
Abstract. We review quantum mechanical and optical pseudo-
Hermitian systems with an emphasis on PT-symmetric systems
important for optics and electrodynamics. One of the most

interesting and much discussed consequences of PT symmetry
is a phase transition under which the system eigenvalues lose
their PT symmetry.We show that although this phase transition
is difficult to realize experimentally, a similar transition can be
observed in quasi-PT-symmetric systems. Other effects pre-
dicted for PT-symmetric systems are not specific for these
systems and can be observed in ordinary fully passive systems.

1. Introduction

Interest in the optics of artificial heterogeneous media
rekindled in the last decade. These media have many unique
properties that are absent in homogeneous natural materials,
including artificial magnetism at optical frequencies [1±4],
negative refraction [5, 6], and strong spatial dispersion [7, 8].
These new properties, related to the resonance nature of the
interaction of light with materials, are observed in plasma
systems [9], photonic crystals [10, 11], random lasers [12], and
other systems. Unfortunately, the resonance interaction does
not always lead to the enhancement of useful properties only.
Quite often, Joule losses strongly increase in this case,
restricting applications of such media [13±15]. To solve this
problem, it was proposed in [16±24] to add active (amplifying)
components to a heterogeneous system. As a result, a wave is
amplified in some regions of the system and is attenuated in
others. Heuristically it seems that losses can be compensated
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by ensuring equal volumes and equal imaginary parts of the
amplifying and dissipative components. It turns out that
under these conditions, a transition can occur from solutions
that experience neither amplification nor attenuation to
solutions that, despite the apparent compensation of losses,
are either amplified or attenuated [25±27]. The solution type
changes at the transition point. An important example of
such systems, which allow obtaining analytically rigorous
results, is parity±time (PT) symmetric systems. The PT
symmetry in optical systems amounts to the condition
e�x; z� � e ��ÿx;ÿz�, where e�x; z� is the permittivity of the
medium.

In this review, we consider optical phenomena observed
in a new type of optical heterogeneous media with PT
symmetry.

Interest in such problems initially appeared in quantum
mechanical studies [28, 29] of Hamiltonians with a complex
potential satisfying the condition V�r� � V ��ÿr�. In Sec-
tion 2, we therefore consider the quantum mechanics of PT-
symmetric and pseudo-Hermitian systems. We discuss the
quantum mechanical properties of spatial inversion and time
reversal operators P̂ and T̂ in detail, analyze the necessary and
sufficient conditions for the existence of real eigenvalues of a
pseudo-Hermitian (in particular, PT-symmetric) Hamilto-
nian, and consider a phase transition related to the PT
symmetry breaking for the eigenstates of such a quantum
system. The eigenvalues of such a Hamiltonian turn out to be
real. At first glance, it would seem natural to extend the
existing quantum mechanics by including systems with
pseudo-Hermitian Hamiltonians into consideration. But it
turned out that in order to consistently develop quantum
mechanics with pseudo-Hermitian Hamiltonians, it is neces-
sary to redefine the scalar product of wave functions, which
makes the combination of this new quantum mechanics with
the traditional one impossible.

In Section 3, we discuss PT-symmetric optical systems and
their possible practical realizations. We show that exact
conditions for the PT symmetry of the system can be satisfied
only for a discrete set of real frequencies.

In Section 4, two-dimensional PT-symmetric systems are
considered. An analogy is pointed out between the Helmholtz
equation for a two-dimensional optical system and the
SchroÈ dinger equation for a one-dimensional quantum
mechanical system. Various phenomena are analyzed that
can be observed in PT-symmetric systems. In particular,
conditions of the refraction asymmetry in optical systems
are discussed. We consider phase transitions in two-dimen-
sional PT-symmetric systems and in PT-nonsymmetric
optical systems that can be mapped onto PT-symmetric ones
by coordinate transformation. Their behavior is analyzed.

In Section 5, the properties of one-dimensional PT-
symmetric optical systems are discussed. We analyze condi-
tions for the occurrence of a phase transition and the
possibility of developing a device based on PT-symmetric
systems that would simultaneously operate as a laser and an
ideal absorber.

In Section 6, we critically review the discussion about the
reciprocity of optical PT-symmetric systems. We consider
conditions that an optical system should satisfy to operate as
an optical diode.

In conclusion (Section 7), we show that although a
phase transition with PT-symmetry breaking cannot be
experimentally realized by changing frequency and is
difficult to realize by changing other parameters, a phenom-

enon similar to a phase transition can be observed in most
PT-invariant systems. All the other phenomena predicted in
the literature for PT-symmetric media are not specific to
PT-invariant systems and can also be observed in regular
passive systems.

2. PT symmetry.
Basic concepts and definitions

In 1998, Bender and Boettcher [28] showed that quantum
systems with a non-Hermitian Hamiltonian can have a set of
eigenstates with real eigenvalues (a real spectrum). In other
words, they found that the Hermiticity of the Hamiltonian is
not a necessary condition for the realness of its eigenvalues,
and new quantum mechanics can be constructed based on
such Hamiltonians [28, 30, 31].

The initial point of such a construction is the following
fact. In the case of real eigenvalues of a non-Hermitian
Hamiltonian, the modulus of the wave function for the
eigenstates of the system is conserved in time even in regions
with a complex potential. Indeed,

Ĥck � Ekck �1�

for any eigenstate of the Hamiltonian. Substituting (1) in the
time-dependent SchroÈ dinger equation, we obtain

i
qck

qt
� Ekck : �2�

Obviously, for any real Ek, the modulus of ck is conserved in
time. However, the eigenstates of such a Hamiltonian are not
orthogonal, and constructing self-consistent quantum
mechanics based on such Hamiltonians requires redefining
the scalar product and norm [32] (see Appendix 1).

2.1 Parity and time reversal operators
The historically first pseudo-Hermitian Hamiltonian with a
real spectrum was a PT-symmetric Hamiltonian [28]. The PT-
symmetry of the Hamiltonian means that it commutes with
the time reversal operator T̂ and the parity operator P̂:

P̂T̂Ĥ � ĤP̂T̂ : �3�

The action of the parity operator P̂ amounts to the
change of sign of all coordinates �x! ÿx, y! ÿy,
z! ÿz� [33]. As a result, three unit vectors pass from a
right to a left coordinate system, polar vectors change their
direction to the opposite �r! ÿr, p! ÿp, E! ÿE�, while
axial vectors do not change �H! H�. Here, r is the spatial
coordinate, p is the momentum, and E andH are electric and
magnetic fields.

The mean value of a physical quantity operator in
quantum mechanics corresponds to the classical value of
this quantity. Because the classical momentum and coordi-
nate change their signs under spatial inversion, this means
that hpi and hri should also change their signs. Therefore, the
momentum and coordinate operators are transformed under
spatial inversion by the rule

P̂�r̂P̂ � ÿr̂ ; �4a�
P̂�p̂P̂ � ÿp̂ ; �4b�

where r̂ and p̂ are the coordinate and momentum operators.
According to this, the angular momentum operator ĵ remains
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unchanged under spatial inversion:

P̂� ĵP̂ � ĵ : �4c�

In addition, the normalization of the wave function should be
preserved under spatial inversion, and therefore the parity
operator is unitary, P̂�P̂ � 1̂.

According to the Wigner theorem [343, 35], symmetry
operators can be either linear and unitary or antilinear and
antiunitary. According to the definition, a linear operator
does not change c-number factors in equations:

Q̂Lcc�r; t� � cQ̂L c�r; t� ; �5a�

while an antilinear operator leads to their complex conjuga-
tion:

Q̂ALcc�r; t� � c �Q̂AL c�r; t� : �5b�

Hence, to find whether the operator P̂ is linear or antilinear, it
is necessary to determine its action on the imaginary unit:
P̂�i1̂P̂. Because the canonical commutation relations

�̂r; p̂� � i1̂�h �6�

should remain invariant under spatial inversion [36], we
obtain

P̂�i1̂P̂�h � P̂��̂r; p̂�P̂ � P̂�r̂p̂P̂ÿ P̂�p̂r̂P̂

� P̂�r̂P̂P̂�p̂P̂ÿ P̂�p̂P̂P̂�r̂P̂ � r̂p̂ÿ p̂r̂ � �̂r; p̂� � i1̂�h ;

�7�
where we took into account that P̂�P̂ � 1̂. Therefore,
P̂�i1̂P̂ � i1̂ and P̂ is a linear unitary operator [34].1

Because the double application of the parity operation
returns the system to the initial state, the wave functions
c�r; t� and P̂ 2c�r; t� can differ only by a phase factor:
P̂ 2c�r; t� � exp �if�c�r; t�. For the parity of the wave
function to be an observable, the spatial inversion operator
should be Hermitian. The only phase factor for which the
spatial inversion operator is Hermitian, P̂� � P̂, is unity:
P̂ 2c�r; t� � c�r; t�. Assuming that the wave function is scalar
and taking into account that P̂ is a linear unitary operator
[33], we obtain that

P̂c�r; t� � c�ÿr; t� : �8�

A unitary transformation of any product of momentum
and coordinate operators reduces to the same product of
transformed operators:

P̂�r̂p̂P̂ � �P̂�r̂P̂��P̂�p̂P̂� ; �9�
P̂�r̂ 2p̂P̂ � �P̂�r̂P̂��P̂�r̂P̂��P̂�p̂P̂� ; . . . :

If the Hamiltonian of a system can be represented in the form
of a polynomial in momentum and coordinate operators,
then

P̂�Ĥ�p̂; r̂; t�P̂ � Ĥ�P̂�p̂P̂; P̂�r̂P̂; t� � Ĥ�ÿp̂;ÿr̂; t� : �10�

A system is P̂-invariant if its Hamiltonian does not change
after the inversion of coordinates, i.e.,

Ĥ�p̂; r̂; t� � Ĥ�ÿp̂;ÿr̂; t� : �11�

The action of the time reversal operator T̂ means the
change t! ÿt in all equations and time dependences of
physical quantities [33]. As a result, all physical quantities
linearly dependent on the time derivative change their sign
under time reversal �p! ÿp, j! ÿj�, whereas the time-
independent physical quantities do not change �r! r�.

Acting as in the derivation of relations (4a), (4b), and (4c),
we obtain the rules for transformations of operators under
time reversal:

T̂�r̂T̂ � r̂ ; �12a�
T̂�p̂T̂ � ÿp̂ ; �12b�
T̂� ĵT̂ � ÿ̂j : �12c�
Time reversal preserves the normalization of the wave

function. To find whether the time reversal operator is linear
or antilinear, it is necessary to determine its action on the
imaginary unit: T̂�i1̂T̂. Similarly to (6) and (7), we obtain

T̂�i1̂T̂�h � T̂��̂r; p̂�T̂ � T̂�r̂p̂T̂ÿ T̂�p̂r̂T̂

� T̂�r̂T̂T̂�p̂T̂ÿ T̂�p̂T̂T̂�r̂T̂ � ÿr̂p̂� p̂r̂ � ÿ�̂r; p̂� � ÿi1̂�h :

�13�

This means that T̂ is an antilinear and antiunitary operator
[34] (see footnote 1).

