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Statistics of the Lyapunov Exponent in 1D Random Periodic-on-Average Systems
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By means of Monte Carlo simulations we show that there are two qualitatively different modes of
localization of classical waves in 1D random periodic-on-average systems. States from pass bands
and band edges of the underlying band structure demonstrate single parameter scaling with universal
behavior. States from the interior of the band gaps do not have universal behavior and require two
parameters to describe their scaling properties. The transition between these two types of behavior
occurs in an extremely narrow region of frequencies. When the degree of disorder exceeds a certain
critical value the single parameter scaling is restored for an entire band gap. [S0031-9007(98)07924-1]

PACS numbers: 72.15.Rn, 03.65.Sq, 05.45.+b, 42.25.Bs

In this paper we numerically study localization prop- strong [10,11]. It should be emphasized, therefore, that in
erties of band gap states in a one-dimensional periodimur case the absence of SPS is caused not by the strength
on-average random system (PARS). These kinds abf disorder, but by the different nature of the gap states.
systems were extensively studied in the past in the constudying how vafA) and the Lyapunov exponent (LE) it-
text of electron localization, where they were known asself depend upon the degree of disorder (rms fluctuations
Kronig-Penny-like models (see, for example, Refs. [1-3],0f a random parametes;) we find that there exists a criti-
and references therein). Classical wave versions of 1R@al value,o;, at which the boundary between the groups
PARS also recently attracted considerable attention [4—7Dpf states with different localization properties disappears.
Most of these studies focused upon localization propertieét o > o, all the states have the regular Anderson-like
of states from pass (conduction) bands of the respectivieehavior. Itis interesting to note that in this situation SPS
initial periodic systems, or states at band edges of thé restoredwhen disorder becomes stronger, contrary to
original spectrum. They were found to behave similarlywhat one would expect in the Anderson model.
to the one-dimensional Anderson model, demonstrating In the paper we deal with the classical wave version of
single-parameter scaling (SPS) and universality [8]. PARS and consider localization properties of scalar waves

Disorder, however, not only localizes states in the conin a 1D superlattice composed of two alternating layers
duction bands of 1D systems, it also gives rise to localizeénd B with dielectric constante, and eg, respectively.
states inside band gaps of the original spectrum. This i¥he results, however, can also be applied to Kronig-
well known in the physics of disordered semiconductorsPenny-like models of electron localization. We introduce
where a vast literature on properties of localized states ariglisorder in the system forcing the thicknegg of the
ing within forbidden gaps of semiconductors exists (seeB layers to change randomly assuming thgtis drawn
for example, book [9]). In the case of one-dimensionalindependently from a uniform distribution.
models, however, these states have been studied surpris-The structure of the described model is periodic on
ingly little. Particularly, statistical properties of the Lya- average with the spatial period equaldo= d, + (dp)
punov exponent (the inverse localization length),for ~ and with random positions of the boundaries between
these states have not been studied at all. At the same timéifferent layers. The states of the model are characterized
it turns out that the variance, V@, of the Lyapunov ex- by a dimensionless wave number= (v /c)d, wherew
ponent contains important information about spectral propis the frequency and is the vacuum speed of light.
erties of these systems. From the frequency dependenceWe study the model by means of the transfer-matrix
of the variance, we find that the band gap states can be dinethod. The state of the system is described by the vector
vided into two groups with qualitatively different localiza- u, with components representing the wave fidlg, and
tion properties separated by a sharp boundary. This meaits spatial derivativeE,. The evolution of the vecton,
that though all states in 1D systems are localized, there controlled by the matriX,: u,+; = X,u,, whereX,
might be two qualitatively different regimes of localiza- is determined as follows:
tion. The first regime corresponds to the band and band
edgg states, and has regular Anders_on behaviqr (if dis_or— X, — ( codk,d,) ki”sin(kndn)> (1)
der is locally weak). The second regime, associated with " —ky sin(k,d,) codk,d,) )’
the gap states, does not obey SPS and is not universal.

