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Abstract

A new computationally efficient and flexible approach to calculating characteristics of excitons in
quantum wells based on a self-consistent variational treatment of the electron–hole Coulomb interaction is
developed. It is applied to several different quantum well materials and is shown to give much better (lower)
values of exciton energies. The iterative scheme used to calculate the energies and respective wave functions
is stable and rapidly convergent. The authors believe that the method can be an important computational
tool in computing exciton characteristics in shallow quantum wells exceeding currently existing approaches
in accuracy and efficiency. The method can also be naturally generalized for quantum wires and dots.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Quantum confinement of electrons and holes in quantum wells (QW) is known to increase
binding energy of excitons and their oscillator strengths [1,2]. As a result, excitons in QW can
be detected up to room temperature, which makes them very attractive for various optoelectronic
applications. For this reason exciton related effects in quantum wells have been attracting a great
deal of attention for several decades starting with the pioneering measurements of the exciton
absorption by Dingle [3]. Since then, the exciton properties in semiconductor nanostructures
have been the subject of numerous experimental and theoretical investigations. One of the main
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problems attracting a great deal of attention is the accurate and effective computation of the
exciton binding energy. This quantity is measured by several experimental techniques [4–6] and
is the most important parameter determining the frequencies of exciton related resonances and
their temperature stability. Interpretation of the experimentally obtained spectra requires such a
theory of the binding energy, which, on the one hand, would be realistic and could incorporate
details of semiconductor band structure, effects of mass and dielectric mismatches, etc. On the
other hand, this theory should be computationally effective and flexible so that it could be easily
adjustable for various types of structure and experimental situations.

Unfortunately, the problem of calculating exciton energies in a QW is untractable analytically
even in the simplest model (isotropic parabolic conduction and valence bands, no valence-
band mixing and dielectric and effective mass mismatches). The difficulties are caused by
non-separability of the electron–hole Hamiltonian: the presence of QW potential breaks the
translational invariance of the system, making it impossible to separate in-plane motion of
electrons and holes from the motion in the direction of growth. Therefore, one has to resort
to numerical calculations, and, by now, there have been developed several methods of numerical
solution of the Schrödinger equation for QW excitons. More elaborate schemes [7] that would
take into account valence band mixing and non-parabolicity effects are based on an expansion
of the exciton wave function in terms of multicomponent envelope functions of electron and
hole states and subsequent numerical solution of coupled integral equations in momentum
space. Similar approaches based on a position-space expansion of the interband polarization
operator in terms of the complete system of single-particle eigenfunctions of the one-dimensional
Schrödinger equation for the quantum well potential were developed in Refs. [8–10]. The
coefficients of this expansion, which represent the unknown wave functions of in-plane motion,
satisfy an infinite set of coupled ordinary differential equations. Such a system is solved
numerically after an appropriate basis truncation. These approaches suffer from difficulties
related to the unknown errors due to basis truncation.

Other approaches that have been used to obtain many of the important results in this area are
based on one or another version of the standard variational method [11–14], which, due to its
transparency, provides basic physical insight into the problem. In this approach a certain form
of the exciton wave function, depending on one or several variational parameters, is postulated.
Usually, it is chosen in the form of a product of three terms. The first two are exact single-
particle one-dimensional electron and hole wave functions describing their confined motion
in the growth direction. The third term models the effects of the Coulomb interaction on the
relative motion of an electron–hole pair. The accuracy of the results obtained within this type of
calculation depends on the physical appropriateness of the latter term and its complexity, which
is determined by the number of variational parameters. The more parameters that are introduced
in the trial function, the lower the resulting exciton energy, but, of course, the more extensive the
calculations. There is ample literature dealing with accurate variational numerical calculations of
exciton binding energy in quantum wells [15–23]. The most advanced of them include the effects
of Coulomb screening due to dielectric constant mismatch, as well as effective mass mismatch at
heterojunctions and band degeneracy [14,15] but their application is usually limited to QW with
relatively large confinement potentials, and their extension to more complex situations such as
asymmetric wells or the presence of external fields is not straightforward.