Because the double action of the time reversal operation
returns the system to the initial state, the wave functions
c�r; t� and T̂ 2c�r; t� can differ only by a phase factor:
T̂ 2c�r; t� � exp �if�c�r; t�. To determine the phase factor,
we apply the operator T̂ 3 to the wave function c�r; t�:

T̂ 3c�r; t� � T̂
ÿ
T̂ 2c�r; t�� � T̂

ÿ
exp �if�c�r; t��

� exp �ÿif�T̂c�r; t� � T̂ 2
ÿ
T̂c�r; t�� : �14�

Hence, the function T̂c�r; t� acquires the phase factor
exp �ÿif� under the action of T̂ 2, while the wave function
c�r; t� acquires the phase factor exp �if�. Because the
function c�r; t� � T̂c�r; t� can change under the action of T̂ 2

only by a common phase factor, we have exp �ÿif� � exp �if�
and T̂ 2c�r; t� � �c�r; t�. Assuming that the wave function is
a scalar and taking into account that T̂ is an antilinear and
antiunitary operator, we obtain the time reversal rule for the
wave function [33]:

T̂c�r; t� � c ��r;ÿt� : �15�

In particular, for a plane wave c�x; p; t� �
A exp �ÿiot� ikr�, the action of the time reversal operator
changes the propagation direction to the opposite one:

T̂
�
A exp �ÿiot� ikr�� � A� exp �ÿiotÿ ikr� : �16�

Because the operator T̂ is antiunitary, relation (9) also
holds for it, i.e.,

T̂�r̂p̂T̂ � �T̂�r̂T̂ ��T̂�p̂T̂ � ; �17�
T̂�r̂ 2p̂T̂ � �T̂�r̂T̂ ��T̂�r̂T̂ ��T̂�p̂T̂ � :

1 The operator Û is called unitary if hÛcjÛji � hcjji, and antiunitary if

hÛcjÛji � hjjci. In both cases, Û preserves the norm of the wave

function, because Û�Û � 1̂ [37].
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Similarly to the derivation of (10), we find

T̂�Ĥ�p̂; r̂; t�T̂ � Ĥ ��T̂�p̂T̂; T̂�r̂T̂; t� � Ĥ ��ÿp̂; r̂; t� : �18�

A system is T̂-invariant if its Hamiltonian does not change
under time reversal, i.e.,

Ĥ�p̂; r̂; t� � Ĥ ��ÿp̂; r̂; t� : �19�

By combining conditions (10) and (19), we obtain the
transformation of the Hamiltonian under the simultaneous
action of P̂ and T̂:

P̂�T̂�Ĥ�p̂; r̂; t�P̂T̂ � Ĥ�P̂�T̂�p̂P̂T̂; P̂�T̂�r̂P̂T̂; t�

� Ĥ ��p̂;ÿr̂;ÿt� : �20�

Therefore, a Hamiltonian is PT symmetric if

Ĥ�p̂; r̂; t� � Ĥ ��p̂;ÿr̂;ÿt� : �21�

Condition (21) can be represented in a form similar to
condition (3), P̂T̂Ĥ�p; r; t� � Ĥ�p; r; t�P̂T̂. For Hamiltonians
of the form

Ĥ � p̂2

2m
� V�r� ; �22�

wherem is the mass andV is the potential energy of a particle,
the PT-symmetry condition (21) reduces to the requirement
that the real part of the potential be an even function of the
coordinate and the imaginary part be an odd function:

V�r� � V ��ÿr� : �23�
For a non-Hermitian PT-symmetric Hamiltonian

Ĥ�p̂; r̂; t; m� depending on a parameter m, the eigenvalues of
the system can be both real and complex. If the real eigenvalue
spectrum of the Hamiltonian changes to a complex spectrum
upon varying m,2 we are dealing with a phase transition [28,
31].

2.2 Necessary and sufficient condition
for real eigenvalues of a PT-symmetric Hamiltonian
For the eigenvalues fEkg of a PT-symmetric system to be real,
it is necessary and sufficient that its eigensolutions fckg be
PT symmetric [28, 31]. Indeed, let ck be a PT-symmetric
eigensolution of the system with a Hamiltonian Ĥ,

ck � P̂T̂ck ; �24�
with an eigenvalue Ek,

Ĥck � Ekck : �25�

We successively apply the operator P̂T̂ to both parts of
Eqn (25):

P̂T̂Ĥck � P̂T̂Ekck : �26�

If the systemHamiltonian Ĥ satisfies PT-symmetry condition
(3), (21), then, with the PT-symmetry of ck in (24) taken into
account, the left-hand side of (26) takes the form

P̂T̂Ĥck � Ĥck : �27�

Because the parity operator P̂ is linear, and the time reversal
operator T̂ is antilinear, the right-hand side of (26) is
transformed as

P̂T̂Ekck � E �kck : �28�
Combining (27) and (28), we obtain

Ĥck � E �kck : �29�

Equations (25) and (29) are compatible only for Ek � E �k .
Hence, the PT symmetry of a solution ck is a sufficient
condition for the realness of the eigenvalue Ek of a PT-
symmetric Hamiltonian Ĥ.

We now prove that the PT symmetry of the solution ck is
also a necessary condition for the realness of the eigenvalues
of a PT-symmetric Hamiltonian with a nondegenerate
spectrum. We assume that the eigenvalues of the system are
real,Ek 2 RR, and the eigensolutionsck are not PT symmetric:

P̂T̂ck � c 0 ; �30�

where c 0 is an unknown wave function. We apply the
operator P̂T̂ to both sides of the stationary SchroÈ dinger
equation (25) for ck:

P̂T̂Ĥck � P̂T̂Ekck : �31�
In view of condition (3) of the PT symmetry of the
Hamiltonian and the realness of its eigenvalues Ek, we can
write

Ĥ�P̂T̂ck� � Ek�P̂T̂ck� ; �32�
whence, using Eqn (30), we obtain that

Ĥc 0 � Ekc 0 : �33�

Therefore, c 0 is an eigenfunction of the Hamiltonian Ĥ with
the eigenvalueEk. If the spectrum of Ĥ is nondegenerate, then
c 0 � ck, and it follows from (30) that ck is an eigenfunction
of the operator P̂T̂:

P̂T̂ck � c 0 � ck : �34�

The case of a PT-symmetric Hamiltonian with a degenerate
spectrum was considered in review [31], where it was shown
that the PT symmetry of the eigensolutions of the Hamilto-
nian is also a necessary and sufficient condition for the
realness of the eigenvalues. In other words, as long as the
eigenvalues Ek of the Hamiltonian are real, its eigensolutions
are PT symmetric. If the eigenvalues are complex, then the
eigenfunctions of the Hamiltonian are not eigenfunctions of
the operator P̂T̂.

We note that the real eigenvalues are inherent in the
spectra of a broader class of pseudo-Hermitian systems (see
Appendix 2). However, in optics we are mainly dealing with
PT-symmetric systems, and we discuss their properties below.

2.3 Phase transition in PT-symmetric systems
As shown in Section 2.2, when the eigenvalues are real, the
system is in a PT-symmetric phase, whereas for complex
eigenvalues, the system is in a PT-nonsymmetric phase [31].
If real eigenvalues change to complex ones upon varying some
parameter m of the Hamiltonian, we are dealing with a
second-order phase transition [38] related to a spontaneous
PT-symmetry breaking for eigensolutions.2 m can be the particle charge, the coupling constant, and so on.
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A change in the symmetry in passing through a phase
transition point is usually quantitatively described by intro-
ducing an order parameter Z, which is zero in the symmetric
phase and nonzero in the nonsymmetric phase [38]. In the case
of PT-symmetric systems, we can take this parameter in the
form

Z �
X
k

jc �kck ÿ P̂T̂c �kckj ; �35�

where the summation is performed over all eigenstates of the
system. The order parameter Z introduced in this way is zero
in the symmetric phase and increases with increasing
nonsymmetry of the eigensolutions. Another possible quan-
tity meeting the formal requirements imposed on the order
parameter is the sum of moduli of the imaginary parts of the
Hamiltonian eigenvalues, Z �Pk jImEkj. In the mean-field
Ginzburg±Landau theory, the order parameter is used for the
phenomenological description of the phase transition [38].
However, in the case of PT-symmetric systems, it is usually
simpler to find the eigensolutions ck of the system and
determine the phase transition point from them than to use
the order-parameter formalism.

The symmetry operator in conventional second-order
phase transitions is linear. In this case, the phase transition
and spontaneous symmetry breaking of the solution are
possible only when degeneracy appears [39]. In the one-
dimensional case, all energy levels of the discrete spectrum
are nondegenerate, and phase transitions in a system with a
linear symmetry transformation and a discrete spectrum are
impossible.

The PT-symmetric systems in electrodynamics differ from
systems in statistical physics that are invariant under linear
symmetry transformations in that because of the antilinearity
of the P̂T̂ operator, the phase transition can be observed in
one-dimensional PT-symmetric systems with a discrete
spectrum. Indeed, if a linear symmetry operator commutes
with the Hamiltonian, then their nondegenerate eigensolu-
tions always coincide. However, if an antilinear symmetry
operator commutes with the Hamiltonian, their eigensolu-
tions coincide only if the eigenvalues are real (see Section 2.2).

3. PT-symmetric optical systems

3.1 PT-symmetry concept for optical systems
In Section 2, we considered the main properties of PT-
symmetric quantum mechanical systems and discussed the
possibility of observing a second-order phase transition in
such systems. In [25, 26], the quantum mechanical PT-
symmetry concept was extended to optics.

The PT-symmetry concept in optics can be introduced in
the following way. In the two- and one-dimensional cases,
Maxwell's equations reduce to the scalar Helmholtz equation�

q2

qx 2
� q2

qz 2
�
�
o
c

�2

e�x; z�
�
E�x; z� � 0 ; �36a�

which formally coincides with the stationary SchroÈ dinger
equation [41]�

q2

qx 2
� q2

qz 2

�
ck�x; z� ÿ

2m
ÿ
V�x; z� ÿ Ek

�
�h 2

ck�x; z� � 0 ;

�36b�

under the formal substitutions V�x; z� ÿ Ek ! �o=c�2e�x; z�,
ck�x; z� ! E�x; z�, and ÿ�h 2=�2m� ! 1. The PT-symmetry
condition for a quantum mechanical system described by
Eqn (36b) is reduced to the requirementV�x; z� �V ��ÿx;ÿz�
imposed on the potential energy. Therefore, by analogy
between the potential energy in quantum mechanics and the
permittivity in optics, the PT-symmetry condition for the
optical system is defined as the condition imposed on the
permittivity of the medium:

Re e�o; x; z� � Re e�o;ÿx;ÿz� ; �37a�
Im e�o; x; z� � ÿIm e�o;ÿx;ÿz� : �37b�

We note that the stationary SchroÈ dinger equation does
not include the time dependence, and therefore the time
reversal operation T̂ is equivalent to the complex conjuga-
tion K̂. Below, the T-symmetry of the system in optics means
its K-symmetry, and we continue to call systems satisfying
condition (37) PT-symmetric systems.