The regular tight-binding Anderson model also demonwherek, = k,/€,. The LE can be computed in accor-
strates violation of SPS, when disorder becortmeslly  dance with the following definition:
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A — lim 1 <In<” XMy, |I>> @) Fig. 2 for differentk. This dependence undergoes a strong
Il g || ’ qualitative change when the wave number moves toward
the center of the gap. The difference in behavior of the
where L is the length of the system, the mati&™) is  _E corresponding to the states from the pass band and the
a product of allX matrices corresponding to each layer,gap was previously discussed in Refs. [6,7,13]. Our re-
XM =TT{ X, andu, is a generic vector. The LE de- sults show that the change between different shapes of the
termined according to Eq. (2) is a self-averaging quantityfunction (o) occurs within a narrow frequency interval of
For finite systems, however, it exhibits fluctuations thatihe order of magnitude d.01% suggesting existence of
are the main object of study of this paper. a well-defined boundary between different groups of state.
In computer simulations we generated a sequence af is remarkable that this boundary coincides with the posi-
random X matrices in accord with the model describedtion of the respective maximum of ay. Foro > o,
above. The parameters of the model were chosen as folyhereo., corresponds to the transformation between dif-
lows: g4 = 1, ep = 1.2; d4 = 1 and the mean width of ferent types of behavior of vér), all functions(o) for
the B layers(dg) = 1. The standard deviationr of dg  different k merge together demonstrating behavior inde-
is @ measure of the disorder in the model. The results ghendent of frequency of the states.
the calculations are presented in figures below. Figure 1 Figure 3 presents vér) directly plotted versust. In
shows the frequency dependence of the LE and its variorder to obtain this figure, we combine frequency depen-
ance, vafA) = (A%) — (A)?, for frequencies covering one dences of the LE and its variance in the region covering
of the band gaps. The behavior afcoincides with the  several bands of the parent periodic system. This figure il-
results reported previously in Ref. [4,5]. The variance ofiustrates the violation of the SPS in our system. Itis clear
A at the same time demonstrates anomalous nonmonotorigm comparison between this plot and the plot in Fig. 1
behavior with two maxima inside the band. In the regionthat anomalous nonlinear dependence of Maversusa
between the maxima, var) changeppositelyto A, ap- s caused by the states from the inner region of the band
proaching its minimum value at the center of the gap. Suclyap between the two maxima of vay. The multibranch
a behavior is clearly inconsistent with SPS, which dic-structure of the plot shows the lack of universality in this
tates that van) = (2/L)A[8,10,12]. When the dispersion dependence: it is different for different band gaps. Indeed,
of our random variable increases, the maxima of Mar we checked that different branches originate from frequen-
moves toward the center of the gap, and the central minicies corresponding to different band gaps. Double lines,
mum raises. At some critical value,, double-peaked which form each of the branches, correspond to different
structure of vafA) disappear, and at > o, the variance halves of the same band gap. The insert in Fig. 3 presents
exhibits only one maximum and goes along with the LE it-one of the branches that was obtained by filtering out all
self. The results presented in this figure show that localizaghe frequencies except those that belong to one half of a
tion properties of band and band-edge states are differentand gap.
from those of the gap states. This difference sharply mani- The nonuniversal behavior of states from different band
fests itself in the dependence of the LE upsrshown in  gaps and a violation of SPS are closely related phenomena.
The intimate relationship between nonuniversality and SPS
is demonstrated in Fig. 4. These plots show the evolution
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FIG. 1. Frequency dependence of the Lyapunov exponent G

and its variance v@n) for the frequencies covering a band gap

(2.83 < k < 2.88) and band edges of the underlying structure.FIG. 2. The dependence of the Lyapunov expongnipon
The graph was obtained for a system w0 layers, so that the standard deviatioor of the random layers’ thicknesses for
states with2.82 < k < 2.89 have localization lengths shorter different k& in the vicinity of k = 2.835, which approximately
than the system’s size. corresponds to the left maximum of vay shown in Fig. 1.
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0.0005 Therefore, different branches of the graph in Fig. 4 return
i 000008 - to the universal behavior at different values of the disorder
0.0004 - R parameterg.
o0 oeele, 0000048 The presented results suggest that the probability distri-
¥ 00003 L % 000000d LN bution function of the LE,P(.)‘), in the case of the inner
2 S s o 000 002 004 gap states, cannot be described by a single parameter. We
g &f” o find, however, that in the asymptotic limit — o, P(A)
> 000021 -7 retains its Gaussian form with @n « 1/L. That means
S 5 B that statistical properties of the gap states are character-
0.0001 |- § e ized by two independent parameters. The similar situation
L “a“iz;ﬂa %d”v s occurs in the Anderson model in the case of locally strong
00000 £t a1 BT scattering [10,11]. In our situation the local scattering,

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 Characterized by the mismatch between the dielectric pa-
rameters of the layers, is weak. The considered system,
therefore, presents an example when two-parameter scal-
FIG. 3. Variance ofA versusA. The graph was obtained by ing occurs due to properties of the initial spectrum of the

means of combining frequency dependencies ofMaand A system rather then due to the strength of the disorder.

for the frequency region covering four band gaps of the parent To suggest a qualitative explanation of the results let

