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Statistics of the Lyapunov Exponent in 1D Random Periodic-on-Average System
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By means of Monte Carlo simulations we show that there are two qualitatively different modes o
localization of classical waves in 1D random periodic-on-average systems. States from pass ba
and band edges of the underlying band structure demonstrate single parameter scaling with unive
behavior. States from the interior of the band gaps do not have universal behavior and require tw
parameters to describe their scaling properties. The transition between these two types of behav
occurs in an extremely narrow region of frequencies. When the degree of disorder exceeds a cert
critical value the single parameter scaling is restored for an entire band gap. [S0031-9007(98)07924
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In this paper we numerically study localization prop
erties of band gap states in a one-dimensional period
on-average random system (PARS). These kinds
systems were extensively studied in the past in the co
text of electron localization, where they were known a
Kronig-Penny-like models (see, for example, Refs. [1–3
and references therein). Classical wave versions of
PARS also recently attracted considerable attention [4–
Most of these studies focused upon localization propert
of states from pass (conduction) bands of the respect
initial periodic systems, or states at band edges of t
original spectrum. They were found to behave similar
to the one-dimensional Anderson model, demonstrati
single-parameter scaling (SPS) and universality [8].

Disorder, however, not only localizes states in the co
duction bands of 1D systems, it also gives rise to localiz
states inside band gaps of the original spectrum. This
well known in the physics of disordered semiconductor
where a vast literature on properties of localized states a
ing within forbidden gaps of semiconductors exists (se
for example, book [9]). In the case of one-dimension
models, however, these states have been studied surp
ingly little. Particularly, statistical properties of the Lya
punov exponent (the inverse localization length),l, for
these states have not been studied at all. At the same ti
it turns out that the variance, varsld, of the Lyapunov ex-
ponent contains important information about spectral pro
erties of these systems. From the frequency depende
of the variance, we find that the band gap states can be
vided into two groups with qualitatively different localiza
tion properties separated by a sharp boundary. This me
that though all states in 1D systems are localized, the
might be two qualitatively different regimes of localiza
tion. The first regime corresponds to the band and ba
edge states, and has regular Anderson behavior (if dis
der is locally weak). The second regime, associated w
the gap states, does not obey SPS and is not univer
The regular tight-binding Anderson model also demo
strates violation of SPS, when disorder becomeslocally
0031-9007y98y81(24)y5390(4)$15.00
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strong [10,11]. It should be emphasized, therefore, tha
our case the absence of SPS is caused not by the stre
of disorder, but by the different nature of the gap stat
Studying how varsld and the Lyapunov exponent (LE) it
self depend upon the degree of disorder (rms fluctuati
of a random parameter,s) we find that there exists a criti-
cal value,scr , at which the boundary between the grou
of states with different localization properties disappea
At s . scr all the states have the regular Anderson-li
behavior. It is interesting to note that in this situation SP
is restoredwhen disorder becomes stronger, contrary
what one would expect in the Anderson model.

In the paper we deal with the classical wave version
PARS and consider localization properties of scalar wa
in a 1D superlattice composed of two alternating layersA
and B with dielectric constantś A and ´B, respectively.
The results, however, can also be applied to Kron
Penny-like models of electron localization. We introdu
disorder in the system forcing the thicknessdB of the
B layers to change randomly assuming thatdB is drawn
independently from a uniform distribution.

The structure of the described model is periodic
average with the spatial period equal tod ­ dA 1 kdB l
and with random positions of the boundaries betwe
different layers. The states of the model are characteri
by a dimensionless wave numberk ­ svycdd, wherev

is the frequency andc is the vacuum speed of light.
We study the model by means of the transfer-mat

method. The state of the system is described by the ve
un with components representing the wave field,En, and
its spatial derivative,E0

n. The evolution of the vectorun

is controlled by the matrixXn: un11 ­ Xnun, whereXn

is determined as follows:

Xn ­

√
cosskndnd 1

kn
sinskndnd

2kn sinskndnd cosskndnd

!
, (1)

wherekn ­ k
p

en. The LE can be computed in accor
dance with the following definition:
© 1998 The American Physical Society
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l ­ lim
L!`

1
L

ø
ln

µ
k XsNdu0 k

k u0 k

∂¿
, (2)

whereL is the length of the system, the matrixXsNd is
a product of allX matrices corresponding to each laye
XsNd ­

QN
1 Xn, andu0 is a generic vector. The LE de-

termined according to Eq. (2) is a self-averaging quanti
For finite systems, however, it exhibits fluctuations th
are the main object of study of this paper.

