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Abstract

We introduce a computationally efficient approach to calculating characteristics of excitons in quantum wells. In this

approach we derive a system of self-consistent equations describing the motion of an electron–hole pair. The motion in

the growth direction of the quantum well in this approach is separated from the in-plane motion, but each of them

occurs in modified potentials found self-consistently. The approach is applied to shallow quantum wells, for which we

obtained an analytical expression for the exciton binding energy and the ground state eigenfunction. Our numerical

results yield lower exciton binding energies in comparison to standard variational calculations, while require reduced

computational effort.

r 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Excitons play an important role in the band
edge optical properties of low-dimensional semi-
conductor structures such as quantum wells,
quantum wires, and quantum dots [1]. Quantum
confinement of electrons and holes in such
structures results in increased binding energy of
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excitons, their oscillator strength, and a life-time.
As a result, excitons, for instance, in quantum
wells, are observed even at room temperatures,
and play, therefore, a crucial role in various
optoelectronic applications [2–4]. To be able to
calculate effectively and accurately exciton binding
energies in the quantum heterostructures is an
important problem, and therefore, a great deal of
attention has been paid to it during several decades
[5–23]. However, this problem is rather compli-
cated, and while significant progress has been
achieved, new material systems and new type of
d.

www.elsevier.com/locate/physe


ARTICLE IN PRESS

I.V. Ponomarev et al. / Physica E 25 (2005) 539–553540
applications require more flexible, accurate and
effective methods.
Presently, the best results are usually obtained

within the framework of the variational approach,
where a certain form of the exciton wave function,
depending on one or more variational parameters
is being postulated. The exciton energy is then
calculated by minimizing the respective energy
functional with respect to the variational para-
meters. Unfortunately, even in the simplest (and,
therefore, less accurate) realization of this ap-
proach it is not possible to express a value of the
binding energy as a function of quantum well
parameters. The best one can hope for is to obtain
a set of complicated equations, which relate
material parameters to several variational para-
meters. The latter are found numerically, and then
used for numerical computation of the exciton
energy. These difficulties result from the fact that
variables in the Hamiltonian describing relative
motion of the electron–hole pair cannot be
separated: the presence of the quantum well
potential breaks the translational invariance of
the system, making it impossible to separate in-
plane motion of the electrons and holes from the
motion in the direction of confinement.
The standard variational approach is based

upon a choice of a specific form of a trial function,
which is usually chosen in the form of a product of
three terms [5–7,9]. The first two are one-particle
one-dimensional electron and hole wave functions
for confined motion across the quantum well. The
third term describes the relative motion of an
electron and a hole due to Coulomb interaction.
The accuracy of the results depends on the
complexity of the third term of the trial function
and the number of variational parameters. The
more the parameters, the lower the binding energy,
but, of course, the more extensive the calculations.
There is ample literature dealing with accurate
variational numerical calculations of exciton bind-
ing energy in quantum wells [5–19]. Most ad-
vanced of the calculations include the effects of
Coulomb screening due to dielectric constant
mismatch, as well as effective mass mismatch at
heterojunctions and band degeneracy [9,10].
Another approach discussed in the literature

[20–23] is based upon an expansion of the
electron–hole envelope wave function in terms of
the complete system of eigenfunctions of a one-
particle Hamiltonian describing motion of elec-
trons (holes) in the respective quantum well
confining potentials. The coefficients of this
expansion represent the wave functions of the in-
plane motion. They satisfy an infinite set of
differential equations, which are coupled because
of mixing of different electron and hole sub-bands
induced by Coulomb interaction. Such a system
can be solved only numerically after an appro-
priate truncation of the basis. Another way is to
solve the system in diagonal approximation and to
treat the off-diagonal elements with the help of
perturbation theory. The improvement of accu-
racy in this approach faces difficulties related to
the unknown errors due to basis truncation.
Despite the significant achievement of the

current approaches, they suffer from some princi-
pal limitations imposed by their very nature, and
which cannot be, therefore, easily overcome. For
instance, traditional variational approaches are
limited by the need to deal with a variational
function of a particular form, which tremendously
restricts the functional space over which the
minimum of the energy is being searched. This
problem cannot be circumvented by an increase in
the number of the variational parameters because
of the difficulties solving optimization problems
with three or more parameters. Besides, calcula-
tions presented in most papers are not self-
consistent (some limited attempts to introduce
self-consistency, which were made in the past
[17,18] are discussed below in Section 2). At the
same time self-consistence in calculations may
become more important for material systems with
wide band-gap materials. Thus, it is necessary to
develop a method of calculating exciton binding
energies, which would be more flexible and
accurate than the existing methods, and which
would allow to treat effects due to electron–hole
interaction in a self-consistent way.
In this work we suggest such an approach,

which is based upon application of the ideas of the
self-consistent Hartree method to the excitons in
quantum wells. The idea of this approach is that
instead of imposing a particular functional depen-
dence on the envelope wave function, we present it
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as a special combination of some unknown
functions, which depend on fewer than the total
number variables. Applying the variational prin-
ciple to this combination we derive a system of
equations describing both the motion of electrons
and holes in the direction of confinement, and the
relative two-dimensional in-plane motion of the
exciton. Effective potentials entering these equa-
tions have to be found self-consistently along with
the wave functions.
This approach has a number of advantages

compared to the previous methods. First of all, in
its most general statement it must give better
results for the exciton energy because we span a
much larger functional space in the search for the
minimum. Second, as it will be discussed below,
this approach automatically gives a self-consistent
description. Third, the approach can be naturally
expanded to more complicated systems such as
asymmetric quantum wells, and also allows
incorporating external electric and magnetic fields,
stress, and disordered potential acting on electrons
and holes in QW because of inherent inhomogene-
ities of structure. All these effects, which modify
the single particle part of the Hamiltonian, appear
automatically in self-consistent equations for the
variational functions. We show that for the case of
strong confinement in QW the self-consistent
approach with factorized form of the envelope
wave function allows one to achieve a very good
agreement with the results of the variational
method for the most elaborate trial functions used
in the literature before. The relative motion of the
exciton in the in-plane directions is described in
this treatment by the Coulomb potential averaged
with the wave functions of electron’s (hole’s)
motion in the direction of confinement. The latter,
in turn, is characterized by an effective confining
potential, which is obtained by combining the
initial quantum well potential with the appropri-
ately averaged Coulomb potential. Unlike the
perturbative method [20], our approach takes into
account the Coulomb mixing of the electron and
hole sub-bands in a non-perturbative way, and is
expected to give more accurate results even for the
cases when such mixing is important.
In addition to carrying out self-consistent