The goal of this paper is to suggest an alternative version of the variational calculations, which
has a number of important advantages over the currently existing approaches. The idea of this ap-
proach is that instead of imposing a particular functional dependence on the envelope wave func-
tion, we present it as a combination of functions of an arbitrary form, but which depend on fewer
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than the total number of variables. In other words, we replace an original exact wave function
with a trial one with forced separation of variables. This idea is similar to the Hartree approach
to many-electron problems, where a wave function dependent on coordinates of all electrons is
presented as a product of functions dependent on coordinates of single electrons [24]. Despite the
formal analogy between the two approaches, we would like to emphasize that unlike the standard
Hartree method, we do not deal with the separation of single-particle coordinates of identical
particles. Instead we separate in-plane and in-growth-direction coordinates describing relative
motion of an electron–hole pair. Therefore, the antisymmetrization of the wave function, which
would result in exchange terms in the regular many particle Hartree–Fock method, is not required
here. The exchange contribution to the electron–hole potential, if needed to be taken into account,
should be incorporated directly in the exciton Schrödinger equation with the help of extra spin-
dependent terms [25–27]. Applying the variational principle to this combination of functions
with separated variables we derive a system of integro-differential equations for these functions
describing both the motion of electrons and holes in the direction of confinement, and the rela-
tive two-dimensional in-plane motion of the exciton. Each of these functions is determined by
effective potentials that have to be determined self-consistently. For instance, the effective poten-
tial of relative motion of the exciton in the in-plane directions is described in this treatment by
the Coulomb potential averaged with the wave functions of the electron’s (hole’s) motion in the
direction of confinement. The effective potential for the in-growth direction is also obtained by
combining the initial quantum well potential with the appropriately averaged Coulomb potential.

The self-consistent approach has several advantages in comparison with the standard
variational method. First of all, this method allows us to span a much larger functional space than
standard variational approaches. As a result we can expect that the found energy will be lower
and, hence, closer to the true value. Second, since we do not assume any particular functional
form of the trial function, our method is more flexible. We can include, for instance, asymmetry
or magnetic field to the Hamiltonian without any need to modify the procedure. Third, the self-
consistent treatment of in-plane and perpendicular motion makes this approach applicable to
situations, where regular methods fail, for instance to shallow quantum wells. In addition, the
renormalization of confining potentials reveals a new effect, which cannot be obtained in the
framework of the standard variational approach. The self-consistent confinement QW potential
acquires a Coulomb tail, which results in accumulation of the additional excited discrete electron
and hole levels in the vicinity of barrier energies. Experimentally this should manifest itself as
an additional peak in the absorption spectrum near barrier band-gap frequencies caused by the
Sommerfeld factor. Previous attempts to treat the Coulomb term in Hamiltonian (1) in a self-
consistent manner have been made in Refs. [9,10,22,23,28–31]. More detailed comparison of
our calculations with the earlier papers will be given below in Section 2, where we introduce a
model used for calculations and derive general self-consistent equations. In Section 3 we present
our numerical results and compare them with the results obtained by means of the standard
variational approach. The last section presents the conclusions of our work. The auxiliary details
of the calculations can be found in the Appendix.

2. The model

We illustrate our approach by considering a heavy (light) hole-exciton in a standard
type-I symmetric quantum well. We assume parabolic dispersion laws for conduction and
valence bands, and take into account the anisotropy of the latter. Throughout the paper we
use effective atomic units (a.u.), in which the unit of length is the three-dimensional exciton
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where we took into account a mismatch between electron and hole masses in the well and
the barrier, as well as a difference between their dielectric constants. Here Eg is gap energy,
r =

√
(xe − xh)2 + (ye − yh)2 is the electron–hole separation in the xy plane, Ue,h are

confining potentials in the growth direction for electrons and holes, respectively, and Vreh is the
renormalized by the dielectric mismatch Coulomb electron–hole attraction. We also assume that
the ground state is isotropic in the plane of QW excluding, therefore, terms containing derivatives
with respect to the azimuthal angle from the Hamiltonian.

The renormalized Coulomb potential can be obtained from the solution of the Poisson
equation in a layered structure with the help of the image charges method [33,34]. Solution of the
Poisson’s equation for three-layer medium gives three different forms of the potential depending
on whether the carriers reside inside or outside the well. For the case when both electron and
hole are inside the well material, the potential is

Vreh = −

+∞∑
n=−∞

q |n|√
r2 + (nL − ze + (−1)nzh)2

≡ −

+∞∑
n=−∞

q |n|Wn(r; ze, (−1)1−nzh), (5)

where

q =
εw − εb

εw + εb
(6)

is the dielectric mismatch, L is the width of the well, and

Wn(r; z1, z2) =
1√

r2 + (z1 + z2 + nL)2
. (7)

The zero-order term W0(r; ze,−zh) in Eq. (5) corresponds to unscreened Coulomb interaction.
The analytical expressions for other configurations when one or two carriers are inside the barrier
material can be found in Ref. [33].
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We have omitted from Hamiltonian (1) contributions to the image charge potentials coming
from the electron and the hole self-energy terms. These terms depend on ze,h coordinates only
and have Coulomb tails at large distances. They formally appear as a diagonal part of the
total electrostatic energy in a layered system [33,34]. Close inspection shows that these terms
exhibit unphysical singularities at the interfaces z = ±L/2, which cannot be removed within
the employed model of well and barriers as dispersionless dielectric media without introducing
additional phenomenological parameters. In order to renormalize these singularities one has to
carry out more accurate microscopic calculations of the polarization-induced modifications of
the confinement potential [15] that would take into account spatial dispersion of the dielectric
constant. It is known, however, that if one would remove the singularities by phenomenologically
cutting off the divergent part of the potential as in Refs. [33,34], the resulting corrections to the
exciton binding energies would be of the order of 0.1 meV for typical III–V semiconductor
materials [14]. These corrections are more than an order of magnitude less than corrections due
to self-consistency effects discussed in this paper and can be, therefore, safely neglected.