In computer simulations we generated a sequence
randomX matrices in accord with the model describe
above. The parameters of the model were chosen as
lows: ´A ­ 1, ´B ­ 1.2; dA ­ 1 and the mean width of
the B layerskdB l ­ 1. The standard deviations of dB

is a measure of the disorder in the model. The results
the calculations are presented in figures below. Figure
shows the frequency dependence of the LE and its va
ance, varsld ­ kl2l 2 kll2, for frequencies covering one
of the band gaps. The behavior ofl coincides with the
results reported previously in Ref. [4,5]. The variance
l at the same time demonstrates anomalous nonmonoto
behavior with two maxima inside the band. In the regio
between the maxima, varsld changesoppositelyto l, ap-
proaching its minimum value at the center of the gap. Su
a behavior is clearly inconsistent with SPS, which di
tates that varsld ­ s2yLdl [8,10,12]. When the dispersion
of our random variable increases, the maxima of varsld
moves toward the center of the gap, and the central mi
mum raises. At some critical value,scr , double-peaked
structure of varsld disappear, and ats . scr the variance
exhibits only one maximum and goes along with the LE i
self. The results presented in this figure show that localiz
tion properties of band and band-edge states are differ
from those of the gap states. This difference sharply ma
fests itself in the dependence of the LE upons shown in
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FIG. 1. Frequency dependence of the Lyapunov exponenl
and its variance varsld for the frequencies covering a band ga
(2.83 , k , 2.88) and band edges of the underlying structur
The graph was obtained for a system with200 layers, so that
states with2.82 , k , 2.89 have localization lengths shorter
than the system’s size.
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Fig. 2 for differentk. This dependence undergoes a stron
qualitative change when the wave number moves towa
the center of the gap. The difference in behavior of th
LE corresponding to the states from the pass band and
gap was previously discussed in Refs. [6,7,13]. Our r
sults show that the change between different shapes of
functionlssd occurs within a narrow frequency interval o
the order of magnitude of0.01% suggesting existence of
a well-defined boundary between different groups of sta
It is remarkable that this boundary coincides with the pos
tion of the respective maximum of varsld. For s . scr ,
wherescr corresponds to the transformation between d
ferent types of behavior of varsld, all functionslssd for
different k merge together demonstrating behavior ind
pendent of frequency of the states.

Figure 3 presents varsld directly plotted versusl. In
order to obtain this figure, we combine frequency depe
dences of the LE and its variance in the region coveri
several bands of the parent periodic system. This figure
lustrates the violation of the SPS in our system. It is cle
from comparison between this plot and the plot in Fig.
that anomalous nonlinear dependence of varsld versusl

is caused by the states from the inner region of the ba
gap between the two maxima of varsld. The multibranch
structure of the plot shows the lack of universality in th
dependence: it is different for different band gaps. Indee
we checked that different branches originate from freque
cies corresponding to different band gaps. Double line
which form each of the branches, correspond to differe
halves of the same band gap. The insert in Fig. 3 prese
one of the branches that was obtained by filtering out
the frequencies except those that belong to one half o
band gap.

The nonuniversal behavior of states from different ban
gaps and a violation of SPS are closely related phenome
The intimate relationship between nonuniversality and S
is demonstrated in Fig. 4. These plots show the evoluti
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FIG. 2. The dependence of the Lyapunov exponentl upon
the standard deviations of the random layers’ thicknesses fo
different k in the vicinity of k ­ 2.835, which approximately
corresponds to the left maximum of varsld shown in Fig. 1.
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FIG. 3. Variance ofl versusl. The graph was obtained by
means of combining frequency dependencies of varsld and l
for the frequency region covering four band gaps of the pare
periodic structure. The inset corresponds to frequencies fr
the left half of the second band gap.

of the dependence of varsld versusl with an increase
of the value of the standard deviation,s, of the layers’
thickness. One can observe that with an increase ofs, the
variance ofl approaches a regular linear dependence up
l. And along with this, all the branches from the differen
band gaps merge into one universal curve. It happens
approximately the same values ofs at which the maxima
on the frequency dependence of varsld disappear, signaling
about complete eroding of the initial band structure b
the disorder. However, a destruction of the initial spe
trum is not a uniform (in terms of frequencies) process—
some bands disappear at smaller disorder than oth

FIG. 4. Evolution of the graph from Fig. 3 with increase ofs.
It is seen how different branches raise gradually and form t
universal curve corresponding to the prediction of SPS. No
that s ­ 0.08 on the second graph is close to, but still smalle
than, the critical value ofs that marks the start of the universa
behavior of the graphs in Fig. 2.
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Therefore, different branches of the graph in Fig. 4 retu
to the universal behavior at different values of the disord
parameter,s.

The presented results suggest that the probability dis
bution function of the LE,Psld, in the case of the inner
gap states, cannot be described by a single parameter.
find, however, that in the asymptotic limitL ! `, Psld
retains its Gaussian form with varsld ~ 1yL. That means
that statistical properties of the gap states are charac
ized by two independent parameters. The similar situat
occurs in the Anderson model in the case of locally stro
scattering [10,11]. In our situation the local scatterin
characterized by the mismatch between the dielectric
rameters of the layers, is weak. The considered syst
therefore, presents an example when two-parameter s
ing occurs due to properties of the initial spectrum of t
system rather then due to the strength of the disorder.

