume the contrary: a
COM Î ∗, which cannot be expressed in the form (16), exists.
Since Î ∗ is a COM, it commutes with ĤS and Ŝ. Because
the operator Î ∗ commutes with ĤS , it is diagonal in the
basis |k〉 of ĤS eigenvectors. Next, due to the commutativity
of Î ∗ and Ŝ, Eq. (9) must be satisfied. According to our
assumption, Î ∗ cannot be presented in the form (16). Hence,
in some subspace, vectors having different eigenvalues, such
as I ∗(kj ) �= I ∗(ki ), must exist. From Eq. (9) it follows that if
I ∗(kj ) �= I ∗(ki ), then Skikj

= 0. This means that it is possible
to combine the vectors with identical eigenvalues into new
subspaces so that the operator Ŝ takes a block-diagonal form
inside the initial block. This contradicts the fact that invariant
subspaces constructed above cannot be divided into invariant
subspaces of lower dimensions. Therefore, there are no COMs
apart from those that have the form (16). Moreover, this means
that during the system evolution, no values of COMs change.
Thus, this division corresponds to the basis family of COMs.
By construction, during evolution, starting at any point in an
invariant subspace, the system visits all points of this subspace.
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IV. STATIONARY SOLUTIONS OF THE MASTER
EQUATION AND CONSTANTS OF MOTION

Now, we can find the stationary solution of the master
equation. For Eqs. (1) and (4), along with the Kubo-Martin-
Schwinger condition (6), the stationary solution is the Gibbs
distribution:

ρ̂th
S = exp(−ĤS/kT )/Tr exp(−ĤS/kT ). (17)

This can be verified by the direct substitution of Eq. (17) into
Eq. (1). However, this stationary solution may not be unique.
If there are invariant subspaces, then the Gibbs distribution
over the states of a given invariant subspace is also a stationary
solution. Then, any state of the form

ρ̂st
S =

∑
j

λj

exp(−P̂j Ĥ P̂j /kT )

Tr exp(−P̂j Ĥ P̂j /kT )
,

∑
j

λj = 1, 0 � λj � 1, (18)

is stationary. Because LGKS Eq. (1) conserves the trace
and {|k(j )

i 〉}
i=∑j−1

l=1 Nl+1,
∑j−1

l=1 Nl+Nj
are invariant subspaces, and

the quantity Trj ρ̂S (t ) does not change in time. Therefore,
λNj

= TrNj
ρ̂st

S = TrNj
ρ̂S (0). Thus, in each invariant sub-

space, the system state evolves to the Gibbs distribution
over the states of the subspace with the partition function
Tr exp(−P̂Nj

Ĥ P̂Nj
/kT ). In each invariant subspaces, there

are no nontrivial COMs. As shown in Refs. [28,29,35], this
condition is necessary and sufficient for the uniqueness of
a stationary solution. Thus, Eq. (18) determines all possible
stationary solutions.

In a particular case, when the operator Ŝ commutes with
the Hamiltonian ĤS , all the nondiagonal elements of Ŝ in
the basis of the eigenvectors of ĤS are equal to zero, and
each subset Bl includes only one eigenstate (Nj = 1 for each
j ). Then, any operator that is diagonal in the basis of the
eigenstates of the Hamiltonian ĤS is a COM. In particular,
the Hamiltonian ĤS itself is a COM; therefore, the energy
of the system does not change in time. The system does not
have the Gibbs distribution, and the distribution depends on
the initial state. An example of such a situation is a dephasing
reservoir (see Ref. [27]).

V. EXAMPLE: INTERACTING TWO-LEVEL SYSTEMS

To illustrate the results obtained above, we apply the
developed procedure to a system of two interacting two-level
subsystems (TLSs) that relax into a dephasing reservoir. We
begin with considering noninteracting TLSs.

A. Noninteracting TLSs

Suppose that the transition frequencies of TLSs are ωi , then
we denote excited and ground states as |ei〉 and |gi〉 and the
transition operators between excited and ground states of each
TSL as σ̂i , i = 1, 2. The total Hamiltonian of the system is

ĤS = Ĥ1 + Ĥ2 = h̄ω1σ̂
†
1 σ̂1 + h̄ω2σ̂

†
2 σ̂2, (19)

with eigenstates |e1, e2〉, |e1, g2〉, |g1, e2〉, |g1, g2〉 and eigen-
values ω1 + ω2, ω1, ω2, 0.