3.2 Restrictions imposed by the causality principle.
Kramers±Kronig relations and the possibility
of PT-symmetric optical systems existing
in a finite frequency range
The permittivity e�o; r�, like any response function, must be
causal (an analytic function without poles in the upper
half-plane of the complex frequency plane) [42]. It follows
from this requirement that the real and imaginary parts of
the permittivity are connected by the Kramers±Kronig
relations [42]

Re e�o; r� � e0 � 1

p
v:p:

�1
ÿ1

Im e�o 0; r�
o 0 ÿ o

do 0 ; �38a�

Im e�o; r� � ÿ 1

p
v:p:

�1
ÿ1

Re e�o 0; r� ÿ e0
o 0 ÿ o

do 0 ; �38b�

where e0 is the vacuum permittivity and integrals are taken in
the sense of principal value (valeur principale, v.p.). Condi-
tions (37) show that any nontrivial PT-symmetric optical
system consists of amplifying media with egain�o� for which
Im egain < 0 and absorbing media with epass�o� for which
Im epass > 0. The nonzero imaginary part of the permittivity
means that the permittivity e�o; r� has a frequency dispersion.
Hence, condition (37) of the PT-symmetry of the system can
be satisfied only for a discrete frequency set [43]. Indeed, if
PT-symmetry condition (37b) is satisfied for the imaginary
part Im e�o� of the permittivity for any real frequencies, then

Re e�o;ÿr� � e0 � 1

p
v:p:

�1
ÿ1

Im e�o 0;ÿr�
o 0 ÿ o

do 0

� e0 ÿ 1

p
v:p:

�1
ÿ1

Im e�o 0; r�
o 0 ÿ o

do 0 : �39�

Expressions (38a) and (39) differ only in signs at the integral.
Therefore, the system PT-symmetry condition for the real
part of the permittivity at any real frequencies can hold only
in the trivial case of the vacuum, where

1

p
v:p:

�1
ÿ1

Im e�o 0; r�
o 0 ÿ o

do 0 � 0 ; �40�

i.e., in the absence of losses in the entire frequency range:
Im e�o; r� � 0. Therefore, the PT-symmetry condition cannot
hold in the entire frequency range.
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The formal proof presented above becomes obvious if we
recall that condition (38) means that the permittivity egain�o�
of the gain medium for real frequencies must be equal to the
complex conjugate permittivity eloss�o� of the passive compo-
nent:

egain�o� � e �loss�o� :

The question arises about the behavior of egain�o� defined
in such a way in the upper half-plane of complex frequencies.
We cannot simply set egain�o� � e �loss�o�, because e �loss�o� is
not an analytic function. Indeed, in passing from eloss�o� to
e �loss�o�, the imaginary part e �loss�o� changes its sign and the
Cauchy±Riemann conditions are no longer satisfied. The
choice egain�o� � e �loss�o�� is also inappropriate: although
e �loss�o�� is an analytic function, it has singularities in the
upper half-plane and is not a causal function. According to
the continuity theorem [44], if two analytic functions coincide
on a set having a limit point, they are equal. Therefore, an
analytic continuation, different from e �loss�o��, from the real
axis to the upper half-plane does not exist, and the system PT-
symmetry condition can be satisfied neither on the entire real
frequency axis nor in any finite frequency range. Indeed,
according to the continuity theorem [44], the analytic
continuation of e�o; r� from a finite frequency interval on
the real axis to the entire complex frequency plane coincides
with the analytic continuation of e�o; r� from the entire real
axis to the complex plane, i.e., with e �loss�o��. The latter, as was
said, does not satisfy the causality principle. Therefore, the
system PT-symmetry condition can be satisfied only for a
discrete frequency set.

We illustrate the last statement by the example of a
medium with a permittivity with the Lorentzian dispersion

eloss�o� � emat ÿ a
o2 ÿ o2

0 � 2igo
; �41�

where emat is the permittivity of a matrix doped with
amplifying (absorbing) components, g is the gain (absorp-
tion) linewidth, a is the gain (absorption) coefficient, ando0 is
the line frequency.

In the case of an absorbing medium, Im e�o� > 0, the
parameters a and g should be positive. Amplification
corresponds to a negative imaginary part of the permittivity
�Im e�o� < 0�, and, to satisfy the Kramers±Kronig relations,
it is necessary to take a < 0 and g > 0, which ensures the
causality of permittivity (41) [45, 46].3

However, the choice of permittivity in (41) with a < 0,
g > 0 is incompatible with the requirement of the PT-
symmetry of the system in a finite frequency interval [43]. In
this case,

Re eloss�o� � emat ÿ jaj�o2 ÿ o2
0�

�o2 ÿ o2
0� � 4g 2o2

;
�42a�

Im eloss�o� � ÿ 2ijaj
�o2 ÿ o2

0� � 4g 2o2
;

Re egain�o� � emat � jaj�o2 ÿ o2
0�

�o2 ÿ o2
0� � 4g 2o2

;
�42b�

Im eloss�o� � 2ijaj
�o2 ÿ o2

0� � 4g 2o2
:

In other words, condition (37b) is fulfilled, whereas (37a) is
not (Fig. 1).

We summarize the results in this section. The PT-
symmetry condition for an optical system can be fulfilled
only for a discrete frequency set and cannot be fulfilled in any
finite frequency range.4 Therefore, there is no sense to talk
about a phase transition with frequency changing.

Below, we consider optical phenomena attributed in the
literature to PT-symmetric systems and study how deviations
from conditions (37) affect the predictions made for struc-
tures with exact PT symmetry.

4. Two-dimensional
PT-symmetric optical systems

4.1 Analogy between the two-dimensional Helmholtz
equation and the one-dimensional SchroÈ dinger equation
Below, we study optical systems with the permittivity
depending only on the coordinate x. We consider an
electromagnetic wave with the amplitude E�x�, linearly
polarized along the y axis and propagating in such a system.
In this case, the problem of wave propagation reduces to a
scalar problem [40], and, to find the field distribution, we have
to solve the Helmholtz equation

q2E
qx 2
� q2E

qz 2
�
�
o
c

�2

e�x�E � 0 : �43�

Because the permittivity is independent of the coordinate z,
we can seek a solution of Eqn (43) as the product of two
functions [40],

E�x; z� � g�z� f �x� ; �44�

which can be found from the equations [40]

q2f �x�
qx 2

�
�
o
c

�2

e�x� f �x� � k 2
z f �x� ; �45a�

q2g�z�
qz 2

� k 2
z g�z� � 0 : �45b�

3 The choice a > 0, g < 0 means that egain�o� � e �loss�o�.

o=o0

o=o00

1

emat

R
e
e�o
�

Im
e�o
�

a

b

Figure 1. (a) Real and (b) imaginary parts of the permittivity for absorbing

(solid curves) and gain (dashed curves) media in the case where imaginary

parts differ only in sign: Im eloss � ÿIm egain.

4 The condition of the Hamiltonian pseudo-Hermiticity, which in optics is

a generalization of the PT-symmetry condition (see Appendix 2), can also

be fulfilled only for a discrete frequency set and cannot be fulfilled in any

finite frequency range (see Appendix 3).
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From Eqn (45b), we obtain

g�z� � A1 exp �ikzz� � A2 exp �ÿikzz� ; �46�

where the coefficients A1 and A2 are determined from the
boundary conditions, and the separation constant k 2

z is an
eigenvalue of Eqn (45a).

Equation (45a) coincides with the one-dimensional
stationary SchroÈ dinger equation with Hamiltonian (21) in
which p 2=�2m� ! q2=qx 2, V�x� ! �o=c�2e�x�, E! k 2

z , and
c�x� ! f �x�. This allows extending the results obtained in
the framework of PT-symmetric quantum mechanics to
optics. In this case, the operator P̂ reduces to inversion
along the x axis, and the operator T̂ to complex conjugation.

4.2 Phase transition in two-dimensional
PT-symmetric optical systems
We consider a PT-symmetric one-dimensional photonic
crystal with a unit cell consisting of two layers with the same
thickness d. The x axis is directed perpendicular to the layers
(Fig. 2), the real part of the permittivity is the same in all
layers, while the imaginary parts of the permittivity in
neighboring layers differ in sign:

en � eR � �ÿ1�n ieI, eR; eI > 0, eR; eI 2 RR, (47)

where n � 1; 2 is the layer number in the unit cell.We consider
an electromagnetic wave Ey�x; z� � f �x� exp �ikeffz� linearly
polarized along the y axis and propagating along the z axis
(see Fig. 2), where keff is the effective wave vector along the
wave propagation direction. The dispersion equation for k 2

eff

in this system reduces to two equations [47, 48]

tan
bld
2

cot
bgd
2
� ÿ bl

bg
; �48a�

tan
bld
2

cot
bgd
2
� ÿ bg

bl
; �48b�

where

bl �
�������������������������������������
k 2
0 �eR � ieI� ÿ k 2

eff

q
;

bg �
�������������������������������������
k 2
0 �eR ÿ ieI� ÿ k 2

eff

q
; k 2

0 �
�
o
c

�2

:

Equation (48a) corresponds to a rapidly decaying wave
[47, 48] even in a medium without losses and gain, and we do

not consider this case here. Equation (48b) corresponds to the
field distribution f �x� in the unit cell of the form [47, 48]

f �x�

�
cos �blx��

cos �bgd � ÿ cos �bld �
�bl=bg� sin �bgd �� sin �bld �

sin �blx�; x 2 �0; d �;

cos �bgx��
cos �bgd � ÿ cos �bld �

sin �bgd �� �bg=bl� sin �bld �
sin �bgx�; x 2 �ÿd; 0�;

8>>><>>>:
�49�

where x � 0 determines the plane separating layers inside the
unit cell.

It follows fromEqn (48b) that for the imaginary parts eI of
the permittivity smaller than a critical value e crI �k0d �, there
are two eigensolutions with different real wave vectors keff for
any frequency. For the imaginary parts of the permittivity
exceeding the critical value, the wave vectors keff become
complex (Fig. 3), their real parts coincide, while imaginary
parts differ in sign. For eI < e crI , the field distribution f �x� is
PT symmetric (Fig. 4a) and for eI > e crI , the field distribution
in the system is no longer PT symmetric (Fig. 4b).

Thus, passing from a real wave vector to a complex one is
accompanied by a change in the symmetry of the eigensolu-
tions f �x�: PT-symmetric solutions are changed to PT-
nonsymmetric solutions (see Fig. 4). Therefore, a phase
transition is observed in the system, which is caused by the
spontaneous PT-symmetry breaking for the solution f �x�
upon increasing the modulus of the imaginary part eI of the
permittivity. Below the phase transition point, the eigensolu-
tions are PT symmetric. The field amplitude in a layer with
losses is equal to the field amplitude in a gain layer (Fig. 4a).
As a result, the energy dissipation in the layer with losses is
compensated by the energy influx in the gain layer,
Im egainjEgainj2 � Im elossjElossj2 � 0. In other words, the field
energy is conserved, which corresponds to a real value of the
wave vector. Above the phase transition point, the eigensolu-
tions are PT nonsymmetric, the field amplitudes in the loss
layer and the gain layer are not equal (Fig. 4b), and
Im egainjEgainj2 � Im elossjElossj2 6� 0. The field decay in the
loss layer is no longer compensated by the field increase in
the gain layer. As a result, the electromagnetic field can
propagate in the system with decay or amplification.

4.3 `Loss-induced transparency'
To produce a PT-symmetric system, it is necessary to ensure
the exact coincidence of the moduli of imaginary parts of the
permittivity in amplifying and absorbing media. In real

z

x

Ey k

Figure 2. Two-dimensional PT-symmetric optical systems, e�x; z� �
e ��ÿx; z�. Different values of the permittivity are indicated by different

colors; the arrow shows the propagation direction of electromagnetic

waves.

ÿ0.2

ÿ0.1

0.1

0.2

0

0

0.1
|Im egainj

Im
k
z

0.2

Figure 3.Dependence of the imaginary part of the effective wave vector on

the imaginary part of the permittivity for k0d � 10p.
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optical systems, this is difficult to achieve, and controlling
these quantities with relation (37b) preserved is even more
difficult.

However, it was found in [49] that the phase transition
described in Section 4.2 could be observed in systems that are
not PT symmetric. This is possible if the description of such
systems can be formally reduced to the description of an
auxiliary PT-symmetric system.