Our calculations of exciton binding energy are based on the self-consistent approach, which,
while based on the variational principle, is significantly different from the standard variational
method [4,12–15]. The starting point for both methods is minimization of the energy functional
E[Ψ ]:

E[Ψ ] =

∫
Ψ∗ ĤΨdV = min (8)

with normalization condition for wave function∫
|Ψ |

2dV = 1. (9)

The minimization procedure is determined by the choice of the trial wave function; this is where
the two approaches differ. The trial function Ψ(re, rh) in the standard variational method is
chosen within a class of functions with a predetermined analytical coordinate dependence. These
functions depend on one or several variational parameters λ1, λ2, . . . , λn . Then the total energy

E = E(λ1, λ2, . . . , λn), (10)

and numerical values of variational parameters can be found from minimization conditions

∂E(λ1, λ2, . . . , λn)

∂λi
= 0, i = 1, 2, . . . , n. (11)

The success of this method depends essentially on the choice of the trial function. It must be
simple enough to lend itself easily to the calculations, but at the same time its behavior must be
close enough to the correct wave function in order to provide the proximity to the exact energy.
The accuracy of calculations within this approach is eventually determined by the number of
variational parameters introduced in the trial function.

Our self-consistent method employs a completely different approach to the choice of the
trial functions. Instead of choosing a function with a particular coordinate dependence, we
only assume that the dependence of this function on the electron and hole coordinates can be
chosen in a completely or partially separable form. We construct an approximate entire wave
function Ψ(ze, zh, r)with the help of the unknown functionsψ1, ψ2, . . ., where each functionψk
depends on a lesser number of variables than the entire wave function. Considering variations of
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these functions independently, we minimize energy functional, Eq. (8), with constraints given by
Eq. (9) and derive as a result a system of coupled integro-differential equations for ψk .

In the case of a strong localization of excitons inside the quantum well (the size L of QW
along z direction is smaller than the three-dimensional exciton Bohr’s radius) it is reasonable to
completely separate variables in the ground state trial function for the Hamiltonian (1):

Ψself (r, ze, zh) = ψ(r)χe(ze)χh(zh). (12)

Assuming a separate normalization of each function in the product, we substitute Eq. (12) into
Eq. (8). After variation of every function independently we obtain the system of coupled integro-
differential equations:[

He + V e(ze)
]
χe(ze) = Eeχe(ze), (13)[

Hh + V h(zh)
]
χh(zh) = Ehχh(zh), (14)[

αKr + V r (r)
]
ψ(r) = EXψ(r), (15)

where α = 〈χeχh |
µ⊥

µ⊥(ze,zh)
|χeχh〉 is a coefficient appearing as a manifestation of the mass

mismatch effect, and the effective potentials are defined as:

V r (r) = 〈χeχh |Vreh |χeχh〉, (16)

V e,h(ze,h) = 〈ψχh,e|Vreh |ψχh,e〉. (17)

The angle brackets indicate the integration over two of three independent variables. As can be
seen, α is identically equal to unity in the case of absence of mass mismatch effect and approaches
µw

⊥
/µb

⊥
with increasing width of QW.

By solving system (13)–(15) we obtain the best approximation for the entire wave function
in a factorized form (12). The total energy of the system is given by Eq. (8). Averaging
Eqs. (13)–(15) and adding them together one can obtain the following expression for the total
energy:

E = 〈Ψ |Ĥ |Ψ 〉 = Ee + Eh + EX − 〈χe|V e|χe〉 − 〈χh |V h |χh〉. (18)

The electrostatic term describing interaction between the electron and the hole is added three
times, and therefore should be subtracted twice. This subtraction results in the renormalization
of the total energy due to the non-separability of the Hamiltonian. The total energy, in this case,
cannot be thought of as a simple sum of the energy of the electron–hole interaction and the
electron and hole confinement energies.

Equations similar to our Eqs. (13)–(15) were obtained previously in Ref. [28] from different
considerations. Our derivation of these equations establishes their relation to the variational
principle, and thus puts them on a more solid theoretical foundation. We also obtained these
equations for a more general situation taking into account the effect of dielectric and mass
mismatches. More detailed comparison of our calculations with the results of Ref. [28] will
be presented in Section 3.