Suppose that the TLSs interact with the reservoir described
by the Hamiltonian:

ĤR = h̄
∑

k

ωkâ
†
kâk, (20)

where ωk is the frequency of the k-th reservoir mode, and the
interaction Hamiltonian is

ĤSR = h̄
∑

k

γ k
1 σ̂ z

1 (â†
k + âk ) + h̄

∑
k

γ k
2 σ̂ z

2 (â†
k + âk ), (21)

where γ k
1 and γ k

2 are the interaction constants between the first
and the second TLSs and the k-th reservoir mode, respectively,
and σ̂ z

i = [σ̂ †
i , σ̂i] is the operator of the population inversion of

the i-th TLS. For simplicity, we assume that γ k
2 = aγ k

1 , where
the constant a does not depend on k. Then,

ĤSR = h̄
∑

k

γ k
1

(
σ̂ z

1 + aσ̂ z
2

)
(â†

k + âk ) = h̄λŜR̂, (22)

where λ = max{γ k
1 }, R̂ = ∑

k

γ k
1

max(γ k
1 )

(â†
k + âk ), and Ŝ =

σ̂ z
1 + aσ̂ z

2 . Such a reservoir describes phase relaxation of the
system. Indeed, the operator Ŝ = σ̂ z

1 + aσ̂ z
2 commutes with

the system Hamiltonian ĤS , and the energy of the system is
conserved; thus, the reservoir is purely dephasing. According
to Sec. IV, in this case, each invariant subspace consists of only
one system eigenstate.

To show this explicitly, we follow the procedure developed
in Sec. III. Acting by the operator Ŝ on the eigenstates of ĤS ,
we obtain

Ŝ|e1, e2〉 = (1 + a)|e1, e2〉, Ŝ|g1, g2〉 = −(1 + a)|g1, g2〉,
(23)

Ŝ|g1, e2〉 = (−1 + a)|g1, e2〉, Ŝ|e1, g2〉 = (1 − a)|e1, g2〉.
(24)

In action on each eigenvector, no new eigenvectors appear.
Thus, each eigenvector forms an invariant subspace with the
dimension one.

The corresponding COMs are projections over
each invariant subspace, namely, P̂1 = |e1, e2〉〈e1, e2|,
P̂2 = |g1, g2〉〈g1, g2|, P̂3 = |e1, g2〉〈e1, g2|, and P̂4 =
|g1, e2〉〈g1, e2|. These COMs are basis COMs, and any
linear combination of them is also a COM. Since

∑
i P̂i = 1̂,

out of four COMs, only three are linearly independent.
In this simple example, we can construct linear combina-

tions that have clear physical meanings. The first one is

2P̂1 + 1P̂3 + 1P̂4 + 0P̂2

= 2|e1, e2〉〈e1, e2| + 1|e1, g2〉〈e1, g2|
+ 1|g1, e2〉〈g1, e2| + 0|g1, g2〉〈g1, g2|

= (|e1, e2〉〈e1, e2| + |e1, g2〉〈e1, g2|)
+ (|e1, e2〉〈e1, e2| + |g1, e2〉〈g1, e2|)

= σ̂
†
1 σ̂1 + σ̂

†
2 σ̂2 (25)

This operator describes the number of excitations in the
system. Indeed, P̂1 corresponds to the state in which both
TLSs are in the excited states, and there are two excitations
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in the system, P̂2 corresponds to the state in which both TLSs
are in the ground state, and there are no excitations in the
system. P̂3 and P̂4 correspond to the subspaces in which only
one of TLSs is excited, and there is only one excitation. Thus,
the operator 2P̂1 + 1P̂3 + 1P̂4 + 0P̂2 = σ̂

†
1 σ̂1 + σ̂

†
2 σ̂2 has the

eigenvalue which is the number of excitations.
The second linear combination is

2P̂1 − 2P̂2 + 0P̂3 + 0P̂4

= 2|e1, e2〉〈e1, e2| − 2|g1, g2〉〈g1, g2|
= (|e1, e2〉〈e1, e2| + |e1, g2〉〈e1, g2|)

− (|g1, e2〉〈g1, e2| + |g1, g2〉〈g1, g2|)
+ (|e1, e2〉〈e1, e2| + |g1, e2〉〈g1, e2|)
−(|e1, g2〉〈e1, g2| + |g1, g2〉〈g1, g2|)

= σ̂ z
1 + σ̂ z

2 . (26)

The operator σ̂ z
1 + σ̂ z

2 describes the total population inver-
sion of the system. Indeed, in the first subspace, the state
|e1, e2〉 corresponds to two excited TLSs with the population
inversion of 2, in the second subspace, the state is |g1, g2〉 and
the population inversion is -2, in subspaces |e1, g2〉 and |g1, e2〉,
the population inversion is zero.