We consider an infinite optical system for which the real
part Re e�o; x� of the permittivity is an even function of the
coordinate and the imaginary part Im e�o; x� is the sum of an
odd function of coordinate eI�o; x� and a constant C:

Re e�o; x� � Re e�o;ÿx� ; �50a�
Im e�o; x� � eI�o; x; m� � C ; �50b�
eI�o; x� � ÿeI�o;ÿx� : �50c�

Wenote that the dependence on z is absent. Below, we assume
that eI�o; x; m� linearly depends on a real factor m parameter-
izing system (50), eI�o; x; m� � meI�o; x�. Such a system is not
PT-symmetric because of the breaking of condition (37b).
The addition of a constant means that the system can be
purely dissipative, which is much simpler to realize experi-
mentally.

We describe the transformation that reduces system (50)
to a PT-symmetric system. As in the derivation of (43)±(46),
we seek the field distribution in the system in the form

E�x; z� � exp �ikz� f �x� : �51�

We introduce the new variable

e�x; z� � E�x; z� exp �az� : �52�

Then the Helmholtz equation (43) for e�x; z� can be
represented in the form

q2e�x; z�
qx 2

� q2e�x; z�
qz 2

� 2a
qe�x; z�

qz

�
�
o
c

�2�
Re e�o; x� � a 2

�o=c�2 � ieI�o; x; m�� iC

�
e�x; z�� 0 :

�53�

Because the permittivity is independent of z, we can seek a
solution of Eqn (53) in the form of the product of two

functions [40] (see Section 4.1):

e�x; z� � exp �ikeRz� keIz� f �x� : �54�

The term with the first derivative is then eliminated from
Eqn (53), because qe�x; z�=qz � �ikeR � keI� e�x; z�, and
Eqn (53) takes the form

q2e�x; z�
qx 2

� q2e�x; z�
qz 2

� o2

c 2

�
Re e�o; x� � a 2

�o=c�2 �
2akeI
�o=c�2

� ieI�o; x; m� � iC� i
2akeR
�o=c�2

�
e�x; z� � 0 : �55�

Equation (55) is a standard wave equation with the
permittivity

eeff�x� �
�
Re e�o; x� � a 2

�o=c�2 �
2akeI
�o=c�2

�
� i

�
eI�o; x; m� � C� 2akeR

�o=c�2
�
:

We choose the parameter a in transformation (52) such that
the coordinate-independent imaginary part of the permittiv-
ity vanishes: C� �2ac 2keR�=o2 � 0. As a result, we obtain a
system with the effective permittivity

eeff�x� �
�
Re e�x� � C 2

4

�o=c�2
k 2
eR

ÿ C
keI
keR

�
� ieI�x� ; �56�

satisfying the PT-symmetry condition (37). The terms in (56)
depending on the wave vector ke � keR � ikeI are PT sym-
metric because the wave vectors do not change under the
simultaneous action of the spatial inversion operator P̂ and
the time reversal operator T̂. Therefore, the effective
permittivity eeff�x� is PT symmetric and eigensolutions of
Eqn (55) can change their symmetry upon changing the
parameter m.

Because the electric field E�x; z� and the function e�x; z�
are connected with each other in a one-to-one manner [see
(52)], the change in the symmetry of the auxiliary field e�x; z�
leads to a change in the real field distribution E�x; z�.5 Thus,

1

2

3

a

0.50
z=d

0

4

ÿ0.5ÿ1.0 1.0

jEj

0

5

10

15 b

jEj

0.50
z=d

ÿ0.5ÿ1.0 1.0

Figure 4. Field distribution in a system of two layers of the thickness k0d � 10pwith the permittivity en � eR � �ÿ1�n ieI, eR > 0, eR; eI 2 RR, where n is the

layer number, n � 1; 2: (a) below the phase transition point, eI � 0:15 < e crI � 0:18; (b) above the phase transition point, eI � 0:35 > e crI � 0:18. The solid
and dashed curves correspond to amplitudes of two different eigenmodes of the system.

5 A change in the electric field distribution E�x; z� upon varying the

imaginary part of the permittivity corresponds to the phase transition

from P-symmetric eigensolutions to P-nonsymmetric eigensolutions. We

recall that the operator P̂ is here assumed to reduce to inversion only along

the x axis.
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we pointed to the possibility of observing a `hidden' phase
transition with a change in the solution symmetry in systems
for which the PT-symmetry condition is broken.

In [49], a phase transition in a system obeying conditions
(50) was found experimentally and studied theoretically. The
authors of [49] considered a system of two coupled optical
waveguides filled with materials with permittivities e1 and e2.
The first material had neither losses nor amplification
�Im e1 � 0�, while dissipation occurred in the second mate-
rial �Im e2 > 0�. This system was analyzed in [49] in the
interacting mode approximation [25, 49±51]. The optical
field in waveguides was sought in the form En �
Un�z�Fn�x; y�, where Fn�x; y� describes the field distribution
in the cross section of the nth waveguide and Un�z� is the
`amplitude'. In the interacting mode approximation, Un�z�
obeys the equations [49]

i
dU1

dz
� bU1 � kU2 ; �57a�

i
dU2

dz
� �b� db�U2 � k �U1 ; �57b�

where b is the propagation constant in the system of
waveguides without losses or amplification �Im e1 �
Im e2 � 0�, and k is the coefficient of interaction between
waveguides. A change db in the propagation constant in the
system of waveguides produced by the addition of losses is
proportional to the imaginary part of the permittivity. In such
a system, two guided eigenmodes exist with propagation
constants b� � b� db=2� �k �kÿ �db=2�2�1=2. For values of
Im e2 lower than a threshold value, the eigenmodes of the
waveguides are spatially symmetric, and the propagation
constant decreases with increasing losses �Im e2� (Fig. 5).
When Im e2 increases to the threshold, the waveguide
eigenmodes become spatially nonsymmetric (Fig. 4b) and,
as Im e2 increases further, the propagation coefficient for one
of the modes in the system increases (see the curve in Fig. 5).
The increase in the propagation coefficient is explained by the
fact that as Im e2 increases, the field in the eigenmode of the
system is mainly concentrated in the waveguide without
losses.

The effect of the increase in the propagation coefficient
with increasing losses was called `the loss-induced transpar-
ency' [49].

4.4 Refraction asymmetry
in a PT-symmetric optical system
The authors of [26] assigned the property of asymmetric
refraction to PT-symmetric systems: when a linearly polar-
ized plane wave is incident from a vacuum at an arbitrary
angle y on a semi-infinite PT-symmetric system, the field
distribution inside a photonic crystal is not mapped into its
P-symmetric image upon changing the angle of incidence
y! ÿy:

E�x; z; y� 6� P̂E�x; z; y� � E�ÿx; z;ÿy� : �58�
The authors of [26] considered a semi-infinite photonic

crystal bordering a vacuum over the z � 0 plane, in which the
permittivity varies along the x axis. Is was assumed that the
real and imaginary parts of the permittivity distribution
change asynchronously:6

e�x� � e0 � e1 cos �kx� � ie2 sin �kx� : �59�
Obviously, such a system is PT-symmetric. When a plane
wave linearly polarized along the y axis is incident on the
vacuum±photonic-crystal interface, the field in the system can
be sought in the form [40]

E�x; z�� exp �ikPC
z z� exp �ik inc

x x�
X�1

n�ÿ1
Cn exp �ikenx� ; z< 0 ;

�60a�
E�x; z� � exp

�
i

�
k inc
x x�

������������������������
k 2
0 ÿ �k inc

x �2
q

z

��
� exp

ÿ
ik inc

x x
�

�
X�1
n�ÿ1

Rn exp

�
ikenxÿ

�������������������������������������
k 2
0 ÿ �ken� k inc

x �2
q

z

�
; z5 0 ;

�60b�

where kPC
z is the wave vector in the photonic crystal in the

z direction perpendicular to the photonic crystal surface, k inc
x

is the tangential component of the wave vector of the incident
wave, and ke � 2p=d is the reciprocal lattice vector. Substitut-
ing field distribution (60) and permittivity (59) in the
Helmholtz equation

q2E
qx 2
� q2E

qz 2
�
�
o
c

�2

e�x�E � 0 ; �61�

we obtain an infinite system of equations for Fourier
expansion coefficients Cn�k inc

x �:�
k 2
0 ÿ �kPC

z �2 ÿ �k inc
x � ken�2

�
Cn�k inc

x �

� k 2
1� k 2

2

2
Cnÿ1�k inc

x � �
k 2
1ÿ k 2

2

2
Cn�1�k inc

x � � 0 ; �62�

where k 2
0 � �o=c�2e0, k 2

1 � �o=c�2e1, k 2
2 � �o=c�2e2, and kz is

found as an eigenvalue of boundary value problem (62) [40,
41]. The refraction asymmetry condition (58)

E�x; z; k inc
x � � exp �ikPC

z z� exp �ik inc
x x�

X�1
n�ÿ1

Cn exp �ikenx�

6� E�ÿx; z;ÿk inc
x � � exp �ikPC

z z� exp �ik inc
x x�

�
X�1

n�ÿ1
Cÿn exp �ikenx� �63�
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Figure 5. Transmission coefficient for light propagating through a system

of two coupled waveguides as a function of the loss in the second

waveguide [49].
6 We consider the case of a nonmagnetic medium in which the magnetic

permeability is unity.
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can be represented in terms of Fourier expansion coefficients
as

Cn�k inc
x � 6� Cÿn�ÿk inc

x � : �64�

A system of equations forCÿn�ÿk inc
x � is obtained from system

of equations (62) by the substitutions kx ! ÿkx and n! ÿn:�
k 2
0 ÿ k 2

z ÿ �k inc
x � ken�2

�
Cÿn�ÿk inc

x �

� k 2
1� k 2

2

2
Cÿnÿ1�ÿk inc

x � �
k 2
1ÿ k 2

2

2
Cÿn�1�ÿk inc

x � � 0 :

�65�

We can see from Eqns (62) and (65) that the coefficients
Cn�k inc

x � andCÿn�ÿk inc
x � are the same, whereasCnÿ1�k inc

x � and
Cÿ�nÿ1��ÿk inc

x � differ. Therefore, in the PT-symmetric system
under study, where k 2

1 6� 0 and k 2
2 6� 0, refraction is asym-

metric.7

It is important to note that the refraction asymmetry is not
related to the PT-symmetry of the system and can be observed
in any P-nonsymmetric system. Indeed, by definition, refrac-
tion is called symmetric if the field distribution in the system is
transformed into its P-symmetric image:

P̂E�x; z; kx� � E�ÿx; z;ÿkx� � E�x; z; kx� : �66�

IfHelmholtzequation(61) is invariantunderthe P̂ transforma-
tion and E�x; z; kx� is an eigensolution of the Helmholtz
equation, then PE�x; z; kx� is also an eigensolution of the
Helmholtz equation, and hence refraction in the system is
symmetric. If the optical system is not P-symmetric, then
P̂E�x; z; kx� is not an eigensolution of theHelmholtz equation
and refraction is asymmetric.

The system considered in [26] is not P-symmetric,
e�x� 6� e�ÿx�; therefore, there is no surprise that asymmetric
refraction is observed in it.

5. One-dimensional
PT-symmetric optical systems

In Section 4, we considered two-dimensional PT-symmetric
optical systems for which Eqn (45a) is equivalent to the one-
dimensional stationary SchroÈ dinger equation. We saw that
this allows extending the results obtained in PT-symmetric
quantum mechanics to optics. In particular, in two-dimen-
sional PT-symmetric optical systems (37), a phase transition
can occur due to PT-symmetry breaking for eigensolutions of
the Helmholtz equation.