{)heenlc;c#ch;tl;uocfu&:gS;:rgiéngae;g %r;?fponds to frequencies frorrcjs first consider the nonmonotonic behavior of(war It

is more convenient to start with the states arising in the
) ] center of the forbidden band, which exhibit the smallest
of the dependence of V@) versusA with an increase fiyctuations of . The reason for this behavior lies in
of the value of the standard deviatiom, of the layers’ the fact that states deep in the forbidden band can only
thickness. One can observe that with an increase,éfie  grise due to a strong deviation from the initial periodic
variance ofA approaches a regular linear dependence UpOgyrycture. The probability of such events is small, and
A. And along with this, all the branches from the differentgy,ch defect configurations, occurring at different parts of
band gaps merge into one universal curve. It happens e structure, are separated from each other by distances
approximately the same values @fat which the maxima  ;,ch greater than localization lengths of states emerging
on the frequency dependence of(grdisappear, signaling  qye to these deviations. The wave functions corresponding
about complete eroding of the initial band structure byiq gifferent states do not overlap and such configurations
the d!sorder. However, a destruction of the initial speccan be considered as isolated defects. It is well known
trum is not a uniform (in terms of frequencies) process—see, for example, [2]) that the localization length in this
some bands disappear at smaller disorder than othersase is determined solely by the initial spectrum of the
system and the frequency of the corresponding local state.
00006 Therefore, fluctuations of would be equal to zero in the
02004 idealized situation of isolated defects. In the real case, we
’ el have small fluctuations due to overlap of exponential tails
of different states, and rare occasions when two defects
appears close to each other.
Whenk moves from the center of the band gap toward
the boundary, the density of the configurations responsible
D000 L 0'06 * OLS 0,‘10 : 01; o —— for the states at corresponding frequencies and their local-
0.0004 | : : : ‘ ' ‘ : | ization lengths increase. First this leads to an increase in
S the fluctuation of the LE because the localization length is
determined now by complexes of several interacting de-
fect configurations, and becomes sensitive to the fluctu-
ating structure of such complexes. However, as the band
boundary is approached, the effect of self-averaging comes
into play. With an increase of spatial overlap between
PO A T U S U RO SR B B states localized at different centers, self-averaging of the
000 002 004 Oifm L?}?ZVE;;%NEET” 014016 0.8 LE becomes more effective, leading, therefore, to the de-
crease of vdn). The interplay between these two tenden-
FIG. 4. Evolution of the graph from Fig. 3 with increaseaaf  cjes generates nonmonotonic behavior of ¥apresented
It is seen how different branches raise gradually and form the, Fig. 1.

universal curve corresponding to the prediction of SPS. Note A ts similar to that ted ab lai
thato = 0.08 on the second graph is close to, but still smaller ~rguments similar to that presented above can expiain
than, the critical value of- that marks the start of the universal the difference in ther dependence of the LE for states

behavior of the graphs in Fig. 2. from the inner part of the band gaps and boundary states.
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The behavior of the LE for states from the pass bandexponent and a narrow critical region separating these
and states at the band edges is well understaod:o>  groups. The first group combines states from pass bands
for states from the pass bands, and o2/> at the band of the parent periodic system and band-edge states from
edges [4]. Itis also clear that when— 0, the LE for the band gaps. The statistical properties of this group
states from the band gap tends to a nonzero value, whiddre similar to the properties of the Anderson model and
is just an inverse penetration length through the forbiddercan be described by the single-parameter-scaling. The
band. This penetration length obviously decreases wheother group consists of states from the inner region of
frequency approaches the center of the band gap. Disord#re band gaps and demonstrate a number of anomalies.
results in emergence of a small number of states witiThe variance of the LE, for this group decreases when the
frequencies in the inner part of the gap. These stateBequency approaches the center of a band gap resulting
enhance propagation of waves due to a process similar in a strong deviation from single-parameter scaling-like
resonant tunneling, reducing by this means the LE. Theskehavior. The dependence of (& upon the LE is
arguments cannot be applied to states at the band edgenuniversal for these states and is different for different
because their penetration lengthsat= 0 is so large that band gaps. The transition between the two groups is
even small disorder makes them indistinguishable from thalso accompanied by the reversal of the relationship
states at the pass-band side of the edge. between the localization length and phase randomization
It is clear from the presented results that the violationength: for a pass band and band-edge stjjes< /i,
of SPS and the absence of universality in the considerednd /,, > [, for inner band-gap states. An increase in
system are due to nonmonotonic behavior of(xar It  the degree of randomness beyond a well-defined critical
is interesting, however, to examine this behavior from thevalue erodes the difference between the groups and
standpoint of general arguments leading to SPS [8]. Acreturns the system to the regular single-parameter-scaling
cording to these arguments, SPS is realized when the lanode of behavior. This can be interpreted as a complete
calization length,,. = A~!is much greater than the phase destruction of the original band structure by disorder.
randomization lengtl,,. In the random phase model [8] We are pleased to acknowledge stimulating discussions
it is assumed that phase randomization occurs at a micravith B.L. Altshuler. We wish to thank S. Schwarz
scopic scale, and, violation of the inequalily. > I,,  for reading and commenting on the manuscript. This
means that the localization length also becomes of microaork was supported by the NSF under Grant No. DMR-
scopic size. It is natural, therefore, not to expect univer9632789, and by a CUNY collaborative grant.
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