In order to obtain a solution for Eqs. (13)–(15) we apply the method of successive iterations.
Expecting that the renormalization of the confining potentials is not very strong, we obtain the

zero-order approximation by setting V
(0)
e,h = 0 and solving equations

He,hχ
(0)
e,h(z) = E (0)e,hχ

(0)
e,h . (19)
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The calculated eigenfunctions χ (0)e,h(ze,h) are then substituted into integral (16) in order to find

V
(0)
r (r), a zero approximation for V r (r):

V
(0)
r (r) = 〈χ (0)e χ

(0)
h |Vreh |χ (0)e χ

(0)
h 〉. (20)

The next step is to substitute the obtained effective potential into Eq. (15):[
αKr + V

(0)
r (r)

]
ψ (0)(r) = E (0)X ψ (0)(r) (21)

which describes properties of a two-dimensional electron–hole pair interacting via the effective

potential V
(0)
r (r). This potential is the result of quantum-mechanical averaging of the Coulomb

potential with zero-order wave functions χ (0)e , χ (0)h .

Substituting calculated zero-order wave functions ψ (0)(r), χ (0)e,h(ze,h) in Eq. (17) we can

compute a correction to the QW electron and hole confined potentials V
(1)
e,h(ze,h) due to

electron–hole interactions:

V
(1)
e,h(ze,h) = 〈ψ (0)χ

(0)
h,e|Vreh |ψ (0)χ

(0)
h,e〉. (22)

This process is continued until potentials are self-consistent with a desired degree of accuracy.
The condition of self-consistence can be presented in the following form

〈ψ (n)|V
(n)
r |ψ (n)〉 ≈ 〈χ (n)e |V

(n)
e |χ (n)e 〉 ≈ 〈χ

(n)
h |V

(n)
h |χ

(n)
h 〉. (23)

The system of equations (13)–(22), including the self-consistency condition (23), represents the
complete set of equations required to find the minimum value of the ground state energy of the
exciton described by Hamiltonian (1) with the factorized form (12) of the trial function Ψ . The
details of calculations of the effective potentials (16) and (17) are given in Appendix.

From computational point of view this scheme is very effective and reliable because at each
step of iterations we only need to solve one-dimensional differential equations and carry out
integrations. The self-consistency of our calculations presents also an additional significant
benefit because from the speed of convergence of the procedure one can assess qualitatively
to what degree a given functional dependence of the trial function is close to the exact solution.
For instance, in the case of very broad or ultra-narrow quantum wells, where the exact wave
function resembles a wave function of a three-dimensional exciton, the suggested separation of
variables cannot represent this function too well, and one should expect a slow convergence
of the iterations. On the other hand, for the wells of moderate thickness, where the quasi-two-
dimensional nature of the excitons is manifested fully, the separation of variables should be
a much better approximation for the exciton wave function, and our self-consistent procedure
should converge much faster. Our calculations confirm this assertion.

As we already mentioned in the Introduction there have been previous attempts to treat
the Coulomb term in Hamiltonian (1) in a self-consistent manner. For instance, in Ref. [31]
and Refs. [22,23] a self-consistent treatment was used to compute the single-particle wave
functions. However, for calculation of the radial, “excitonic”, part of the wave function the
“traditional” non-self-consistent variational method was employed. Unlike those earlier papers,
in our calculations we extend self-consistent treatment to all three factors of the trial function,
carrying out, therefore, fully self-consistent calculations.
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Table 1
Parameters of the materials used in the calculations: gap energy (Egap), conduction band offset (1Ec/1Eg), Luttinger
parameters (γ1 and γ2), effective mass of the electron in conduction band (m∗

e ), dielectric constant (ε), and units of
length (aB ) and energy (EB )

Material Egap (eV) 1Ec/1Eg γ1 γ2 m∗
e (m0) ε q aB (Å) EB (meV)

GaAs 1.518
60%

6.85 2.1 0.0665 12.53
0.043

159 7.23
Al0.4Ga0.6As 2.163 4.67 1.17 0.0895 11.5

In0.53Ga0.47As 0.813
40%

11.0 4.18 0.041 13.9
0.049

291 3.56
InP 1.423 5.15 0.94 0.0803 12.6

aB and EB are given only for the well materials. Luttinger parameters correspond to the heavy-hole effective mass. All
material parameters are taken from Ref. [34].