numerical calculations, we also provide detailed
analysis of the first iteration of the self-consistent
procedure. This analysis presents interest because
it admits to a semi-analytical treatment, and it
turns out that it gives rather accurate estimates for
exciton binding energies at a fraction of the cost of
full-fledged variational calculations. In addition,
qualitative characteristics of the exciton effective
potential, derived from this iteration, give a good
understanding of a self-consistent effective poten-
tial. In particular, we show that this potential has
two different regimes of behavior. For large
distances the potential has three-dimensional
Coulomb tails, while at very small distances it
becomes logarithmic as it would be for the true
Coulomb potential of a point charge in two
dimensions. A crossover between these two re-
gimes takes place around distance r � d; which is
the average electron–hole separation in the quan-
tum well in the z-direction. Understanding these
basic properties of the potential allowed us to
suggest a simple variational function, which yields
to an analytical expression for exciton binding
energy.
We apply our approach to a particular case of a

shallow quantum well, which allows for obtaining
some analytical results, which give important
qualitative insight into the properties of more
generic models as well. We use a d-functional
model to describe shallow quantum wells that
allow us to obtain an explicit form of the effective
Coulomb potential. We would like to stress here
that d-functional model itself is not an over-
simplification, as it is often thought, but is a
natural approximation for quantum wells, which
have only one level inside. This model gives an
accurate value of the energy level in such a well,
and correctly describes the respective wave func-
tion in the barrier region. In some sense, the model
of d-functional QW is complimentary to the model
of effective infinite quantum well [25], which is
used to approximate finite QW with large widths,
when the number of levels in a well is larger than
one (see discussion in Section 3). For shallow
quantum wells, the d-functional model allows
deriving a simple analytical formula for the
exciton binding energy that depends only on one
variational parameter. This formula gives results
comparable to the best numerical results obtained



ARTICLE IN PRESS

I.V. Ponomarev et al. / Physica E 25 (2005) 539–553542
by the standard variational approach. On the
other hand, the numerical iteration procedure
within the framework of the self-consistent
approach gives the binding energies, which are
lower than energies obtained by variational
method. Thus, we demonstrate that the method
is both efficient and accurate; it can be applied to
any quantum well with an average size of
confinement smaller than the three-dimensional
effective Bohr radius.
The paper is organized as follows. In Section 2

we discuss the model and derive the general self-
consistent equations. In Section 3 we derive an
analytical expression and discuss the different
limits of the effective exciton potential. In this
section we also derive the analytical expression for
zero iteration of the exciton binding energy.
Section 4 presents the comparison of the binding
energies results for the self-consistent approach
and the standard variational method. The last
section presents the conclusions of our work. The
auxiliary details of the calculations can be found in
three appendices.
2. The model: 2D exciton in self-consistent field

We assume that both conduction and valence
bands are non-degenerate, and that they both have
an isotropic parabolic dispersion characterized by
the masses me and mh (the heavy hole mass),
respectively. Throughout the paper we use effec-
tive atomic units (a.u.), which means that all
distances are measured in units of the effective
Bohr radius aB ¼ _2�=m�e2; energies in units of
m�e4=_2�2 � 2Ry; and masses in units of reduced
electron–hole mass m�; where 1=m� ¼ 1=m�

e þ

1=m�
h: In this notation me;h ¼ m�

e;h=m
�; where m�

e;h
are effective masses of an electron and a heavy
hole. We assume that both the barrier and the well
have close dielectric constants � as well as
dispersion laws. Thus, we neglect a dielectric
constant difference and an effective mass mis-
match. One of the goals of this paper is to compare
our method with existing approaches. Therefore,
we have made some of these simplifications
deliberately. Important effects such as valence-
band mixing, non-parabolicity of the conduction
band, dielectric constant and effective mass mis-
matches can be added to the model at later stages
once the method is fully developed.
After the standard procedure of excluding the

center-of-mass of the perpendicular motion in the
plane of the layers, [5,6] the excitonic Hamiltonian
is given by

Ĥ ¼ Eg þ He þ Hh þ K r þ V reh;

He ¼ �
1

2me

q2

qz2e
þ V 1ðzeÞ;

Hh ¼ �
1

2mh

q2

qz2h
þ V 2ðzhÞ;

Kr ¼ �
1

2

q2

qr2
þ
1

r

q
qr

� �
;

V reh ¼ �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ ðze � zhÞ
2

q ; ð1Þ

where Eg is a gap energy, z is the growth direction,

r measures a relative electron–hole distance in the

transverse direction r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxe � xhÞ

2
þ ðye � yhÞ

2
q

;

and V 1;2 are the quantum well confining potential
in z direction for the electron and the hole,
respectively. We have already assumed that the
ground state must be independent of an angle in
the xy plane, and excluded the corresponding term
from the kinetic energy of the relative motion, K r:
A variational principle can be used in two

different ways for calculation of approximate
solutions for the Schrödinger equation with the
Hamiltonian (1). The first approach is the standard

variational method. It is well described in the
literature [5–7,9,11–13,10,14–16]. According to
this method, one needs to start from a variational
principle for the functional E½C
:

E½C
 ¼

Z
C�ĤCdV ¼ min (2)

with the additional normalization conditionZ
jCj2 dV ¼ 1: (3)

Then look for an approximate wave function within
a class of functions of predetermined analytical
coordinate dependence. These functions depend
on several variational parameters, l1; l2; . . . .
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Then the total energy