Although it is impossible to establish a direct analogy with
the SchroÈ dinger equation in the one-dimensional case, the
PT-symmetry of an optical system still implies the condition
e�x� � e ��ÿx�. In real optical systems, this condition can be

satisfied only for a discrete frequency set (see Section 3.2).
Therefore, it is reasonable to consider the properties of the
scattering matrix of a PT-symmetric optical system only at
one real frequency o selected in advance.

5.1 Phase transition in a one-dimensional optical system
For definiteness, we assume that light propagates along the
direction x of variation in the permittivity and is polarized
along the y axis [53±55], while a PT-symmetric system
occupying the region above the coordinate x from ÿd to d is
surrounded by the vacuum from both sides (Fig. 6). Only one
component of the electric field Ey � E�x� satisfies the
Helmholtz equation [53, 54]:

q2E�x�
qx 2

�
�
o
c

�2

e�x;o�E�x� � 0 : �67�

Here, unlike in two-dimensional case (47), the wave propaga-
tion direction and the permittivity changing direction coin-
cide. Such a system can be conveniently described using the
scattering matrix s [53]. The scattering matrix s relates the
amplitudes of incident �fk� and scattered �cn� waves:

cn � snkfk ; �68�

where n; k � 1; 2, the subscript 1 corresponds to a plane wave
incident on the system from the left (c1 describes the reflected
and transmitted waves), and the subscript 2 refers to a plane
wave incident from the right.

In two-dimensional PT-symmetric optical systems, we
explained the phase transition by the change in the symmetry
of eigenmodes in the system, but in the one-dimensional case,
we consider the change in the symmetry of eigenvectors of the
scattering matrix s [53].

The electric field outside a PT-symmetric system is equal
to the sum of the incident and scattered waves:

E�x;o� �
f1 exp

�
i
o
c
x

�
� c1 exp

�
ÿi o

c
x

�
; x < ÿd ;

f2 exp

�
ÿi o

c
x

�
� c2 exp

�
i
o
c
x

�
; x > d :

8>><>>:
�69�

To determine the properties of the scattering matrix in PT-
symmetric optical systems, we apply the operator P̂T̂ to the
field distribution in system (69). The action of P̂ here reduces
to the substitution x! ÿx, while the action of T̂ leads to
complex conjugation, i! ÿi. Hence, ix! ix under the

7 In the literature, instead of the term `asymmetric refraction', the term

`nonreciprocal propagation' is commonly used, which seems inappropri-

ate to us because this term usually means the difference in the propagation

constants in the forward and backward directions. This is possible only in

nonlinear or gyrotropicmedia or inmedia with the propagation coefficient

varying in time [42, 52]. The propagation nonreciprocity term used in the

study of PT-symmetric systems means a difference in refraction of light

incident on a PT-symmetric system at angles �y, which is not eliminated

by the mirror mapping of the system with respect to the perpendicular to

the surface [3], i.e., the refraction asymmetry, E�x; z; kx� 6� E�ÿx; z;ÿkx�.

x

y

E

k

ÿd 0 d

Figure. 6. (Color online.) One-dimensional PT-symmetric optical systems,

e�x� � e ��ÿx�. Different values of the imaginary part of the permittivity

are shown by green and yellow colors. The vector E shows polarization

and the vector k, the propagation direction of an electromagnetic wave.
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action of P̂T̂, and Eqn (69) changes as (see Section 2.1)

P̂T̂E�x;o�

�
�P̂T̂f1� exp

�
i
o
c
x

�
� �P̂T̂c1� exp

�
ÿi o

c
x

�
; x > d ;

�P̂T̂f2� exp
�
ÿi o

c
x

�
� �P̂T̂c2� exp

�
i
o
c
x

�
; x < ÿd :

8>>><>>>:
�70�

Because Helmholtz equation (67) for a PT-symmetric system
�e�x� � e ��ÿx�� is invariant under the PT transformation and
(69) is a solution of the Helmholtz equation, (70) is a solution
of the Helmholtz equation. By comparing (69) and (70), we
see that P̂T̂cn now plays the role of amplitudes of plane waves
incident on the system, while P̂T̂fn are the amplitudes of
plane waves scattered from the system. These amplitudes are
connected with each other by the same scattering matrix as
before the PT-transformation: P̂T̂fn � snkP̂T̂ck.

8 In other
words,

P̂T̂cn � sÿ1nk P̂T̂fk : �71�

Applying the operator P̂T̂ to Eqn (68) from the left, we obtain

P̂T̂cn � �P̂T̂snkP̂T̂ � P̂T̂fk : �72�

It follows from (71) and (72) that the scatteringmatrix s in PT-
symmetric systems is transformed as [53]

P̂T̂snkP̂T̂ � sÿ1nk : �73�

We introduce the eigenvectors f 1
n and f 2

n of the
scattering matrix and the corresponding eigenvalues s 1 and
s 2 �snkf i

k � s �i�f �i�k �. Multiplying the left- and right-hand
sides of Eqn (73) by a scattering matrix eigenvector f i

k

�i � f1; 2g�, we obtain

P̂T̂snk�P̂T̂f i
k� � sÿ1nk f

i
k �

1

s �i�
f �i�k : �74�

Now, applying the operator P̂T̂ to (74) from the left and
taking into account that �P̂T̂ �2 � 1̂, we find

snk�P̂T̂f i
k� � �P̂T̂snkf �i�k �

1

�s �i��� �P̂T̂f
�i�
k � : �75�

Expanding P̂T̂f i
k with respect to the eigenvectors of the

scattering matrix, we obtain a matrix representation of the
operator P̂T̂ in the basis of f i

k:

P̂T̂f i
k � c i jf j

k : �76�

Because �P̂T̂ �2 � 1̂ and �P̂T̂ �� � P̂T̂, it follows that
c i jc j l � d il, where d il is the Kronecker delta, and
�c i j�� � c j i. As a result, the c i j matrix can be represented
either in the form (see Appendix 5)

c � � 1 0
0 1

� �
; �77a�

or as

c � cos y sin y exp �if�
sin y exp �ÿif� ÿ cos y

� �
; �77b�

where y andf are real numbers. For y � p=2� pn, n 2 NN, the
second case reduces to

c � 0 exp �if�
exp �ÿif� 0

� �
: �77c�

Substituting (76) in (75), we arrive at the system of equations
for ci j:

snk
X
j

c i jf j
k �

X
j

c i js jf j
n �

X
j

c i j

�s �i��� f
j
n : �78�

Below, we consider only reciprocal systems. Eigensolu-
tions of the scattering matrix of a reciprocal system with
different eigenvalues are orthogonal,

P
k�f j

k�Tf l
k � d j l (see

Appendix 5). Taking the scalar product of Eqn (78) with
�f f

k�T, we arrive at the eigenvalue problem for the scattering
matrix:

c ils �l � � c il

�s �i��� : �79�

Depending on the form of the c matrix, system of
equations (79) has three possible solutions:

(1) if c 11 � �1, c 22 � �1, and c 12 � c 21 � 0 [case (77a)],
the eigenvectors of the scattering matrix are PT-symmetric,
P̂T̂f i

k � �f i
k, and the eigenvalues are js ij � 1;

(2) if c 11 � c 22 � 0, c 12 6� 0, and c 21 6� 0 [case (77c)], the
eigenvectors of the scattering matrix are PT-nonsymmetric
and are mapped into one another by the P̂T̂ transformation:
P̂T̂f i

k � f j
k, i 6� j, while the scattering matrix eigenvalues are

related as s i � 1=�s j��, i 6� j ;
(3) if c 11 � ÿc 22, c 12 6� 0, and c 21 6� 0 [case (77b)], the

scattering matrix eigenvalues for different eigenvectors are
equal, s i� s j� 1=�s i��, i 6� j.

Below the phase transition point (the phase of PT-
symmetric solutions), the eigenvectors of the scattering
matrix are PT-symmetric, P̂T̂f i

k � �f i
k, and the amplitudes

of both eigenvalues matrix are unity, js ij � 1, corresponding
to the first case. Above the phase transition point, the
eigenvectors of the scattering matrix are PT-nonsymmetric,
corresponding to the second case, P̂T̂f i

k � �f j
k, i 6� j, and the

eigenvalues are related as s i � 1=�s j��, i 6� j [53].
In the third case, degeneracy exists: the eigenvalues are

equal to each other and the eigenvectors coincide (are linearly
dependent). This point corresponds to the boundary between
the region with PT-symmetric and PT-nonsymmetric eigen-
solutions, i.e., to the phase transition point.

To determine the condition under which the phase
transition occurs from PT-symmetric eigenvectors of the
scattering matrix to PT-nonsymmetric ones, we recall that
the operator P̂T̂ and the Helmholtz operator in Eqn (67)
commute with each other in any PT-symmetric system. In
this case, if P̂T̂ were a linear operator, the eigensolutions of
the Helmholtz equation would always remain PT-sym-
metric, i.e., would coincide with eigensolutions of the
operator P̂T̂. In reality, the operator P̂T̂ is antilinear
because its action includes complex conjugation (see
Section 2.1), and therefore the eigensolutions of P̂T̂ and of

8 A PT-symmetric system does not change after the PT-transformation:

PTe�x� � e ��ÿx� � e�x� and, because the scattering matrix is determined

only by the structure of the system, the scattering matrix of a PT-

symmetric system does not change after the PT transformation.
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the Helmholtz operator may not coincide. In this case, the
eigensolutions of Helmholtz equation (67) are PT-nonsym-
metric (see Section 2.3).

As an example, we consider a one-dimensional system on
which plane waves with amplitudes a1 and a2 are respectively
incident from the left and right, while waves with amplitudes
b1 and b2 are scattered from the system (Fig. 7a). By
performing the P̂T̂ transformation of the field distribution,
we see that time reversal leads to a change in the propagation
direction of the waves and complex conjugation of ampli-
tudes (16), while spatial inversion again causes a change in the
propagation direction of the waves and the interchange of the
waves propagating from left to right and from right to left [see
expressions (69) and (70)]. As a result, a wave incident on the
system from the left (right) is transformed into a wave
scattered to the right (left) with the complex conjugate
amplitude (Fig. 7b).

Hence, for the field distribution in the system to be PT-
symmetric, the solution must not change after the PT
transformation. This requires that the conditions a1 � b �2
and a2 � b �1 be satisfied. At the same time, because the
scattering matrix connects the amplitudes of incident and
scattered waves, the amplitudes of incident and scattered
waves for eigenvectors of the matrix should have pairwise
equal moduli, ja1j � jb1j and ja2j � jb2j. As a result, the
amplitudes of the waves incident from the left and right for
PT-symmetric eigensolutions must be equal, ja1j � ja2j.

We consider the case where a1 � 1 and a2 � exp �if� in
more detail, where f is an arbitrary phase factor (Fig. 8). For
the field distribution in the system to be PT-symmetric, the
equalities b2 � 1 and b1 � exp �ÿif�must be satisfied.