3. Discussion of results

In this section, we present the results of our calculations and compare them with the results of
the standard variational method for the shallow quantum wells. The calculations were performed
for two different material systems: GaAs/Al0.4Ga0.6As and In0.53Ga0.47As/InP, which have
been extensively studied in the past so that our calculations can be compared with previous
results. The concrete parameters of these structures used in our calculations are listed in Table 1.
The mismatch of the dielectric constants has been taken into account by truncating infinite sums
in the effective potential Eq. (5) at the terms of the order of q5. Given the values of the mismatch
parameter q for the studied systems this approximation was found to be sufficient to provide the
exciton binding energies with desirable accuracy.

We begin discussing the results of our calculations by considering the evolution of the
effective potential V e(ze) from one iterative step to another. This potential is a Coulomb induced
modification to the rectangular shape well Ue(ze) [see Eq. (2)]. Initially it sets to zero, but
subsequent iterations result in significant modification of its shape. Fig. 1 shows an example of
the evolution of this potential in the case of a heavy-hole exciton in a GaAs/Al0.4Ga0.6As 120 Å
wide single quantum well. One can see from the presented plots that the most changes in the
shape of the effective potential occur only at the first three iteration steps. Subsequent iterations
result only in minor modifications of the potential and the position of the single-particle one-
dimensional energy level until Eq. (23) is satisfied. Similar modification occurs with the hole
“single-particle” potential Vh(zh).

The main result of these modifications is a downshift of the effective “single-particle”
contributions to the total exciton energy. There is an additional non-trivial effect also. As a result
of the self-consistent contributions, both electron and hole effective potentials acquire a long
“Coulomb-like” tail at large values of z: Ve,h(ze,h) ∼ 1/ze,h . This renormalization significantly
modifies the spectrum of “single-particle” effective energies bringing an additional number of
excited discrete energy levels extending from the single-particle ground states up to the height
of the barrier. An example of these modifications is shown in Fig. 2 for the conduction band
of a 45 Å wide GaAs/Al0.4Ga0.6As. One can see a significant lowering of the ground state
energy of the electron after the fourth iteration of the self-consistent procedure compared to
its non-self-consistent initial value. Also shown (schematically) are new energy levels arising
due to the renormalization of the potential. It should be noted, however, that the conclusion
about the appearance of these new excited levels has to be approached with caution. Indeed, the
variational procedure is designed for calculations of the energy of the ground state, and use of the
variational procedure to study excited states in the modified potential is not fully justified. One
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Fig. 1. Evolution of the effective potential V e(ze) with every step of successive approximation for a HH exciton
in a GaAs/Al0.4Ga0.6As 120 Å single quantum well. Calculations are taking into account both mass and dielectric
mismatches. Due to the symmetry of the potential only one half of it is shown on the graph. Solid, dashed, dotted and
solid gray lines represent effective potential at the first four consecutive iterations correspondingly.

Fig. 2. Modification of the conduction band of a HH exciton in a GaAs/Al0.4Ga0.6As 45 Å single quantum well due
to the presence of the effective potential. The dashed dotted line presents initial profile of the conduction band and the

solid line is its configuration at the fourth step. E(0)e1 and E(4)e1 show the position of the electron ground state energy in

initial and modified potentials. E(4)en are the new excited levels of the electron appearing due to the renormalization of the
conduction band. These levels were not calculated and their positions are shown schematically. Valence band profile and
the value of the hole’s ground state energy are modifying in the same way.

can still calculate excited states using this approach carrying out self-consistent adjustments of
the effective potential for each new excited level. While this question requires a separate analysis,
which lies outside of the scope of this paper, we would like to mention that qualitatively these
excited levels would manifest themselves as a modification of the absorption spectrum in the
vicinity of the barrier band-gap energy. Such a modification was possibly observed in Ref. [35]
on an absorption spectrum of narrow quantum wells. This issue was also discussed in Ref. [28],
where the energies of the excitonic transitions between excited electron and hole levels were
obtained from the photoluminescence spectra in the presence of the magnetic field.

Fig. 3 presents the evolution of the excitonic effective potential V r (r) with the iterations.
Because of the singular behavior of the potential at r = 0, which results in large values of the
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Fig. 3. Changes in the effective potential V r (r) with every step of successive approximation for a HH exciton in a
GaAs/Al0.4Ga0.6As 50 Å single quantum well. The solid curve represents a difference between the value of the potential
at a zero and first iterations, while the dashed line shows the difference between first and second iterations. In order to
distinguish the latter curve from zero it was plotted with its own scale presented on the right-hand axes of the plot.