E ¼ Eðl1; . . . ; lnÞ; (4)

and numerical values of variational parameters
can be obtained from minimization conditions

qEðl1; . . . ; lnÞ

qli

¼ 0; i ¼ 1; 2; . . . ; n: (5)

The success of the method depends essentially on
the choice of the trial function. It must be simple
enough to lend itself easily to the calculations, but
must vary in a sufficiently large domain for the
energy obtained to be close to the exact one.
Another way to calculate the approximate

solutions of Eq. (1) is to utilize the self-consistent

approach. This approach also starts from the
variational principle, Eqs. (2) and (3). However,
instead of choosing a particular coordinate depen-
dence of the trial function, we only assume a
particular functional dependence on different
coordinates for the entire wave function. Namely,
we construct an approximate entire wave function
Cðze; zh; rÞ with the help of the unknown functions
c1;c2; . . . ; where each function ck depends on a
lesser number of variables than the entire wave
function. Considering variations of these functions
independently, from the variational principle,
Eqs. (2) and (3), we obtain coupled integro-
differential equations for ck:
If localization in the quantum well is strong (the

exciton ‘‘z-size’’ is smaller than its Bohr radius),
then it is reasonable to suggest that the exact wave
function for the ground state of Hamiltonian (1) is
close to the simple product of functions of
different coordinates

Cexactðr; ze; zhÞ�!Ctrialðr; ze; zhÞ

¼ cðrÞweðzeÞwhðzhÞ: ð6Þ

Assuming normalization of every function in this
product, we substitute function C in Eq. (2) by the
trial function (6), vary each function in a product
separately, and obtain the system of coupled
integro-differential equations

Kr þ V rðrÞ
� �

cðrÞ ¼ EXcðrÞ; ð7Þ

He þ V eðzeÞ
� �

weðzeÞ ¼ EeweðzeÞ; ð8Þ

Hh þ VhðzhÞ
� �

whðzhÞ ¼ EhwhðzhÞ; ð9Þ
where the following notations for effective poten-
tials are introduced:

V rðrÞ ¼ hwewhjV rehjwewhi; ð10Þ

V e;hðze;hÞ ¼ hcwh;ejV rehjcwh;ei: ð11Þ

The angle brackets imply that the integration of
the Coulomb potential with corresponding wave
functions is carried out over two of three
independent variables.
Solving system of equations (7)–(9) we obtain

the best approximation for the entire wave
function in the form of a product (6). The
corresponding value of the total energy is given
by Eq. (2) that can be rewritten in the form

E ¼ hCjĤjCi ¼ Ee þ Eh þ EX

� hwejV ejwei � hwhjVhjwhi: ð12Þ

The latter expression can be obtained by averaging
each of Eqs. (7)–(9) and adding them together. The
electrostatic term between the electron and the
hole is counted three times in the summations, and
so has to be subtracted twice to give Eq. (2). Thus
the total energy is not just the sum of the exciton
binding energy and the electron and the hole
confining energies. The last two terms in Eq. (12)
describe the renormalization of the total energy
due to non-separability of the Hamiltonian.
In order to solve Eqs. (7)–(9) we apply the

method of successive approximations. For strong
localization inside the quantum well, the correc-
tions to the single-particle energies due to effective
Coulomb interaction potentials V e;hðze;hÞ in
Eqs. (8) and (9) are small. Therefore, we begin
by neglecting their contributions (V

ð0Þ

e;h=0) and
solve the equations

He;hw
ð0Þ
e;hðzÞ ¼ E

ð0Þ
e;hw

ð0Þ
e;hðzÞ: (13)

The obtained eigenfunctions are then substituted
into Eq. (10) in order to get V

ð0Þ

r ðrÞ; a zero
approximation for V rðrÞ: This potential in turn
should be substituted into Eq. (7). The resulting
equation,

½K r þ V
ð0Þ

r ðrÞ
cð0Þ
ðrÞ ¼ E

ð0Þ
X cð0Þ

ðrÞ; (14)

describes the formation of a two-dimensional
exciton by an effective electron–hole interaction.
The physical meaning of this effective interaction
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is a quantum mechanical average of the Coulomb
potential with confinement wave functions. The
ground state eigenfunction computed from Eq. (7)
can then be substituted into Eq. (11) to calculate a
new approximation V

ð1Þ

e;hðze;hÞ for the effective
potentials. This process can be continued until
the potentials are self-consistent to a high order of
accuracy, i.e., until the condition

hcjV rjci � hwejV ejwei � hwhjVhjwhi (15)

is fulfilled. Eqs. (7)–(12) with condition (15)
represent the complete system of equations for
finding the minimum of the total energy for the
Hamiltonian (1) if the trial function has a
particular functional dependence (6).
The described procedure has several advantages

in comparison with the standard variational
method. First of all, at each step we solve one-
dimensional differential equations.1 Second, even
if the resulting Eq. (7) for the exciton in the
effective field cannot be solved analytically, the
explicit form of the effective potential (10) gives
some additional understanding of the form of the
exciton eigenfunction, and hence improves the
accuracy of calculations. Finally, the convergence
of the successive iterations itself allows us to
estimate to what degree a given functional
dependence of the trial function is close to the
exact wave function. The energy difference be-
tween the successive approximations shows how
far the approximate energy is from the exact
ground state energy. Certainly, we should expect a
slow convergence for very broad and ultra-narrow
quantum wells, where the entire wave function
must be close to the wave function of the three-
dimensional exciton. In this case, however, we can
modify our self-consistent theory, rewriting Ha-
miltonian (1) in terms of the new independent
variables: the three-dimensional radius R (which is
determined by R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p
), the angle y (that

links z and R coordinates: z ¼ R cos y) and the
coordinate Z of center-of-mass in the z direction
[Z ¼ ðmeze þ mhzhÞ=M]. Then we can apply the
1We assume that ground state energy for two-dimensional