The third linear combination of basis COMs is the total
energy of the system:

(ω1 + ω2)P̂1 + ω1P̂2 + ω2P̂3 + 0P̂4

= (ω1 + ω2)|e1, e2〉〈e1, e2| + ω1|e1, g2〉〈e1, g2|
+ω2|g1, e2〉〈g1, e2| + 0|g1, g2〉〈g1, g2|

= ω1(|e1, e2〉〈e1, e2| + |e1, g2〉〈e1, g2|)
+ω2(|e1, e2〉〈e1, e2| + |g1, e2〉〈g1, e2|)

= ω1σ̂
†
1 σ̂1 + ω2σ̂

†
2 σ̂2 = ĤS. (27)

Note that the total energy of the system, as well as energies
of each TLSs, are conserved. For this reason, the reservoir with
Hamiltonian (20) and interaction (21) may be called dephasing.

These three COMs, the number of system excitation, the
total population inversion, and the total system energy, fully
characterize the final state of the system.

B. Interacting TLSs

Now suppose that there is a dipole-dipole interaction be-
tween TLSs so that the interaction between them is described
by the Hamiltonian V̂ = (d̂1 · d̂2 − 3(d̂1 · n)(d̂2 · n))/r3,
where r is the distance between TLSs and n is the nor-
mal unit vector directed from one TLS to another. Using
the expression for TLS dipole moment, d̂i = deg

i (σ̂i + σ̂
†
i )

(deg

i is the matrix element of the dipole transition), the

interaction Hamiltonian in the rotating-wave approximation
can be rewritten as V̂ = h̄�R (σ †

1 σ̂2 + σ̂
†
2 σ̂1), where �R =

[deg

1 · deg

2 − 3(deg

1 · n)(deg

2 · n)]/h̄r3 is the Rabi constant of the
interaction. The Hamiltonian of the system may be written as

ĤS = Ĥ1 + Ĥ2 + V̂ = h̄ω1σ̂
†
1 σ̂1 + h̄ω2σ̂

†
2 σ̂2

+ h̄�R (σ †
1 σ̂2 + σ̂

†
2 σ̂1). (28)

Eigenstates of ĤS are

|ψ1〉 = |e1, e2〉, |ψ2〉 = |g1, g2〉,
|ψ3〉 = cos ϕ|e1, g2〉 + sin ϕ|g1, e2〉, (29)

|ψ4〉 = − sin ϕ|e1, g2〉 + cos ϕ|g1, e2〉,
where

ϕ = tan−1
[(√

�ω2/4 + �2
R − �ω/2

)/
�R

]
. (30)

The eigenvalues of eigenstates (29) are

E1 = ω1 + ω2, E2 = 0,

E3,4 = (ω1 + ω2)/2 ±
√

�ω2/4 + �2
R. (31)

Note that the interaction between TLSs results in mixing of
states |e1, g2〉 and |g1, e2〉 [see Eq. (29)].

Now, we follow the procedure developed in Sec. III.
Equation (23) holds as before, because the first two eigen-
vectors, |ψ1〉 and |ψ2〉, are equal to |e1, e2〉 and |g1, g2〉,
respectively. Since the interaction operator V̂ mixes the states
|e1, g2〉 and |g1, e2〉, instead of Eq. (24), the action of the
operator Ŝ on the states |ψ3〉 and |ψ4〉 should be considered.
As a result, we have

Ŝ|ψ3〉 = (cos2ϕ + asin2ϕ)|ψ3〉 + cos ϕ sin ϕ(1 − a)|ψ4〉.
(32)

We can see that |ψ3〉 is no longer an eigenvector of Ŝ. The
result of the action of Ŝ on |ψ3〉, in addition to |ψ3〉, contains
another basis vector, |ψ4〉. Now, we should act by the operator
Ŝ on this vector:

Ŝ|ψ4〉 = cos ϕ sin ϕ(1 − a)|ψ3〉 + (sin2ϕ + acos2ϕ)|ψ4〉.
(33)

There are no new basis vectors in Eq. (33). Thus, the
subspace spanned by the basis vectors |ψ3〉 and |ψ4〉 is an
invariant subspace with a dimension of two. Thus, the number
of invariant subspaces is reduced from four to three. The
projection operator on the invariant subspace spanned by the
basis vectors |ψ3〉 and |ψ4〉 is

ˆ̃P = |ψ3〉〈ψ3| + |ψ4〉〈ψ4| = (cos ϕ|e1, g2〉 + sin ϕ|g1, e2〉)(cos ϕ〈e1, g2| + sin ϕ〈g1, e2|)
+ (− sin ϕ|e1, g2〉 + cos ϕ|g1, e2〉)(− sin ϕ〈e1, g2| + cos ϕ〈g1, e2|)