Table 2
Effective parameters describing a HH exciton in GaAs/Al0.4Ga0.6As 20 Å single quantum well calculated at several
steps of the iteration procedure

n −EX −Ee −Eh 〈R〉 〈z2
e 〉 〈z2

h〉 〈V e〉 〈V h〉 〈V r 〉

0 1.75414 22.24994 23.87359 0.563147 0.006626 0.002002 0.00000 0.00000 3.06164
1 1.75631 25.31296 26.93540 0.562744 0.006476 0.001988 3.06436 3.06197 3.06697
2 1.75632 25.31557 26.94040 0.562748 0.006476 0.001988 3.06698 3.06697 3.06698
3 1.75632 25.31557 26.94041 0.562741 0.006476 0.001988 3.06698 3.06698 3.06698

The first column presents the number of the iteration, other columns — binding energy EX , electron (hole) energy
Ee(Eh), average radius of the exciton in well’s plane 〈R〉, average of z2

e and z2
h , average effective potentials V e, V h , and

V r , respectively. All energies are in terms of energy units and all lengths are in terms of length units of the well material.
In our case it is more convenient to count energies from the barrier band edge rather than from the bottom of the well.

potential at small r , the relative changes of the potential can hardly be seen directly. Therefore,
we present here differences between values of the potential at several consecutive iterations.
One can see that the largest change occurs at the first iteration (left axes of the plot), while
other consecutive iterations (right axes) result in much smaller modifications. While relative
renormalization of this potential resulting from the self-consistent treatment is not very large, we
will show that it results in quite significant corrections to the exciton binding energy, which
justifies the necessity of complete self-consistent treatment for accurate calculations of the
binding energy.

Changes of the most important effective parameters of the system with iterations for a heavy-
hole exciton in a 20 Å wide GaAs/Al0.4Ga0.6As single quantum well structure are shown in
Table 2. This table confirms the original conclusion based on Fig. 1 that main changes occur
only at the first three iterations.

In order to compare our method with the standard variational approach we calculated
the dependence of the binding energy of the heavy-hole exciton in GaAs/Al0.4Ga0.6As and
In0.53Ga0.47As/InP structures on the width of the quantum well. These calculations are compared
with the results obtained by a standard variational method in Ref. [34]. The authors of that work
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Fig. 4. Dependence of the binding energy of a HH exciton in a GaAs/Al0.4Ga0.6As single quantum well on the width of
the well. Curves represent different parameters of the well and barrier materials with and without mass mismatch (mm)
and dielectric mismatch (dm): mm and dm (solid line), only dm (dotted line), only mm (dashed dotted line) and dashed
line does not have any mismatch. Comparison with the results of the standard variational approach (short dashed line) is
based on data taken from Ref. [34] and includes both mismatches.

calculated binding energy using a trial function with two variational parameters:

φ(ρ, ze, zh) = exp
(

−
1
a

√
ρ2 + λ2(ze − zh)2

)
ue(ze)uh(zh), (24)

where ue,h(ze,h) are single-particle one-dimensional wave functions describing confinement of
the electrons and holes in the well. The results obtained by this approach included both mass and
dielectric mismatches, which were introduced much in the same way as in our paper with one
exception. The authors of Ref. [34] included self-energy terms describing interaction of electrons
and holes with their own images and concluded that these terms do not effect exciton energies
in the materials under consideration in any significant way. Based on this conclusion we believe
that it is reasonable to compare our results with those of Ref. [34] even though we have omitted
the self-energy terms from our Hamiltonian.

In Figs. 4 and 5 we have plotted the dependence of the binding energy of a heavy-hole
exciton in GaAs/Al0.4Ga0.6As and In0.53Ga0.47As/InP structures as a function of well width
for several different assumptions regarding the mass and dielectric mismatches: without any
mismatches, with mass or dielectric mismatch only, and with both mismatches taken into account
simultaneously. This analysis allows us not only to compare our own and standard variational
approaches, but also to assess effects of various discontinuities on the exciton energy. In all
approximations we obtain a well known non-monotonic dependence of the binding energy on the
well width with a maximum at its intermediate value. Comparing the plotted curves, however, we
see that different types of discontinuities affect the energy differently. For instance, we can see
that the mismatch of dielectric constants doesn’t change the shape or position of the maximum
of the dependence. It, however, shifts up the value of the binding energy even for relatively wide
quantum wells, where excitons should be totally confined in the well’s region.

The mass mismatch across the well–barrier interface produces a qualitatively different effect.
The form of the dependence of the binding energy on width significantly changes only at well
widths comparable with the exciton Bohr radius. In this case the maximum of the curve shifts
toward smaller values of the width and its shape becomes steeper close to it. Sum of these two
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Fig. 5. Dependence of the binding energy of a HH exciton in a In0.53Ga0.47As/InP single quantum well on the width of
the well. Curves represent different parameters of the well and barrier materials with and without mass mismatch (mm)
and dielectric mismatch (dm): mm and dm (solid line), only dm (dotted line), only mm (dashed dotted line) and dashed
line does not have any mismatch. Comparison with the results of the standard variational approach (short dashed line) is
based on data taken from Ref. [34] and includes both mismatches.

effects results in the increase of binding energy by up to 30% at the maximum, while shifting
its position to smaller widths compared to the case without any mismatch. Finally, comparing
the results of our calculations with those of the standard variational approach one can see that
our method gives better (meaning lower) values for the exciton energy for the entire considered
range of quantum well thicknesses and for both considered material systems.