exciton in the central field is independent of angles. There-

fore, resulting equation on the radial wave function is one-

dimensional.
variational principle for a trial function
CtrialðR; y;ZÞ ¼ cðRÞ f ðyÞgðZÞ; and obtain corre-
sponding self-consistent equations for functions
c; f ; g: Detailed analysis of this issue is, however,
out of the scope of this paper, in which we are
focused mostly on standard type I quantum wells
with their widths much smaller than the effective
three-dimensional Bohr radius of the exciton. In
the next section, we present the comparison of our
self-consistent approach with the results of the
standard variational method for the shallow
quantum well. It is worth noting that the first
iteration of our approach might be considered as
an improved version of the standard variational
method with a separable trial function (6), in
which functions we;h are the electron and the hole
eigenfunctions without the interaction, and cðrÞ is
chosen in the form of a 1s function for a two-
dimensional exciton.
We would like to note that some attempts to

treat the Coulomb term in the Hamiltonian (1) in a
self-consistent manner have been made in the past
[8,17,18,21–24]. For example, in Refs. [17,18] an
incomplete self-consistent procedure for single-
particle wave functions was performed. Due to the
more complicated form of the trial function
Ctrial ¼ cðr; ze � zhÞweðzeÞwhðzhÞ the authors in
Refs. [17,18] treated the first term cðr; ze � zhÞ in
the product by the standard variational method,
adjusting variational parameters. Then an attempt
was made to look for self-consistent corrections to
the electron and hole wave functions, we;h; with the
help of equations similar to our Eqs. (8) and (9). In
principle, it is possible to write the complete
system of self-consistent equations for the trial
function in the form cðr; ze � zhÞweðzeÞwhðzhÞ: To
do this, one needs to start again from the
variational principle, Eqs. (2) and (3). Then by
varying each function separately in the product
one can get the complete system of the integro-
differential equations similar to Eqs. (7)–(9). This
system and the final expression for the total energy
will have a more complicated form due to non-
orthogonality of functions in the product for the
entire trial function.
On the other hand, the first iteration of our

method results in Eq. (14), which coincides with
the zero approximation of the ‘‘truncated basis’’
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approach [21,23], when only the ground state
confinement eigenfunctions are left. Our deriva-
tion of Eq. (7) shows, however, that it is more
significant than merely a truncation of all but one
term in the basis. The successive iterations of the
Eqs. (7)–(9) take into account the Coulomb mixing
of the electron and hole sub-bands in a non-
perturbative way, and give more accurate results
even for the cases when such mixing is important.
Numerical calculations confirm that, indeed,
Eq. (7) produces results, which are very close to
those obtained by standard variational methods.
3. Effective potential for exciton in d-functional
shallow well and analytical expression for the

exciton binding energy for first iteration

We define a shallow quantum well as such a
well, in which only one bound state exists for both
electrons and holes. In general, the energy
spectrum of the quantum well with height U and
finite length L is En ¼ p2x2

n=ð2mL2Þ; where xn are
the roots of the following transcendental equation:

x ¼ n � 2=p arcsin
p

Lu0
x

� 	
; n ¼ 1; 2; . . . ;N

n � 1pxnpn: ð16Þ

Here we introduced a corresponding wave vector
u0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
2mU

p
that characterizes potential height.

The number of levels in the well is given by the
condition

N ¼ 1þ
u0L

p

� �
; (17)

where ½� � �
 denotes the integer part of the number.
The condition given by Eq. (17) can also be
interpreted as a condition of a new level appearing
when the potential grows in the well. For example,
the second level appears when u0 is equal to the
wave vector of the ground state in the infinite well
with the same length L: u0 ¼ p=L:
A transcendental form of Eq. (16) as well as a

piecewise character of the eigenfunctions present
additional obstacles for further calculations of the
exciton binding energies. Therefore, different ap-
proximations of the finite quantum well are often
used. For a wide quantum well with several energy
levels inside, the model of an infinite quantum well
with a slightly larger effective length Leff ¼ L=x1 is
an appropriate one [25]. It gives the same ground
energy and correct wave function behavior. How-
ever, for shallow quantum wells with one level
inside, the use of this model is not justified. Indeed,
for an infinite quantum well the ground state energy
grows with the decrease of the well’s width, while
the ground state energy in the finite well has a
different dependence, and tends to the finite limit
U0 when the width tends to zero: E1�!U �

U2L2m=2: Narrow quantum wells have a different
analytical limit of the d-functional potential [11],

V ðzÞ ¼ U � adðzÞ; (18)

where a is a d-potential strength. If we define this
parameter as

a ¼ ULeff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2U

m
�

p2x2
1

m2L2

s
; (19)

where Leff is chosen to match the ground state
energy of the finite well problem, then the well-
width range of applicability of this approximation
is extended up to the moment of the appearance of
the second level in the finite quantum well. For
typical parameters in AlGaAs/GaAs structures it
corresponds to a well size L � 40 (A: Obviously,
Leff ! L when L tends to zero. Fig. 1 shows typical
energy dependence on well’s width for the electron
in the AlGaAs/GaAs quantum well for the finite
quantum well and its approximations. Comparing
the behavior of curves for the ground state of the
finite width well and its d-functional approximation
with strength a ¼ UL; one can see that d-functional
curve stays always on the left. It means that the
effective length parameter, determined by Eq. (19)
should be smaller than the actual well width, which
is opposite to the case of effective infinite quantum
well width. In some sense, the model of d-functional
QW is complimentary to the model of effective
infinite quantum well (EIQW) [25], which is used to
approximate finite QW with large widths (and/or
barrier heights), when the number of levels in a well
is large. Indeed, the more discrete levels exist in the
QW the better the EIQWmodel works, but if it fails
and gives a wrong eigenstate dependence on L,
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Fig. 1. The energy levels dependence on the well’s width. The

ground and the first excited levels (solid lines) are shown for the

finite quantum well. Dot-dashed lines show the ground state

level for the infinite well of the same width and d-functional
potential (18) with a ¼ UL: A vertical dashed line is the well’s

width at which the second level in the finite quantum well

appears. It shows the range of applicability of the d-functional
potential with the effective strength a ¼ ULeff : Parameters are
taken for a conduction band electron in an Al0:3Ga0:7As/GaAs

quantum well (see below in a text).