At the same time, the plane wave scattered from the
system to the left is the sum of the transmitted wave
t exp �if� incident from the right (t is the transmission
coefficient of the system)9 and the reflected wave rL incident
from the left (rL is the reflection coefficient of the system for
light incident from the left). Finally, we obtain

exp �ÿif� � t exp �if� � rL : �80a�

The plane wave scattered from the system from the right is
the sum of the transmitted wave t incident from the left and
the reflected wave rR exp �if� incident from the right (rR is the
reflection coefficient of the system for light incident from the
right), which gives

1 � t� rR exp �if� �80b�

for a PT-symmetric field distribution. Solving system of
equations (80a), (80b), we obtain

rL ÿ rR
t
� ÿ2i sinf ; �81�

and the eigenvectors of the scattering matrix have the form

f 1
k �

1

exp

�
i arcsin

�
ÿ rL ÿ rR

2it

��0@ 1A ;

�82�

f 2
k �

1

exp

�
i

�
pÿ arcsin

�
ÿ rL ÿ rR

2it

���0@ 1A :

The modulus of the right-hand side of Eqn (81) cannot
exceed two, and therefore the operator P̂T̂ has eigensolutions
only if���� rL ÿ rR

t

����4 2 : �83�

Thus, the problem solution for the PT-symmetric system
is PT-symmetric only if condition (83) is satisfied [53]. If
condition (83) is violated, the phase transition from the PT-
symmetric to PT-nonsymmetric eigenvectors of the scatter-
ing matrix occurs. At the point of the phase transition from
the PT-symmetric to PT-nonsymmetric eigensolutions,
arcsin �ÿ�rL ÿ rR�=�2it�� � p=2, and the eigenvectors of the
scattering matrix coincide, f 1

k � f 2
k .

5.2 Lasing in PT-symmetric optical systems
and the `hidden' phase transition
in a one-dimensional optical system
So far, we have considered PT-symmetric systems without
looking at the possibility of lasing in them. At the same time,
any PT-symmetric system contains a gain medium. If the
region occupied by the gainmedium forms a resonator, lasing
can occur in the system.

In the lasing regime, waves escaping from the system exist
even in the absence of incident waves. To determine the
amplitudes of the escaping waves and the lasing frequency,
it is necessary to take the nonlinear dependence of the
response function of the gain medium on the field amplitude
into account. Nevertheless, the conditions for lasing to

b�1

a�1

b�2

a�2

b
a2

b2

a1

b1

a

Figure 7. (a) Schematic representation of the scattering of plane waves from a one-dimensional optical system: ai are the complex amplitudes of waves

incident on the system, bi are the complex amplitudes of waves scattered by the system. (b) Schematic representation of the scattering of plane waves from

a one-dimensional optical system, shown in Fig. 7a, after its P̂T̂ transformation.

exp(ÿif�=t exp(if�+rL 1=t+rR exp(if�

exp(if)1

Im e > 0Im e < 0

Figure 8. PT-symmetric field distribution in a one-dimensional optical

system.

9We assume that the system is reciprocal, i.e., transmission coefficients for

light propagating through the system from left to right and from right to

left are equal.
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appear in the system can be determined in the linear
description of the medium [46]. Within the linear approxima-
tion, lasing develops upon the transition of one of the poles of
the scattering matrix to the upper half-plane of the complex
frequency plane [46, 56, 57]. A pole of the scattering matrix
corresponds to one of the eigenvalues of the scattering matrix
turning into infinity. The amplitude of the escaping waves at
the lasing onset point in the absence of incident waves is zero.

In the region where condition (83) is violated, one of the
eigenvalues of the scattering matrix can turn into infinity at
some real frequency. Simultaneously, the second eigenvalue
vanishes at this frequency because s �i� � 1=�s � j���, i 6� j. A
situation in which an eigenvalue of the scattering matrix
vanishes at a real frequency corresponds to coherent perfect
absorption (CPA) [58]. In this case, plane waves incident on
the system do not produce scattered waves: f �i�n 6� 0, and
c �i�n � 0. Therefore, at the beginning of lasing, i.e., when
lasing power is still zero, a PT-symmetric optical system is at
the same time a coherent perfect absorber. In the literature,
such systems were called `CPA lasers' [53, 54].

In Section 4.3, we discussed the possibility of observing a
phase transition in PT-nonsymmetric systems that can be
reduced to PT-symmetric ones after formally renaming the
fields. In [59], a PT-nonsymmetric optical system consisting of
two coherently coupled low-Q laser cavities was proposed. If
a gain can be achieved in the medium in one of the cavities
pumped by external radiation, then, beginning from the
pump threshold, lasing appears in the system. In this case,
the field distribution in the laser mode is asymmetric: the
integrated field intensity in the pumped cavity is greater than
that in the unpumped cavity [59]. If in addition the second
cavity is also pumped, lasing is quenched at a critical value of
the pump intensity in the second cavity. As the pump intensity
in the second cavity is increased further, lasing again appears
in the system. In this case, the field distribution in the laser
mode is symmetric: the integrated field intensities in the
cavities are equal [59].

Thus, in the system of two coupled cavities, we can
observe the effect of laser quenching upon increasing the
pump intensity, which is apparently counterintuitive, but is
caused by the spatial inhomogeneity of pump radiation. It is
important that this effect appears due to the phase transition
in the system and is not related to the medium nonlinearity.

Indeed, we consider a system consisting of two layers with
permittivities e1 � 1:1ÿ 0:3i and e2 � 1:1ÿ 0:3ia, where
a 2 �0; 1�. The minus sign in the imaginary part of the
permittivity corresponds to a gain medium. To determine
the parameters of the system at which lasing occurs, it suffices
to observe the position of the poles of the scattering matrix s
in the complex frequency plane. If at least one of the poles of
the scattering matrix lies in the upper frequency half-plane,
the system produces lasing [46, 56, 57]. To determine the
boundaries of the lasing region, it is very important to take the
permittivity dispersion into account, because the optical
thickness of the system increases as the radiation frequency
increases and lasing conditions are satisfied at lower gains. As
a result, lasing at high frequencies is observed at any gain. The
consideration of dispersion leads to a decrease in the
imaginary part of the permittivity with increasing frequency
(the imaginary part decreases faster than 1=Reo), which
allows rejecting nonphysical high-frequency lasing.

For simplicity and clarity, we first consider the system
described above with the permittivity dispersion neglected
and the poles at high frequencies not regarded as nonphysical.

We consider three systems with a1 � 0:0, a2 � 1:0, and
a3 � 0:5. In the first case, the coefficient a in the second
layer is zero. In the second case, the pump is homogeneous
over the system. The third case is intermediate between the
first and the second.

As the radiation frequency increases, the poles of the
system in all three cases move from the lower half-plane to the
upper half-plane, and lasing begins (Fig. 9). At low frequen-
cies, the poles of all three systems lie on straight lines in
complex frequency planes and the slope of the straight lines
increases with increasing gain in the second layer. At some
frequency �o=od � 30�, the eigenmodes in the first system are
rearranged. As a result, the straight line in which poles are
located splits into two straight lines with larger and smaller
slopes than those of the initial line. The slope of one of these
lines is even greater than that of the line in which the poles of
the third system lie. As a result, a frequency exists at which the
poles of the system without gain in the second layer are higher
than the poles of the gain system in the second layer
�o=od � 65�. Thus, adding gain to the second layer can
result in the lowering of a pole to the lower half-plane and
laser quenching, as is described in [59]. We neglected the
nonlinearity of the medium in our consideration, and there-
fore lasing quenching with increasing pumping is a purely
linear effect.

6. `Quasi-diode' PT-symmetric optical systems.
The reciprocity principle

At present, the possibility of creating an optical computer
that would use photons for data transfer, storage, and
processing is actively being discussed [60, 61]. The elemental
base of optical computers would be optical diodes transmit-
ting a signal in only one direction.

The authors of [62] proposed an optical diode system
based on a linear PT-symmetric system representing a two-
mode waveguide in the form of a silicon rod with impurities
periodically doped on its upper surface (Fig. 10a) [62]. The
waveguide thickness was chosen such that it could support
only two guidedmodes: an evenmode with amaximum at the
center of the rod cross section and an odd mode vanishing at
the center of the rod cross section (Fig. 10b). Silicon
impurities doped on one side of the waveguide neither
amplify nor absorb light at the relevant frequencies. The
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Figure 9. (Color online.) Position of poles of the scattering matrix in the

complex frequency plane. The real part of the frequency is plotted on the

abscissa and the imaginary part of the frequency Im �o=od�, where

od � pc=�2d � on the ordinate axis. Green, red, and blue colors respec-

tively indicate system poles with a � 1:0, 0.5, and 0.

November 2014 PT-symmetry in optics 1075



other side of the waveguide is doped with heterogeneous
germanium/chromium impurities, which become amplifying
elements when current passes through them. The location of
impurities in the system can be described in terms of the
permittivity distribution in the form [62]

e�x; y; z� � e0�x; y� � de�x; y� exp �iqz� ; �84�

where z is the waveguide axis and xy is the waveguide cross
sectional area.

The integrated output field intensity of such a device
depends on the side from which the signal is fed to the
system [62]. Such a behavior of the system was related to its
nonreciprocity, and it was proposed to use it as an optical
diode.

In reality, the difference in the intensities is caused by
different mode compositions of the output radiation and can

be observed in reciprocal systems. Indeed, upon the incidence
of the evenmode, the transmission coefficient for this mode is
independent of its incidence direction, in accordance with the
reciprocity of the system, but the output amplitude of the odd
mode depends on the side from which the even mode is
incident. Notably, in [62], when the even mode is incident
from one side, the output amplitude of the odd mode is zero
(Fig. 11a), whereas for incidence from the other side, this
amplitude is nonzero (Fig. 11b). Such a behavior does not
contradict the system reciprocity and can also be observed in
PT-nonsymmetric systems, as is seen in Fig. 11.

We formulate conditions under which the system is an
optical diode. In linear electrodynamics, the relation between
the amplitudes of incident and scattered waves is expressed in
the matrix form

bm � smnan ; �85�

where an is the column of amplitudes of waves incident on the
system, bm is the column of amplitudes of waves reflected from
the system, and smn is the scattering matrix. The subscripts m
and n range from 1 toN, whereN is the number of wave types
(channels) that can be scattered from the system.

The optical system under study in the matrix formulation
is equivalent to a network with four inputs. We take the even
mode incident on the system from the left as the first mode,
the odd mode incident from the left as the second mode, the
even mode incident from the right as the third mode, and the
odd mode incident from the right as the fourth mode
(Fig. 12a).

The system is connected to the optical setup of a computer
such that the signal is fed to one of the inputs of the network,
for example, the first input (the even mode incident from the
left) and is taken from the other, for example, the fourth input
(the odd mode escaping from the right) (Fig. 12b). Upon
propagation in the opposite direction, the signal is fed to the
fourth input (the odd mode incident from the right) and is
taken from the first input (the even mode escaping from the
left) (Fig. 12c). For the system to operate as a diode, the
condition s14 6� s41 should hold. In the general case, the
scattering matrix of the optical diode should be nonsym-
metric:

smn 6� snm : �86�
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Figure 10. (Color online.) (a)Diagramof a PT-symmetric optical system of

two coupled rectangular waveguides PT-symmetric along the z axis.

(b) Field distributions in the even (red curve) and odd (blue curve) modes

of the PT-symmetric optical system shown in Fig. 10a [62].
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Figure 11. (Color online.) (a) Amplitudes of the even (red) and odd (blue) modes upon the incidence of the even mode from the left on the system, as a

function of the system thickness. (b) Amplitudes of the even (red) and odd (blue) modes upon the incidence of the evenmode from the right on the system,

as a function of the system thickness. (From Supporting Online Material in [63].)
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Based on the Lorentz lemma, it was shown in [64] that the
scattering matrix of all linear optical systems is symmetric,
smn � snm, if the permittivity and magnetic permeability are
explicitly independent of time and are scalars or symmetric
tensors,10 emn � enm, mmn � mnm (see Appendix 5). Such optical
systems are called reciprocal. As follows from the above [see
(86)], reciprocal optical systems cannot operate as an optical
diode.