It is interesting to compare our calculations with the results of Ref. [28], where the same self-
consistent equations were solved but without taking into account dielectric and mass mismatches.
The GaAs/Al0.05Ga0.95As quantum well structure studied in Ref. [28] can be characterized by
the following values of the parameters of GaAs: me = 0.0665m0, γ1 = 6.79, γ2 = 1.924
and ε = 12.5; the band offset at the heterojunction is 81.1 meV with its distribution between
the conduction band and the valence band 62% and 38% respectively. The authors of that work
neglected a difference between parameters of the well and the barrier material due to the low
content of the Al in the latter. In order to clarify the role of the mismatch in this case we obtained
parameters for Al0.05Ga0.95As using a linear interpolation between GaAs and Al0.4Ga0.6As. In
order to find the Luttinger parameters the interpolation was applied to masses m∗

⊥h and m∗

‖h of the
respective materials. This procedure resulted in the following values for the material parameters
of the barrier layer: me = 0.06937m0, γ1 = 6.422, γ2 = 1.787 and ε = 12.4.

The results of our calculations are presented in Fig. 6, which shows the energy (10) minus
the band gap in the barrier layer as a function of the width of the well. The insert represents the
calculated difference in energy of the excitonic transition between the system with dielectric and
mass mismatches and the one without them. These figures show that even such a small mismatch
makes an appreciable contribution to the exciton energy. We also have to notice that even without
the mismatch our calculations differ from the results of Ref. [28] for wider wells. The origin of
this discrepancy cannot be ascertained at the present time because of the lack of details of the
computational procedure used in Ref. [28].

Fig. 7 represents the dependence of the excitonic oscillator strength, proportional to the
|ψ(0)|2|

∫
∞

−∞
χe(z)χh(z)dz|2, as a function of the quantum well width. The solid line shows

the results of our calculations including all mismatches and the dashed line is the results taken
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Fig. 6. Energy of excitonic transition of a HH exciton in a GaAs/Al0.05Ga0.95As single quantum well as a function of
the quantum well width. Curves compare the results of our calculations with mass and dielectric mismatches taken into
account (solid line) with the results from the Ref. [28] which don’t have any mismatch (dashed line). The insert shows
the difference of the calculated energy of excitonic transition between the system with mismatches and without them.

Fig. 7. Oscillator strength of excitonic transition of a HH exciton in a GaAs/Al0.05Ga0.95As single quantum well as a
function of the quantum well width. Curves compare the results of our calculations with mass and dielectric mismatches
taken into account (solid line) with the results from Ref. [28] which don’t have any mismatches (dashed line). The insert
shows the difference of oscillator strengths between the system with mismatches and without them.

from Ref. [28]. The graph on the insert is the calculated difference between the system with
mismatches and without them. The introduced mismatches are enhancing the oscillator strength
in the region of the quantum well widths up to 120 Å. This effect is due to stronger localization
of the electron and hole wave functions inside the well in the presence of the mismatches as was
described earlier in our paper.

4. Conclusions

In this work we presented a new method for calculating the exciton binding energy in a single
quantum well, and demonstrated it on two different quantum wells. Our calculations showed that
the suggested method gives a lower, and hence, more accurate, value of the exciton energy than
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traditional variational approaches. Among other advantages of our approach is its versatility (the
method can be immediately applied to more complex situations such as asymmetrical quantum
wells, wells in external fields, etc.), and computational efficiency and accuracy. Besides providing
more accurate values for binding energies, our approach also predicted certain modifications
in the absorption spectrum of quantum wells, which can be (and maybe were) observed
experimentally. This modification results from renormalization of confining electron and hole
potentials due to self-consistent treatment of the Coulomb interaction.