2For keakh the series expansion of Eq. (25) gives d ¼

ðk�1e þ k�1h Þ=2; which is different from definition (23). However,

the discrepancy between these two definitions is negligible for

the whole range of ke;h under the interest.

I.V. Ponomarev et al. / Physica E 25 (2005) 539–553546
when the well has only one level. On the other hand
the d-functional QW is not applicable for quantum
wells with more than one level. The delta-functional
approximation is applicable both to very narrow
QW and to wells with a small band-gap offset [11],
i.e., when the well width and/or the band offsets are
very small so that the carrier wave functions are
mostly in the barrier region. For the d-functional
potential it is more convenient to count energies
from the barrier band edge rather than from the
bottom of the well. In terms of the total Hamilto-
nian (1) it means that the energy band gap constant
is the barrier’s energy band gap: Ebar

g ¼ Ewell
g þ

U e þ Uh: The energy and wave function of a single
localized state are well-known:

Ee;h ¼ �
k2e;h
2me;h

;

we;hðzÞ ¼
ffiffiffiffiffiffiffiffi
ke;h

p
expð�ke;hjzjÞ: ð20Þ

Parameters ke;h ¼ ae;hme;h determine the localiza-
tion of wave functions of an electron and a hole,
respectively. It is worth noting that even for a very
shallow quantum well, the localization length
(� 1=k) might be much less than the effective Bohr
radius. In this case, we can expect a quasi-two
dimensional behavior for the exciton, justifying the
approximation for the mean field function in form
(6). In the case of the AlGaAs/GaAs quantum
wells, the electron (hole) localization length is
smaller than Bohr’s radius up to L � 5 (A:
With the help of the wave functions (20), it is

possible to obtain the analytical expression for the
effective exciton potential V

ð0Þ

r ðrÞ; which corre-
sponds to the first iteration of the self-consistent
procedure. The details of these calculations are
given in Appendix A. The result is

V
ð0Þ

r ðr; ke;khÞ ¼ �
2kekh
k2h � k2e

� khTðkerÞ � keTðkhrÞ½ 
; ð21Þ

where the function TðkrÞ is a combination of
zeroth-order Struve and Neuman functions [27]

TðkrÞ ¼
p
2
H0ð2krÞ �Y0ð2krÞ½ 
: (22)

The behavior of the potential (21) is shown in
Fig. 2.
The behavior of the potential (21) has two

regimes that are determined by the parameter

d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

1

k2e
þ

1

k2h

� 	s
: (23)

This parameter has the meaning of an average
electron–hole separation in the z direction. For
large distances, potential (21) has asymptotic
behavior

VasymðrÞ � �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ d2
p ; r\d: (24)

At small distances, the attraction becomes stron-
ger. It has logarithmic behavior:2

V smðrÞ �
1

d
lnðr=dÞ � 1þ g
� �

; rtd; (25)

where g ¼ 0:5772:
Thus, the effective electron–hole interaction for

the exciton in the quantum well starts from the
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Fig. 2. An effective self-consistent potential V
ð0Þ

r profile for a

two-dimensional exciton. The solid thick line represents Eq.

(21). The dashed-dotted line is the approximation ðr2 þ d2
Þ
�1=2;

the dashed line is the logarithmic regime Eq. (25) for small r, the

dotted line represents 1=r behavior. All data are for d=aB ¼ 0:16
corresponding to L ¼ 20 (A finite quantum well in AlGaAs/

GaAs materials.

I.V. Ponomarev et al. / Physica E 25 (2005) 539–553 547
true logarithmic Coulomb potential of a point
charge in two dimensions that smoothly trans-
forms at distances r � d to the screening potential
(24) with three-dimensional Coulomb tails. For
the strong confinement d51 we can approximate
V eff ðrÞ by Eq. (24) for all distances and take into
account the logarithmic part on the next step as a
perturbation.
It is interesting to note that potential (24) can be

obtained without the self-consistent procedure
from the following simple intuitive consideration.
At the first step, let us neglect the electron–hole
interaction in Hamiltonian (1). Then, we can solve
the one-dimensional one-particle Schrödinger
equations in the quantum well, and find the
average square of the distance between the
electron and the hole as

d2
¼ hweðzeÞwhðzhÞjðze � zhÞ

2
jweðzeÞwhðzhÞi: (26)

This yields the same result as Eq. (23). The next step
in the approximation of the Hamiltonian (1) is to
include the Coulomb attraction term, where ðze �

zhÞ
2 is substituted by its average value hðze � zhÞ

2
i:

The Schrödinger equation for a radial wave
function in the central field (21) does not have an
analytical solution. However, the understanding of
the role played by the parameter d helps to
substantially simplify calculations of the ground
state energy. To obtain an approximate analytical
expression for the exciton binding energy we will
use the following procedure.
First of all, let us stress again that despite the

fact that we consider a shallow quantum well with
one single particle eigenvalue inside, the strong
confinement persists up to very small widths. The
parameter d is a good indicator of such confine-
ment. For example, in Table 1 of the next section
the data are presented for Al0:3Ga0:7As/GaAs
materials. We can see that for the well’s width of
10 (A this parameter is about one quarter of the
three-dimensional Bohr radius and even smaller
for larger quantum wells. For the case of strong
confinement, d51; the effective potential (21) can
be represented by Eq. (24) almost everywhere.
Therefore, at the first step, it is reasonable to
substitute the potential (21) by its asymptotic form
(24) for all distances.
Although the Schrödinger equation with the

potential (24) also does not have an analytical
solution, we discovered that the ground state
energy, obtained by the variational method for
the single parameter trial function

jtrial ¼
2 expðd=lÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 2dÞ

p expð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ d2

p
=lÞ; (27)

coincides with the exact one with excellent
accuracy. To check this, we performed a precise
numerical integration of the Schrödinger equation
based on Pruefer transformation and a shooting
method [26]. The difference in the ground state
energies for the whole range of the parameter d

was less than 0:01%; or �10�3 meV! Such an
agreement can be explained by the fact that trial
function (27) has a correct analytical behavior for
both small and large distances, r.
The expression for the ground state energy

obtained for the trial function (27) is given by

E
ð0Þ
X ðlÞ

¼ �
2

l
1

1þ 2d=l

þ
1

l2
1�

ð2d=lÞ2E1ð2d=lÞ expð2d=lÞ
1þ 2d=l

� �
;