= (cos2ϕ + sin2ϕ)|e1, g2〉〈e1, g2| + (sin2ϕ + cos2ϕ)|g1, e2〉〈g1, e2|
+ (cos ϕ sin ϕ − sin ϕ cos ϕ)|e1, g2〉〈g1, e2| + (sin ϕ cos ϕ − cos ϕ sin ϕ)|g1, e2〉〈e1, g2|

= |e1, g2〉〈e1, g2| + |g1, e2〉〈g1, e2| = P3 + P4. (34)
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FIG. 1. The dependence of the diagonal matrix elements of the
density matrix p3 = ρ33 and p4 = ρ44 on time obtained from LGKS
Eq. (13) for the different initial condition: p3(0) = 0.7 and p4(0) =
0.3 (the solid red line), p3(0) = 0.7 and p4(0) = 0.3 (the blue dashed
line), p3(0) = 0.1 and p4(0) = 0.9 (the green dot-dashed line); E =
E3 − E4 = T = 1, γ34 = 1, γ43 = γ34 exp(−E/T ), t is expressed in
the units of γ34.

It should be emphasized that neither P̂3 nor P̂4 is a COM,
but their combination ˆ̃P is.

In this case, there are two linearly independent COMs.
The linear combinations that have physical meaning are the
number of excitations, σ̂

†
1 σ̂1 + σ̂

†
2 σ̂2 = 2P̂1 + 1 ˆ̃P + 0P̂2, and

the total population inversion, 2P̂1 − 2P̂2 = σ̂ z
1 + σ̂ z

2 . Due to
the interaction between TLSs, the system Hamiltonian is no
longer a COM. This means that the reservoir ceases to be
purely dephasing; now, it causes the energy relaxation in the
invariant subspace spanned by the basis vectors |ψ3〉 and |ψ4〉.
It remains dephasing, however, in the subspaces with vectors
|ψ1〉 and |ψ2〉.

Using the obtained COMs and Eq. (18), we may write
possible stationary solutions of the corresponding LGKS
equation:

ρ̂st
S = λ1|ψ1〉〈ψ1| + λ2|ψ2〉〈ψ2| + λ

1 + exp
(−E3−E4

kT

)
×

(
|ψ4〉〈ψ4| + exp

(
−E3 − E4

kT

)
|ψ3〉〈ψ3|

)
, (35)

where λ, λ1, and λ2 are determined by the initial density matrix
ρ̂(0):

λ1 = ρ11(0), λ2 = ρ22(0), λ = ρ33(0) + ρ44(0). (36)

Note that in the invariant subspaces with dimension 1,
the stationary and initial states are the same. In the invariant
subspace with dimension 2, the stationary solution is the Gibbs
distribution.

In Fig. 1, the dependences of the matrix elements ρ33(t ) and
ρ44(t ) on time obtained by computer simulation of the Eq. (13)
are shown. One can see that they indeed converge to the Gibbs
distribution.

VI. CONCLUSION

In this work, we consider stationary states of an open
quantum system interacting with a thermal reservoir in a
system that has COMs. We show that stationary states retain
the memory of the initial state of the system. To be specific,
using the basis of eigenfunctions of the system Hamiltonian
HS , we have shown that the Hamiltonian of the interaction
between the system and the reservoir HSR determines the
splitting of the space of system states into a set of subspaces.
In each of the subspaces, the system behaves as if there are no
COMs. This means that, if the initial state of the system belongs
to one of these subspaces, the system evolves inside this
subspace reaching the Gibbs distribution after thermalization.
Hence, each such an invariant subspace can be linked to a
COM by assigning some eigenvalue to this COM (such as
unity, in one invariant subspace and zeros in the others).
Consequently, each subspace determines its own COM that
has a fixed eigenvalue in this subspace and zeros in others.
If there are N subspaces, then it is possible to define N − 1
COMs because, in each subspace, COMs with identical values
are trivial and do not lead to nonuniqueness of the stationary
state. Thus, the algorithm developed in the paper allows one to
find all invariant subspaces and all COMs.

The eigenvalues of existing COMs determine neither the
stationary state in each subspace nor the stationary state of
the whole system. In any subspace, the Gibbs distribution is
determined by the temperature of the reservoir and by the set
of eigenfunctions of HS that construct this subspace. To find
the stationary state of the whole system, one must know the
initial state of the system. The projection of this state onto
subspaces provides the weight factors for Gibbs distributions
characterizing each subspace. The weight factors determine
the corresponding stationary state of the whole system as a
weighted sum of the Gibbs distributions over the subspaces.

Thus, as an open quantum system with COMs interacting
with a reservoir evolves, it reaches one of many possible
stationary states. Though this state is thermalized with the
temperature of the reservoir, it is determined by the initial state
of the system.
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