Appendix. Expressions for the effective potentials

Choosing the origin of the coordinate system at the center of the QW the expression for
effective potential V r (r), which takes into account discontinuity of the dielectric constant [33]
in the following form:

V r (r) = −[V1(r)+ V2(r)+ V3(r)], (A.1)

where

V1(r) =

∫ L/2

0

∫ L/2

0
dze dzh F(ze, zh)

∞∑
n=−∞

q |n|
{Wn(r; ze,−zh)+ Wn(r; ze, zh)},

V2(r) = 2(1 + q)
∫ L/2

0

∫
∞

L/2
dze dzh F(ze, zh)

∞∑
n=0

qn
{Wn(r; ze,−zh)+ Wn(r; ze, zh)},

V3(r) =

∫
∞

L/2

∫
∞

L/2
dze dzh F(ze, zh)

{
(1 + q)

(1 − q)
(W0(r; ze,−zh)− qW−1(r, ze, zh))

+ (1 + q)2
∞∑

n=0

qnWn(r; ze, zh)

}
, (A.2)

and

F(ze, zh) = χ2
e (ze)χ

2
h (zh)+ χ2

e (zh)χ
2
h (ze). (A.3)

The integrand in the effective potential (A.1) has a singularity at r = 0, ze = zh , therefore we
apply a coordinate transformation ξ = ze − zh, η = ze + zh , which allows for extracting the
divergent part and significantly increasing computational efficiency of the calculations. In new
coordinates the potential takes the following form:

V1(r) =

∞∑
n=−∞

q |n|

∫ L/2

0
dη

×

[
W−n(r; η)

∫ η

0
dξ Φ(ξ, η)+ Wn−1(r; η)

∫ η

0
dξ Φ(ξ,−η + L)

+ Wn(r; η)

∫ L−η

η

dξ Φ(η, ξ)
]
,

V2(r) = (1 + q)
∞∑

n=0

qn(V21n(r)+ V22n(r)),
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V21n(r) =

∫ L/2

0
dη

×

[
Wn(r; η)

∫ η

0
dξ (Φ(η, ξ + L)+ Φ(η,−ξ + L))+ Wn+

1
2
(r; η)

∫ η

0
dξ

×

(
Φ
(
ξ +

L

2
, η +

L

2

)
+ Φ

(
−ξ +

L

2
, η +

L

2

))]
,

V22n(r) =

∫
∞

L/2
dη

[
Wn+

1
2
(r; η)

∫ L/2

0
dξ
(
Φ
(
ξ + η, η +

L

2

)
+ Φ

(
−ξ + η, η +

L

2

))
Wn(r; η)

∫ L/2

0
dξ
(
Φ
(
η, ξ + η +

L

2

)
+ Φ

(
η,−ξ + η +

L

2

))]
,

V3(r) =
(1 + q)

(1 − q)

∫
∞

0
dη
[

W0(r; η)

∫
∞

η

dξ Φ(η, ξ + L)+ W1(r; η)

×

∫ η

0
dξ Φ(ξ, η + L)+

∞∑
n=1

qn (Wn+1(r; η)− Wn−1(r; η))

×

∫ η

0
dξ Φ(ξ, η + L)

]
, (A.4)

where we substituted Wn(r; η) ≡ Wn(r; ze, zh) and

Φ(ξ, η) = F

(
ξ + η

2
,
η − ξ

2

)
. (A.5)

To treat the singularity in V1,2(r) we split the outer integral into two parts:
∫ L/2

0 dη =
∫ δ

0 dη +∫ L/2
δ

dη, with δ � 1. For the first part the inner integral of Φ(ξ, η) can be replaced by the
first few terms of its series expansion near η = 0. It results in the following approximation∫ δ

0 dηWn(r, η)(y0 + αη + βη2). Parameters y0, α, β are the parameters of the quadratic spline.
This integral can be found explicitly and it has a logarithmic divergence at small r .

The effective potentials V e,h(ze,h) in z-directions are free from divergencies. They can be
written down as follows:

V e,h(ze,h) =


V (<)

e,h (ze,h), for ze,h ≤
L

2
,

V (>)
e,h (ze,h), for ze,h ≥

L

2
,

(A.6)

where

V (<)
e,h (ze,h) =

∫
∞

0
dr rψ2(r)

(∫ L/2

0
dzh,e χ

2
h,e(zh,e)

∞∑
n=−∞

q |n|(Wn(r; ze,h,−zh,e)

+Wn(r; ze,h, zh,e))+

∫
∞

L/2
dzh,e χ

2
h,e(zh,e)(1 + q)

∞∑
n=0

qn

× (Wn(r; zh,e,−ze,h)+ Wn(r; zh,e, ze,h))

)
,
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V (>)
e,h (ze,h) =

∫
∞

0
dr rψ2(r)

(∫ L/2

0
dzh,e χ

2
h,e(zh,e)(1 + q)

∞∑
n=0

qn(Wn(r; ze,h,−zh,e)

+Wn(r; ze,h, zh,e))+

∫
∞

L/2
dzh,e χ

2
h,e(zh,e)

[
(1 + q)2

∞∑
n=0

qn

× Wn(r; ze,h, zh,e)+
(1 + q)

(1 − q)
(W0(r; ze,h,−zh,e)

− qW−1(r; ze,h, zh,e))

])
. (A.7)
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