ð28Þ
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Table 1

Effective parameters of single quantum well potentials, electron, hole and exciton binding energies (in a.u.) for different quantum well

widths, L

L ð (AÞ Le
eff ð

(AÞ Lh
eff ð

(AÞ d ða:u:Þ �Eð0Þ
e �E

ð0Þ
h �E

ð1Þ
X �E

ð2Þ
X �E

ð3Þ
X

�Eanal
X

�Enum
X

10 9.15 8.89 0.257 5.11 1.37 1.0799 1.0975 1.1041 1.0948 1.1207

20 15.16 14.12 0.158 14.02 3.46 1.2617 1.2779 1.2843 1.2754 1.2878

30 18.63 16.88 0.130 21.18 4.95 1.3314 1.3467 1.3527 1.3443 1.3537

40 20.70 18.43 0.118 26.12 5.90 1.3655 1.3802 1.3855 1.3779 1.3862

Single particle electron and hole energies, E
ð0Þ
e;h; are the initial step in the self-consistent field iterations (see Eq. (13)) when effective

Coulomb terms V e;h are omitted. These energies determine the strength parameters, Le;h
eff ; for corresponding d-potentials and the

average distance, d, between an electron and a hole (Eq. (23)). Energies E
ð1Þ;ð2Þ;ð3Þ
X are the exciton binding energies obtained by

variational method with the trial functions given by Eqs. (32)–(34), respectively. The last two columns show the exciton binding

energies obtained by the self-consistent approach. Eanal
X is the analytical expression of first iteration of the self-consistent approach

Eanal
X ¼ E

ð0Þ
X þ E

ð1Þ
X (see Eqs. (28) and (30)). Enum

X is the final result of the numerical iteration procedure for coupled self-consistent

equations (7)–(9). The calculations are based on the following physical constants [25]: m�
e ¼ 0:067m0; m�

h ¼ 0:45m0; Ue ¼ 340meV,

Uh ¼ 70meV, � ¼ 13:8: For these parameters the effective Bohr radius is aB ¼ 125 (A and the energy atomic unit is equal to 8.33meV.

Fig. 3. The exciton binding energies in the shallow quantum

well for different well widths L. The solid line represents the

two-dimensional exciton ground state, Eqs. (28) and (30) in the

effective potential. The dotted-dashed line is the exciton binding

energy obtained with the help of the variational method with

the trial function (32). The insert shows the dependence of the

parameter l on the average electron–hole separation d in Eq.

(28). Both parameters are expressed in Bohr radius units and

are presented for the same range of quantum well widths.
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where E1ðxÞ is the exponential integral [27]. The
variational parameter l changes from 1.1 to 0.74
when the average electron–hole distance d varies
from 0.11 to 0.48. The latter corresponds to the
quantum well widths range from 40 to 5 (A for the
AlGaAs/GaAs structures. The behavior of the
parameter l as a function of d is shown in
the insert of Fig. 3. At small d it has the following
form

l �
1

2
þ 4d þ

d2

l2
4 ln

2d

l

� 	
� 12lþ 4gþ 1

� �
:

(29)

At small distances the effective potential (21)
differs from Eq. (24). The correction to the energy
due to this difference can be taken into account
with the help of perturbation theory:

E
ð1Þ
X ¼ hjtrialjDV jjtriali

�

Z d

0

j2
trialðrÞ

1

d
lnðr=dÞ

� �
rdr ð30Þ

¼ �
2d

l2
1

2
� 0:557

2d

l

"

þ 0:563
2d

l

� 	2

þ � � �

#
: ð31Þ

The last but one column (Eanal
X ) of Table 1 in the

next section represents the final sum Esc
X ¼ E

ð0Þ
X þ

E
ð1Þ
X for the exciton binding energy obtained by the

zero iteration of self-consistent approach.



ARTICLE IN PRESS

I.V. Ponomarev et al. / Physica E 25 (2005) 539–553 549
4. Numerical results: comparison with standard

variational approach

We performed a numerical iteration procedure
described in Section 2 for self-consistent coupled
equations (7)–(9). The results for the exciton
binding energy are presented in the last column
of Table 1. We found a fast convergence of the
iterations in the range L ¼ 5–40 Å of quantum
well widths, where our model of shallow quantum
well is applicable. Usually, it took 4–6 iterations to
reach the accuracy 0:01% for the condition of
Eq. (15). A fast convergence confirms that a
separable form of function (6) is a reasonable
choice for trial functions in QW with strong
localization across the well.
To check the accuracy of our method we

compared the results of the self-consistent ap-
proach with the results of the standard variational
method for three different trial functions. These
trial functions have the following forms:

cð1Þ
ðze; zh; r; lÞ ¼

ffiffiffiffiffiffiffiffiffiffi
kekh

p
expð�kejzej � khjzhjÞ

� expð�r=lÞ; ð32Þ

cð2Þ
ðze; zh; r; l;bÞ ¼

ffiffiffiffiffiffiffiffiffiffi
kekh

p
expð�kejzej � khjzhjÞ

� expð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ b2

q
=lÞ; ð33Þ

cð3Þ
ðze; zh; r; l;bÞ ¼

ffiffiffiffiffiffiffiffiffiffi
kekh

p
expð�kejzej � khjzhjÞ

� expð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ b2ðze � zhÞ

2

q
=lÞ: ð34Þ

The first two functions are separable, while the
third one is non-separable. The first wave function
has one variational parameter l; and two others
have two variational parameters l and b:
The details of variational calculations are given