To suggest a qualitative explanation of the results
us first consider the nonmonotonic behavior of varsld. It
is more convenient to start with the states arising in t
center of the forbidden band, which exhibit the smalle
fluctuations ofl. The reason for this behavior lies in
the fact that states deep in the forbidden band can o
arise due to a strong deviation from the initial period
structure. The probability of such events is small, a
such defect configurations, occurring at different parts
the structure, are separated from each other by distan
much greater than localization lengths of states emerg
due to these deviations. The wave functions correspond
to different states do not overlap and such configuratio
can be considered as isolated defects. It is well kno
(see, for example, [2]) that the localization length in th
case is determined solely by the initial spectrum of t
system and the frequency of the corresponding local st
Therefore, fluctuations ofl would be equal to zero in the
idealized situation of isolated defects. In the real case,
have small fluctuations due to overlap of exponential ta
of different states, and rare occasions when two defe
appears close to each other.

Whenk moves from the center of the band gap towa
the boundary, the density of the configurations respons
for the states at corresponding frequencies and their lo
ization lengths increase. First this leads to an increas
the fluctuation of the LE because the localization length
determined now by complexes of several interacting d
fect configurations, and becomes sensitive to the fluc
ating structure of such complexes. However, as the b
boundary is approached, the effect of self-averaging com
into play. With an increase of spatial overlap betwe
states localized at different centers, self-averaging of
LE becomes more effective, leading, therefore, to the
crease of varsld. The interplay between these two tende
cies generates nonmonotonic behavior of varsld presented
in Fig. 1.

Arguments similar to that presented above can expl
the difference in thes dependence of the LE for state
from the inner part of the band gaps and boundary sta
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The behavior of the LE for states from the pass ban
and states at the band edges is well understood:l ~ s2

for states from the pass bands, andl ~ s2y3 at the band
edges [4]. It is also clear that whens ! 0, the LE for
states from the band gap tends to a nonzero value, wh
is just an inverse penetration length through the forbidd
band. This penetration length obviously decreases wh
frequency approaches the center of the band gap. Disor
results in emergence of a small number of states w
frequencies in the inner part of the gap. These sta
enhance propagation of waves due to a process simila
resonant tunneling, reducing by this means the LE. The
arguments cannot be applied to states at the band e
because their penetration length ats ­ 0 is so large that
even small disorder makes them indistinguishable from t
states at the pass-band side of the edge.

It is clear from the presented results that the violatio
of SPS and the absence of universality in the consider
system are due to nonmonotonic behavior of varsld. It
is interesting, however, to examine this behavior from th
standpoint of general arguments leading to SPS [8]. A
cording to these arguments, SPS is realized when the
calization lengthlloc ­ l21 is much greater than the phase
randomization lengthlph. In the random phase model [8]
it is assumed that phase randomization occurs at a mic
scopic scale, and, violation of the inequalitylloc ¿ lph
means that the localization length also becomes of micr
scopic size. It is natural, therefore, not to expect unive
sality in this case. In our situation, however, localizatio
length remains macroscopical even for states deep ins
the gap. Therefore, the absence of SPS is not related to
influence of microscopic details of the system. At the sam
time one could expect the increase inlph in this spectral
region, because the phase of a wave changes only w
it crosses a localized state, which are very rare in th
spectral region. One can assume, therefore, that for
state from the inner region of the band gap one can ha
lph . lloc even though both these lengths remainmacro-
scopical. In order to check this assumption, we studie
a distribution of the phase, and determined the phase r
domization length using simple Neyman-Personx2 statis-
tical tests to check the uniformity of the distribution. We
used the plane wave representation for the transfer m
trix, and following Ref. [11], define the phase, as a relativ
phase responsible for the scaling behavior of the LE. T
results of the simulation confirm that the phase randomiz
tion length increases inside the gap, and exceeds the lo
ization length for the states between maxima of varsld. We
also found that the transition from the inequalitylph , lloc
to lph . lloc occurs approximately in the same critical re
gion, which separates the band-edge states from the in
states in Figs. 1 and 2.

To conclude, Monte-Carlo computer simulation o
wave localization properties of a one-dimensional rando
periodic-on-average system shows that the spectrum
the system can be divided into two groups of states wi
qualitatively different statistical behavior of the Lyapuno
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exponent and a narrow critical region separating the
groups. The first group combines states from pass ba
of the parent periodic system and band-edge states fr
the band gaps. The statistical properties of this gro
are similar to the properties of the Anderson model a
can be described by the single-parameter-scaling. T
other group consists of states from the inner region
the band gaps and demonstrate a number of anoma
The variance of the LE, for this group decreases when
frequency approaches the center of a band gap resul
in a strong deviation from single-parameter scaling-lik
behavior. The dependence of varsld upon the LE is
nonuniversal for these states and is different for differe
band gaps. The transition between the two groups
also accompanied by the reversal of the relationsh
between the localization length and phase randomizat
length: for a pass band and band-edge stateslph , lloc,
and lph . lloc for inner band-gap states. An increase
the degree of randomness beyond a well-defined criti
value erodes the difference between the groups a
returns the system to the regular single-parameter-sca
mode of behavior. This can be interpreted as a compl
destruction of the original band structure by disorder.
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