In [62], the first and second inputs, and also the third and
fourth inputs, were combined, and therefore the output
intensity was measured simultaneously for two inputs. In
particular, upon the incidence of the even wave from the left
(the first input), the output field intensity is the sum of
intensities of the even and odd modes escaping from the
right: I � js31j2 � js41j2 (Fig. 13a), while upon the incidence of
the even wave from the right (the third input), the output field
intensity is the sum of intensities of the even and odd modes
escaping from the left: I � js13j2 � js23j2 (Fig. 13b). In this
case, even in reciprocal systems, where s31 � s13, the output
integrated field intensity depends on the direction of the wave
incident on the system because s41 6� s23 in general. The
difference in the output powers at `combined' inputs does
not mean that the proposed PT-symmetric system is non-
reciprocal, because this property is common for all reciprocal
systems.

As an example illustrating these considerations, we
discuss the system shown in Fig. 14a. This system is described
by a scattering matrix similar to the scattering matrix of the
system proposed in [62]. The difference is in the physical
realization of scattering-matrix channels: in [62], these
channels differ in symmetry, and a combined waveguide is
excited through a common cross section, whereas channels in

our model have separate inputs (Fig. 14) and the mode
symmetry plays no role at all. When an electromagnetic
pulse is incident on the channel a1 of the system (Fig. 14a),
the amplitudes b3 and b4 of the output waves are nonzero
(Fig. 14b). When an electromagnetic pulse is incident on the
channel a3, the output signal in the channel b2 is absent
(Fig. 14c). In other words, the system response is similar to the
response of the system proposed in [62].

Thus, the PT-symmetric optical system proposed in [62]
cannot operate as an optical diode, while the dependence of
the output integrated field intensity on the direction of the
input signal is not a specific feature of PT-symmetric systems
only.

7. Conclusions

Interest in PT-symmetric systems appeared only recently. In
1998, Bender and Boettcher [28] showed that non-Hermitian
Hamiltonians can have real eigenvalues if they commute
with the product P̂T̂ of the spatial inversion and time
reversal operators. Moreover, in systems with PT-sym-
metric Hamiltonians, a phase transition from real to
complex eigenvalues of the Hamiltonian can be observed.
This transition is accompanied by spontaneous PT-symme-
try breaking for the Hamiltonian eigenfunctions. The
mathematical apparatus of quantum mechanics with PT-
symmetric Hamiltonians has been completely developed
[31]. We note that quantum mechanics constructed in such
a way is not an extension of ordinary quantum mechanics
but represents a separate mathematical description. The
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Figure 12. (a) Schematic representation of the scattering of waves from an

optical system considered in [62]: a1 and a3 are the complex amplitudes of

even modes incident on the system, a2 and a4 are the complex amplitudes

of odd incident modes, b1 and b3 are the complex amplitudes of even

modes scattered by the system, b2 and b4 are the complex amplitudes of

odd modes scattered by the system. (b) Schematic representation of the

incidence of the even mode with the unit amplitude from the left on the

system. (c) Schematic representation of the incidence of the oddmode with

the unit amplitude from the right on the system.

s13 1

s23

a b

s41

s311

Figure 13. Schematic representation of the incidence of the evenmode with

the unit amplitude on the system (a) from the left and (b) from the right.

10 The permittivity and permeability tensors become nonsymmetric in the

presence of an external field or nonzero magnetization [64].
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a4

a3
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a1 b3

b4
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b1

CPA

CPA
a3

c

Figure 14. (a) Schematic representation of the scattering of waves from an

optical system (notation as in Fig. 12a). (b) Schematic of the incidence of

the evenmode on the system from the left. (c) Schematic of the incidence of

the even mode on the system from the right. The inclined rectangles are

semi-transparent mirrors. CPA is a coherent perfect absorber. The

situation is completely analogous to that for the scattering of waves by a

PT-symmetric system.

November 2014 PT-symmetry in optics 1077



difference between these quantum mechanics is in different
definitions of the scalar product [32]. The PT-symmetric
quantum mechanics remains a purely speculative construc-
tion, because quantum mechanical non-Hermitian PT-
symmetric systems with a complex potential are absent in
Nature. For this reason the study of PT-symmetric systems
is currently concentrated on the fields of optics and the
physics of semiconductors [65], where PT-symmetric sys-
tems can be constructed.

We have shown in this review that observing a phase
transition in optical systems is extremely complicated. In
particular, such a transition cannot be observed by varying
only the frequency of an external field, while to observe the
transition by varying pumping, the pump radiation should be
spatially inhomogeneous. However, a `hidden' phase transi-
tion can be observed in PT-nonsymmetric systems that can be
reduced to PT-symmetric systems with the help of formal
renaming and transformations.

We have shown that most of the `unusual' properties
assigned to PT-symmetric systems can also be observed in
ordinary systems, including asymmetric refraction, quench-
ing of lasing with increasing pump intensity [59], and
`nonreciprocity'.

We have discussed only linear PT-symmetric optical
systems. The consideration of a broader range of effects
(see, e.g., [66±71]) predicted for nonlinear PT-symmetric
systems requires a separate paper.
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8. Appendices

A1 Nonorthogonality of eigenfunctions
of a non-Hermitian Hamiltonian with real eigenvalues
Let all the eigenvalues Ek of a non-Hermitian Hamiltonian Ĥ
with a discrete spectrum be real. In this case, it follows from
the SchroÈ dinger equation

i
qjcki
qt
� Ĥjcki �A1:1�

that for an eigensolution jck�t�i � exp �iEkt�jck�0�i of the
Hamiltonian, the wave-function norm hck�t�jck�t�i is pre-
served in time:


ck�t�jck�t�
� � 
ck�0�

��exp �ÿiEkt� exp �iEkt�
��ck�0�

�
� 
ck�0�jck�0�

�
: �A1:2�

However, unlike the eigenfunctions of a Hermitian
Hamiltonian, the eigenfunctions of Ĥ corresponding to
different real eigenvalues are not orthogonal. To prove
this, we multiply the Hermitian conjugate SchroÈ dinger
equation

ÿi qhcnj
qt
� hcnjĤ� �A1:3�

by jcki from the right and Eqn (A1.1) by hcnj from the left,
and subtract the second equation from the first:

i

�
hcnj

qjcki
qt
� qhcnj

qt
jcki

�
� hcnjĤÿ Ĥ�jcki

� i
qhcnjcki

qt
: �A1:4�

If the eigenfunctions of the Hamiltonian are orthogonal,
hcnjcki � 0, then qhcnjcki=qt � 0. If the set of functions
jcki is complete, it follows from (A1.4) that Ĥ � Ĥ�, i.e., the
Hamiltonian Ĥ is Hermitian. For a non-Hermitian Hamilto-
nian to have real eigenvalues, it is necessary that either
hcnjcki 6� 0 for n 6� k or the eigenfunctions of the Hamilto-
nian do not form a complete basis.

We here consider an important particular case of systems
with PT-symmetric Hamiltonians �P̂T̂Ĥ � ĤP̂T̂ �. If all the
eigenvalues of such a Hamiltonian are real, we can show that
the system of its eigenfunctions is complete [32]. Therefore,
the eigenfunctions of this Hamiltonian are nonorthogonal.

We note that it follows from (A1.2) that the norm is
preserved only for the eigenfunctions of the Hamiltonian. It
follows from the orthogonality of these functions that the
norm of an arbitrary wave function c �Pk ckjcki may not
be preserved in time. Indeed,

qhcjci
qt

�
q
�X

n

c �n hcnj
X
k

ckjcki
�

qt

�
q
�X

k; n

c �n ckhcnjcki
�

qt

�
X
n

jcnj2 qhcnjcni
qt

�
X
n 6� k

c �n ck
qhcnjcki

qt

�
X
n 6� k

c �n ck
qhcnjcki

qt
6� 0 : �A1:5�

For an arbitrary wave function, the quantity hcjP̂jci is
preserved. Indeed, bymultiplying (A1.1) from the left by hcjP̂
and (A1.3) from the right by P̂jci, and adding these
expressions, we obtain

i
qhcjP̂jci

qt
� hcjĤ�P̂ÿ P̂Ĥjci : �A1:6�

If Ĥ� � T̂ĤT̂ (see Appendix 2), then Ĥ�P̂ÿ P̂Ĥ �
T̂ĤT̂P̂ÿ P̂Ĥ � ĤT̂P̂ÿ T̂P̂Ĥ � ĤP̂T̂ÿ P̂T̂Ĥ � 0. Therefore,
in this case, hcjP̂jci is a quantity preserved in time.

Thus, to construct closed quantum mechanics based on
PT-symmetric Hamiltonians with real eigenvalues, it is
necessary to redefine the scalar product and to take the
vector hcjP̂ as a bra vector. In this case, the rule for
determining the means of physical quantities takes the form
hÂi � hcjP̂Âjci.

A2 Pseudo-Hermitian systems
Anecessary condition for the eigenvalues of aHamiltonian to
be real is its pseudo-Hermiticity:

Ĥ� � Ŝÿ1ĤŜ ; �A2:1�
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where Ŝ is any linear Hermitian operator. Notably, all PT-
symmetric Hamiltonians with real eigenvalues are at the same
time pseudo-Hermitian [29].

The pseudo-Hermiticity of the Hamiltonian is a necessary
but not sufficient condition for the realness of the spectrum.
In other words, pseudo-Hermitian Hamiltonians with com-
plex eigenvalues exist. If a pseudo-Hermitian system with a
Hamiltonian Ĥ�m� has purely real eigenvalues for some
parameters m and does not have real eigenvalues for other
parameters, we are dealing with a phase transition from the
states with real eigenvalues to the states with complex
eigenvalues.

If the Hamiltonian of the system satisfies the condition
Ĥ� � T̂ĤT̂, 11 then for Ŝ � P̂, the pseudo-Hermiticity con-
dition (A2.1) coincides with the PT-symmetry condition (3):

Ĥ� � T̂ĤT̂ � P̂ĤP̂, P̂T̂Ĥ � ĤP̂T̂ ; �A2:2�

where we used the fact that P̂ 2 � 1̂ and T̂ 2 � 1̂.
For arbitrary Hamiltonians �Ĥ� 6� T̂ĤT̂ �, the pseudo-

Hermiticity condition (A2.1) with the operator Ŝ � P̂ does
not coincide with PT-symmetry condition (3). For example, a
physical system with the Hamiltonian

Ĥ � p̂ 2 � x̂ 2p̂ �A2:3�

is PT-symmetric, but not pseudo-Hermitian with the operator
Ŝ � P̂ [29], and vice versa, a system with the Hamiltonian

Ĥ � p̂ 2 � i�x̂ 2p̂� p̂x̂ 2� �A2:4�

is pseudo-Hermitian with the operator Ŝ � P̂, but not PT-
symmetric [29].

For optical PT-symmetric systems, the Helmholtz equa-
tion can be reduced to the SchroÈ dinger equation with the
Hamiltonian

Ĥ � p̂ 2

2m
� V�x� ; �A2:5�

where p̂ � q=qx�. . . ; V�x���o=c�2e�x�, andÿ�h 2=�2m�! 1.
Because this Hamiltonian satisfies the condition Ĥ� � T̂ĤT̂,
the PT-symmetric systems in optics are a particular case of
pseudo-Hermitian systems.