in Appendix B. Our results and their comparison
with data obtained by the standard variational
procedure are presented in Table 1. We can see
that all, even the most elaborate variational
calculations, yield higher binding energies, show-
ing that our self-consistent approach is, in fact,
more accurate.
We also found that already the first iteration of

our approach gives lower binding energies than a
variational method with separable trial functions
(32),(33), while it yields energies slightly higher
than the non-separable trial function. However,
subsequent iterations further decrease the self-
consistent ground state energy, making it the
lowest one.
We would also like to mention that analytical

expressions (28)–(31) for exciton binding energy
give results comparable with the values obtained
by variational method with separable trial func-
tions, while avoid a numerically difficult task of
finding minima of several non-polynomial func-
tions. The additional physical information about
the effective potential allows one to find one of the
variational parameters of function (33) without
minimization.
5. Conclusions

We introduce a self-consistent approach for
calculations of the exciton binding energy in a
quantum well. For the case of strong confinement,
the self-consistent Hamiltonian is separable and
consists of three parts: one-dimensional Hamilto-
nians for electron and hole confined motions
across the quantum well, and the Hamiltonian,
which describes the motion of a two-dimensional
exciton in the effective central field potential. This
effective potential is a result of averaging over z

coordinates of the Coulomb interaction and the
quantum well potential. As a function of distance
the effective potential has two different regimes of
behavior which are determined by the average
distance between electron and hole inside the
quantum well, d. For small distances, rtd;
the effective potential has a logarithmic form of
a Coulomb potential of a point charge in two
dimensions. At a distance r � d this behavior
crosses over to the three-dimensional Coulomb
screened potential, �1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ d2

p
:

Before carrying out numerical self-consistent
solution, we analyzed in detail the first approx-
imation of this approach. In this approximation
the d-functional model allows for obtaining
analytical expressions, Eqs. (28) and (30), for the
exciton binding energy. We found that binding
energies calculated from these expressions are in
an excellent agreement with much more elaborate
standard variational calculations while requiring
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computational time by orders of magnitude
smaller than the later. The differences between
the exciton binding energies in two approaches are
generally smaller than 1%: For AlGaAs/GaAs
structures it corresponds to differences smaller
than 0:1meV, i.e., smaller than corrections [9] due
to non-parabolicity of the bulk conduction
band or dielectric constant and effective mass
mismatches.
While the simple first order semi-analytical

calculation gives values of binding energy slightly
greater than those obtained with the most elabo-
rated trial function of the standard variational
approach, the subsequent iterations of the self-
consistent procedure brings the binding energy
below the best results of the variational method. It
is important to note that the numerical resources
required for carrying out this procedure are
comparable with those used in standard calcula-
tions. We can conclude, therefore, that the self-
consistent approach is, indeed, superior to the
standard variational methods and can be used to
calculate exciton energies for a wide range of
different nanostructures.
In derivation of our results we used three

different approximations. They are: (i) the self-
consistent approach itself, (ii) the use of the
factorized form of the wave function, and (iii)
the use of the delta-functional potential for a
shallow quantum well. The self-consistent ap-
proach is broader than the standard variational
method since we do not have to specify a
particular functional dependence for a trial func-
tion. Instead, we just suggest that the trial function
consists of some combination of unknown func-
tions. The factorized form is the simplest form for
such a combination but it is not required by our
method. The method can be applied to other
physical models where different types of trial
functions would be more natural. For example,
for a wide double quantum well, the better choice
of the trial function of the ground state is a
superposition of two factorized single-well func-
tions. It will result in a system of coupled
equations similar (but more complicated) to
Eqs. (7)–(9). This approach can also be straight-
forwardly expanded to include other effects, which
were neglected in this paper. For instance, in order
to take into account the dielectric mismatch
[9,14,10], we would need to correct the expression
for the effective potentials, Eqs. (10) and (11),
including effects of image charges into the
respective integrals. The valence band degeneracy
and anisotropy can be included by introducing a
four component trial function, for which the self-
consistent equations will have the similar form as
Eqs. (7)–(9), but they should be understood as
matrix equations.
Turning to the particular factorization used in

our problem, it is obvious that the more strongly
the exciton is localized in the z-direction (size of
wave function in z-direction compared to the
three-dimensional Bohr radius) the better our
approximation works. If we consider the case of
Al0:3Ga0:7As/GaAs quantum well, it means that
our method will work for any quantum well with a
width less than 100 (A; but the best convergence
will happen somewhere around 30–50 (A: Corre-
spondingly, the factorized form of the trial
function for the self-consistent method is applic-
able for any structure (e.g., asymmetric quantum
well or quantum well in electric field), if a wave
function localized in z-direction has such an
extension. In a similar matter the self-consistent
approach can be applied to the lower dimension
systems such as quantum wires and quantum dots.
Moreover, preliminary consideration showed that
the problem of divergency of the exciton ground
state in a one-dimensional Coulomb potential,
which arises in other approaches to quantum
wires, in this method does not appear at all.
The d-functional potential is a good approxima-

tion if a one-dimensional quantum well has only
one level (is shallow). For a typical case of
Al0:3Ga0:7As/GaAs quantum well, it gives an
applicability range of Lo40 (A: The approximation
of the d-functional potential gives simple single-
particle wave functions that significantly simplify
calculations of the effective potentials in Eqs. (10)
and (11). If asymmetric quantum well or
double quantum wells, or quantum well in
electric field are shallow, the delta-functional
approach will be applicable to such models. An
asymmetric quantum well can be modelled by
a quantum barrier and the d-functional potential
(dðzÞ ! dðzÞ½1þ AyðzÞ
; where y is the step
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function). An advantage of using the d-functional
potential is especially clear in the case of the
quantum confined Stark effect for a shallow
quantum well, where it allows one to obtain
additional results related to the field-induced
resonance widths for a single-particle as well as
for the exciton quasi-bound states. These results
will be published elsewhere.
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Appendix A. Effective potential for 2D exciton

The effective field for quasi 2D exciton is given
by the integral

V eff ðrÞ ¼ �

Z 1

�1

dze

Z 1

�1

dzh
weðzeÞ
�� ��2 whðzhÞ

�� ��2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðze � zhÞ

2
q :

(A.1)

For a shallow quantum well approximated by the
d-function potential it gives

V eff ðrÞ ¼ �

Z 1

0

dz1

Z 1

0

dz2 e
�2k1z1 e�2k2z2

�
2k1k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ ðz1 � z2Þ
2

q þ
2k1k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ ðz1 þ z2Þ
2

q
2
64

3
75

¼ V 1 þ V2: ðA:2Þ

After making the coordinate transformation x ¼

z1 � z2; Z ¼ z1 þ z2 and taking into account thatZ 1

0

dz1

Z 1

0

dz2 f ðx; ZÞ

¼
1

2

Z 1

0

dZ
Z Z

�Z
dx f ðx; ZÞ

¼
1

2

Z 1

0

dx
Z 1

x
dZ

� ½ f ð�x; ZÞ þ f ðx; ZÞ
; ðA:3Þ
the first integration in these two integrated
integrals becomes trivial and the second integra-
tion can be expressed through the function

TðkrÞ ¼

Z 1

0

expð�2ktÞdtffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ t2

p

¼
p
2
H0ð2krÞ �Y0ð2krÞ½ 
; ðA:4Þ

where H0 is the zeroth-order Struve function and
Y0 is the zero-order Neumann or Bessel function
of the second kind [27]. Then potentials V1 and V 2

can be expressed as

V1;2 ¼ �
k1k2

k1 � k2
Tðk2rÞ � Tðk1rÞ½ 
; (A.5)

and the final result yields Eq. (21)

V eff ðr; k1; k2Þ ¼ �
2k1k2
k22 � k21

k2Tðk1rÞ � k1Tðk2rÞ½ 
:

(A.6)

In the case when k1 ¼ k2 � k this expression is
reduced to

V eff ðr; kÞ ¼ �k TðkrÞ � kT 0ðkrÞ½ 
; (A.7)

where

T 0ðkrÞ ¼
qT

qk
¼ 2r

p
2
Y1ð2krÞ �

p
2
H1ð2krÞ þ 1

h i
:

(A.8)

Appendix B. Variational method for excitons in

d-function quantum wells

Following standard procedures, the envelope
variational exciton wave function in a quantum
well can be presented as a product of three terms,

Cðze; zh; r; liÞ ¼ weðzeÞwhðzhÞfðr; ze; zh; liÞ; (B.1)

where li is the set of variational parameters and f
is the variational wave function which minimizes
the total energy of the Hamiltonian (1). Two other
factors we;hðze;hÞ are simply normalized eigenfunc-
tions of the one-particle electron or hole Hamilto-
nians of the quantum well:

Ee;hwe;hðze;hÞ ¼ �
1

2me;h

q2

qz2e;h
� ae;hdðze;hÞ

" #
we;hðze;hÞ;
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we;hðze;hÞ ¼
ffiffiffiffiffiffiffiffi
ke;h

p
expð�ke;hjze;hjÞ;

ke;h ¼ me;hae;h; Ee;h ¼ k2e;h=2me;h: ðB:2Þ

To obtain more confident results we made
calculations with three different trial func-
tions c:

cð1Þ
ðr; lÞ ¼ expð�r=lÞ; ðB:3Þ

cð2Þ
ðr; l;bÞ ¼ expð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ b2

q
=lÞ; ðB:4Þ

cð3Þ
ðr; jze � zhj; l;bÞ

¼ expð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ b2ðze � zhÞ

2

q
=lÞ: ðB:5Þ

The first two functions are independent of z

coordinates, while the third one is non-
separable with respect to z. The first wave
function has one variational parameter l;
and two others have two variational parameters
l and b:
The total exciton energy is the minimum of the

functional

E ¼
hCjĤjCi

hCjCi
: (B.6)

For the first two trial functions, which are
independent of z, the functional (B.6) can
be further simplified. In this case, the energy can
be presented as

E ¼ Ee þ Eh þ K=N þ V=N; (B.7)

where

N ¼ hCjCi � hcðrÞjcðrÞi; ðB:8Þ

K ¼ hcðrÞjK̂ rjcðrÞi �
1

2

Z
rcð Þ

2 dA; ðB:9Þ

V ¼ � C
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ ðze � zhÞ
2

q
�������

�������C
* +

�

Z
V eff ðrÞjcðrÞj2
� �

dA: ðB:10Þ
Calculations for the trial function cð2Þ yield

N ð2Þ ¼
expð�2b=lÞlðlþ 2bÞ

4
;

K
ð2Þ

¼
expð�2b=lÞ

8
1þ

2b
l

"

�
2b
l

� 	2

E1ð2b=lÞ expð2b=lÞ

#
;

V
ð2Þ

¼ �
2k1k2
k22 � k21

� k2V ðk1; l;bÞ � k1V ðk2; l; bÞ½ 
; ðB:11Þ

where E1ðxÞ is the exponential integral [27] and

V ðk; l; bÞ ¼
Z p=2

0

cosðfÞdf
Z 1

0

expð�2kR sinðfÞ

� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2cos2ðfÞ þ b2

q
=lÞRdR:

ðB:12Þ

For the first trial function cð1Þ
ðr; lÞ � cð2Þ

ðr; l; 0Þ
all integrals have analytical expressions:

N ð1Þ ¼
l2

4
;

K
ð1Þ

¼
1

8
;

V ðk; l; 0Þ ¼
l2

4

1

1þ l2k2
lk� 1þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2k2

p
"

�ln
1

lk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2k2

p
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ l2k2
p

� lk

 !#
: ðB:13Þ

Integrals for the non-separable trial function cð3Þ

can be numerically estimated following the proce-
dure described in Refs. [13,1].
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