A3 Restrictions imposed by the causality principle.
Kramers±Kronig relations and the possibility
of the existence of pseudo-Hermitian optical systems
in a finite frequency range
The concept of the pseudo-Hermiticity of a system can be
introduced in optics as was done for PT-symmetry condi-
tion (3). In one-dimensional and two-dimensional cases,
Maxwell's equation reduce to the scalar Helmholtz equa-
tion [40]�

q2

qx 2
� q2

qz 2
�
�
o
c

�2

e�x; z�
�
E�x; z� � 0 ; �A3:1a�

which formally coincides with the stationary SchroÈ dinger
equation�

q2

qx 2
� q2

qz 2

�
ck�x; z� ÿ

2m
ÿ
V�x; z� ÿ Ek

�
�h 2

ck�x; z� � 0 ;

�A3:1b�

if we make the substitution V�x; z� ÿ Ek ! �o=c�2e�x; z�,
ck�x; z� � E�x; z�, and ÿ�h 2=�2m� ! 1.

The pseudo-Hermiticity condition (A2.1) in quantum
optics for a system described by SchroÈ dinger equation
(A3.1b) amounts to the requirement V ��x; z� � ŜV�x; z�Ŝ
for the potential energy. By analogy between the potential
energy in quantum mechanics and the permittivity in optics,
the pseudo-Hermiticity condition of an optical system can be
defined as the condition imposed on the permittivity:

Re e�o; r� � Ŝ
ÿ
Re e�o; r��Ŝ ; �A3:2a�

Im e�o; r� � ÿŜÿIm e�o; r��Ŝ : �A3:2b�
We can see from the definition of pseudo-Hermiticity in

(A3.2) that any pseudo-Hermitian optical system consists of
amplifying and absorbing media. At the same time, the
frequency dispersion of the permittivity plays a significant
role in optical systemswith amplification and absorption, and
its consideration in gain media is fundamentally important.
Indeed, if the dispersion of the gain medium is neglected,
lasing would be observed in any arbitrarily small structure at
the high frequencies at which the optical thickness is much
greater [46, 57] than at low frequencies.

The permittivity is a function of the response of the
medium to incident radiation, and as any response function,
it must be causal (analytic in the upper complex frequency
half-plane). The requirement that the permittivity be an
analytic function in the upper complex frequency half-plane
means that the real and imaginary parts of the permittivity are
connected by the Kramers±Kronig relations [42]

Re e�o; r� � e0 � 1

p
v:p:

�1
ÿ1

Im e�o 0; r�
o 0 ÿ o

do 0 ; �A3:3a�

Im e�o; r� � ÿ 1

p
v:p:

�1
ÿ1

Re e�o 0; r� ÿ e0
o 0 ÿ o

do 0 ; �A3:3b�

where e0 is the permittivity of the vacuum. By usingKramers±
Kronig relations, we can show that pseudo-Hermiticity
condition (A3.2) is satisfied only for a discrete frequency set.

Indeed, if the pseudo-Hermiticity condition in
Eqn (A3.2b) holds for the imaginary part of the permittivity
at any real frequencies, then

Ŝ
ÿ
Re e�o; r��Ŝ � e0 � 1

p
v:p:

�1
ÿ1

Ŝ
ÿ
Im e�o 0; r��Ŝ
o 0 ÿ o

do 0

� e0 ÿ 1

p
v:p:

�1
ÿ1

Im e�o 0; r�
o 0 ÿ o

do 0 : �A3:4�

For the pseudo-Hermiticity condition to be satisfied for
the real part of the permittivity, the equality Re e�o; r� �
Ŝ�Re e�o; r��Ŝ should hold. Comparing the expressions for
Re e�o; r� in (A3.3a) and Ŝ�Re e�o;ÿr��Ŝ in (A3.4), we see
that they differ only in the sign at the integral. Therefore, the
system pseudo-Hermiticity condition for the real part of the
permittivity at all real frequencies can hold only when the

11An example of such aHamiltonian is given byHamiltonians with a time-

independent potential V�x�, not containing terms with the product of the

momentum by the coordinate �p̂x̂; p̂ 2x̂; p̂x̂ 2; . . .�. Such Hamiltonians also

include the simplest Hamiltonian Ĥ � p̂ 2=�2m� � V�x̂�.
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identity

1

p
v:p:

�1
ÿ1

Im e�o 0; r�
o 0 ÿ o

do 0 � 0 �A3:5�

holds, which is possible only for a completely transparent
system �Im e�o; r� � 0�.

Following the logic of Section 3.2, we can easily show that
the system pseudo-Hermiticity condition cannot be satisfied
in any finite frequency range either. Hence, the system
pseudo-Hermiticity condition can be satisfied only for a
discrete frequency set.

A4 Orthogonality of the eigenvectors
of the scattering matrix for a reciprocal system
Let f i

k be the ith eigenvector of the scattering matrix snk with
the eigenvalue s i:

snkf
�i�
k � s �i�f �i�n ; �A4:1�

where summation over the superscripts in parentheses is not
performed. Equation (A4.1) can be written in the formÿ

f � j �k

�T
skn � s� j �

ÿ
f � j�n

�T
: �A4:2�

Multiplying both sides of Eqn (A4.1) by �f � j �n �T and both
sides of (A4.2) byf �i�n , and subtracting the first equation from
the second, we obtainÿ

s �i� ÿ s � j �
�ÿ
f � j �n

�Tf �i�n � �f j
n�T�snk ÿ skn�f i

k : �A4:3�

The scattering matrix of a reciprocal medium is symmetric,
snk � skn [64]. Therefore, if the eigenvalues are different, the
eigenvectors of the scattering matrix are orthogonal:

�f j
n�Tf i

n � 0 : �A4:4�
In the case of one-dimensional PT-symmetric optical

systems, the scattering matrix eigenvalues coincide with each
other only at the point of a phase transition (see Section 5.1
and [53]) from PT-symmetric eigenvectors to PT-nonsym-
metric eigenvectors. In this case, the choice of eigenvectors is
arbitrary and they can always be chosen to be mutually
orthogonal [39].

A5 Properties of the c matrix
We consider some results that are important in Section 5.1. It
follows from (76) that the c i j matrix is amatrix representation
of the operator P̂T̂ in the basis of eigenfunctions f �i�k of the
scattering matrix,

P̂T̂f i
k � c i jf j

k : �A5:1�
Therefore, the c i j matrix has the same properties as the
operator P̂T̂. For example, it follows from the relations
�P̂T̂ �2 � 1̂ and �P̂T̂ �� � P̂T̂ that c i jc jl � d il and
�c i j�� � c ji. It follows from the Hermiticity of the c i j matrix
that c 11 and c 22 are real and c 12 � �c 21��. From the matrix
equation c i jc jl � d il, we obtain

�c 11�2 � c 12c 21 � 1 ; �A5:2a�
c12�c 11 � c 22� � 0 ; �A5:2b�
c 21�c 11 � c 22� � 0 ; �A5:2c�
�c 22�2 � c 12c 21 � 1 : �A5:2d�

We can see from (A5.2a) and (A5.2b) that c 11 � �c 22.

If c 11 � c 22, then it follows from (A5.2b) and (A5.2c) that
c 12 � c 21 � 0. In this case, c 11 � c 22 � �1 and

c � � 1 0
0 1

� �
: �A5:3�

If c 11 � ÿc 22, then Eqns (A5.2b) and (A5.2c) do not
impose additional restrictions on c 12 and c 21. In this case, it
follows from the condition c 12 � �c 21�� and Eqn (A5.2) that

�c 11�2 � jc 12j2 � 1 ; �A5:4a�

�c 11�2 � jc 21j2 � 1 : �A5:4b�

Because c 11 2 RR and c 11 � ÿc 22, the c matrix can be written
as

c � cos y sin y exp �if�
sin y exp �ÿif� ÿ cos y

� �
; �A5:5�

where y and f are arbitrary real numbers.

A6 Symmetry of the scattering matrix
of an optical system as a corollary of the Lorentz lemma
For linear optical systems with the permittivity and magnetic
permeability that are independent of time and are scalars or
symmetric tensors �emn � enm, mmn � mnm�, the Lorentz lemma
holds [64], which relates the electric andmagnetic fieldsEi and
Hi produced by electric and magnetic currents j ei and j mi ,
i � f1; 2g,�

S

ÿ
E1 �H2 ÿ E2 �H1

�
dS

�
�
V

ÿ
j m1 H2 ÿ j m2 H1 � j e1 E2 ÿ j e2 E1

�
dV : �A6:1�

It follows from the Lorentz lemma that the scattering matrix
of the system is symmetric:

smn � snm : �A6:2�

We prove this for a multimode waveguide with two open
ends, which we conventionally call the left and right ends. We
assume that the distribution of E1 andH1 in the cross section
of the left end coincides with one of the waveguide
eigenmodes m and corresponds to propagation from left to
right, E l

1 � E ���m , Hl
1 � H ���m , and in the cross section of the

right end of the waveguide, is equal to the sum over all
waveguide eigenmodes with unknown coefficients:
Er
1 �

PN
k�1 smkE

���
k , H r

1 �
PN

k�1 smkH
���
k . We also assume

that the distribution of fields E2 and H2 in the cross section
of the right end of the waveguide coincides with one of the
waveguide eigenmodes n and corresponds to propagation
from right to left, E r

2 � E �ÿ�n , H r
2 � H �ÿ�n , and in the cross

section of the left end of the waveguide, is equal to the sum
over all waveguide eigenmodes with unknown coefficients:
E l
2 �

PN
k�1 snkE

�ÿ�
k ,H l

2 �
PN

k�1 snkH
�ÿ�
k .12

We choose the integration volume in (A6.1) such that the
waveguide lies inside this volume and the integration surface
intersects the waveguide only over the cross sections of the

12 For modes with identical indices but different propagation directions,

the condition E ���m �H ���m � ÿE �ÿ�m �H �ÿ�m holds.

1080 A A Zyablovsky, A P Vinogradov, A A Pukhov, A V Dorofeenko, A A Lisyansky Physics ±Uspekhi 57 (11)



open ends. We also assume that the integration volume does
not contain external electric and magnetic currents. In this
case, expression (A6.1) transforms into�

S l

ÿ
E1 �H2 ÿ E2 �H1

�
dS

�
�
S r

ÿ
E1 �H2 ÿ E2 �H1

�
dS ; �A6:3�

where S l and S r are the cross-sectional surfaces for the left
and right ends of the waveguide. Substituting the expressions
forEi andHi in the left and right waveguide cross sections, we
obtain�
S l

"
E ���m �

�XN
k�1

snkH
�ÿ�
k

�
ÿ
�XN

k�1
snkE

�ÿ�
k

�
�H ���m

#
dS

�
�
S r

"�XN
k�1

smkE
���
k

�
�H �ÿ�n ÿ E �ÿ�n �

�XN
k�1

smkH
���
k

�#
dS :

�A6:4�

Pulling the summations outside the parentheses, we have

XN
k�1

snk

�
S l

ÿ
E ���m �H �ÿ�k ÿ E �ÿ�k �H ���m

�
dS

�
XN
k�1

smk

�
S r

ÿ
E ���k �H �ÿ�n ÿ E �ÿ�n �H ���k

�
dS : �A6:5�

Using the fact that the amplitudes of eigenmodes in a
waveguide with a constant cross section can be normalized
such that the condition�

S l;S r

ÿ
E ���m �H �ÿ�n ÿ E �ÿ�n �H ���m

�
dS � dmn

holds [64], we obtain

snm

�
S l

ÿ
E ���m �H �ÿ�m ÿ E �ÿ�m �H ���m

�
dS

� smn

�
S r

ÿ
E ���n �H �ÿ�n ÿ E �ÿ�n �H ���n

�
dS ; �A6:6�

snm � smn : �A6:7�

Because equality (A6.7) is valid for any m and n, the scattering
matrix of the system is symmetric under the index permuta-
tion.
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