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Statistics of the cumulative phase of microwave radiation in random media
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We determine the cumulative phase of microwave radiation transmitted through a sample of randomly
positioned polystyrene spheres in measurements of the field versus frequency and investigate its statistics. Its
probability distribution is Gaussian at all frequencies with a variance which is nearly equal to the ensemble
average of the phase. These results are consistent with our observation that the correlation function of the phase
derivative with the ensemble average value of the phase is nearly the same exponential function for diffusing
waves over a wide frequency range. Finally, we indicate ways in which the study of the cumulative phase can
elucidate wave transport in random systems.@S1063-651X~97!12508-9#

PACS number~s!: 41.20.Jb, 05.40.1j, 71.55.Jv
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I. INTRODUCTION

Large fluctuations in optical and electronic properties
statistically equivalent realizations of a random medium
a consequence of interference and reflect the essential
played by the phase in mesoscopic physics@1–4#. Recently
the fascinating topological structure of phase maps has b
investigated@5–7#, but the statistics of the total phasew at a
point and its frequency dependence in an ensemble of
dom systems has not been studied. This may be becaus
distribution of the phase modulo 2p in the fieldE exp(iw2p),
which is the phase that is ordinarily measured, is flat in
interval @2p,1p# for diffusive waves. This is seen in th
probability distribution shown in Fig. 1 ofw2p for micro-
wave radiation transmitted through the random polystyr
sample described below. Another reason the phase has
been extensively investigated is that the ensemble averag
the field decays rapidly as the sample thickness is increa
As a result, studies of wave propagation in random me
have focused on the magnitude of the fieldE or on its square,
the intensity, rather than on the phase. Here we show tha
total phase accumulated by the wave in traversing the
dium @8# is a rich statistical quantity which is central to th
understanding of wave transport in random systems.
present measurements of the frequency dependence o
average phase, its probability distribution, and the correla
function of the phase derivative for microwave radiati
transmitted through random media. These studies allow u
explain the relationship of the ensemble average value of
phase to its variance. We then outline some of the way
which w reflects wave dynamics and the density of states
random systems.

II. EXPERIMENTAL PROCEDURE

The phase of microwave radiation transmitted throug
sample of randomly positioned 1/2-inch polystyrene sphe
at a volume filling fraction of 0.52 is measured using
Hewlett-Packard 8722C network analyzer as it is swept fr
561063-651X/97/56~3!/3619~5!/$10.00
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3 to 26 GHz. The sample of lengthL5110 cm is contained
within a 7.6-cm-diam copper tube. The incident wave
emitted using a broadband horn peaked at 18 GHz and
transmitted field is picked up with a wire antenna at t
output surface. Calibration of the instrument at the input s
the phase reference. Measurements ofE andw2p , from 18.8
to 19.0 GHz for a single configuration are shown in Fig.
Data are taken at frequency intervals of 625 kHz. The ph
modulo 2p is generally seen to increase with frequency in
piecewise fashion.

In a multiply scattering medium, the complex field at
given observation point may be expressed as the sum ove
partial waves emanating from the source,Eeiw5(paeiwa

wherewa is the phase accumulated along the wave pata
andpa its magnitude. The cumulative phase of the result
field can be expressed asw5w2p12np, wheren is an in-
teger. This integer can be determined by following the ph
rollup starting from low frequencies where the phase
proaches zero. Measurements are made using frequenc

FIG. 1. Probability distribution ofw modulo 2p.
3619 © 1997 The American Physical Society
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crements which are small enough that the change in the m
sured phasew2p is generally much less thanp rad.
Occasional large jumps inw2p of up to 6p rad are ob-
served when phase singularities in the speckle pattern, a
ciated with a zero of the field@5–7#, sweep past the detecto
as the frequency increases. A jump inw2p , which is equal to
6p rad within the uncertainty of measurements, would g
rise to an indeterminacy in the cumulative phase@6,7# but is
never observed.

The zero ofw occurs at frequencyn50. This point is
estimated by extrapolating the phase measured in the inte
between 3 and 6 GHz to zero frequency. New sample c
figurations are created after each spectrum is taken by r
ing the copper tube@9#.

III. RESULTS AND DISCUSSION

Following the procedure outlined above, we construct
total phase accumulated for each of 581 configurations m
sured from 6 to 26 GHz and obtain the average over th
configurations shown in Fig. 3~a!. The fluctuations of the
phase from its ensemble average value,dw5w2^w&, are
shown in Fig. 3~b! for three configurations. The dependen

FIG. 2. Measurements of~a! the field magnitude and~b! its
phase modulo 2p for a single sample configuration. The lin
through the data is present as a guide to the eye.
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seof the variance of the phase var(w) upon its averagêw& is
shown in Fig. 3~c!.

The field is a random variable representing the sum ove
large number of partial waves with random phases. To e

FIG. 3. ~a! Variation of the ensemble average cumulative pha
^w& for an ensemble of 581 configurations from 6 to 26 GHz.~b!
Fluctuations of the phase from its ensemble average value,dw5w
2^w&, for three different configurations.~c! Dependence of the
variance in cumulative phase upon the ensemble average cum
tive phase.
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56 3621STATISTICS OF THE CUMULATIVE PHASE OF . . .
amine the character of the distribution of cumulative pha
resulting from this phasor sum, we compute the probabi
distribution P(w), using the cumulative phase measured
each frequency~from 6 to 26 GHz! for every configuration.
This probability distribution is presented in Fig. 4 on a sing
plot in terms of the variablej(n)5dw(n)/s(n), wheres
5@var(w)#1/2. A Gaussian fit to the measured probabili
distributionP(j) gives the solid line through the data show
in Fig. 4 with standard deviation 0.998.

In order to understand this result, we consider the cum
lant correlation function of the phase derivative. The und
lying character of fluctuations in the phase is revealed i
way that may be independent of frequency range and sam
characteristics when we change variables from the freque
n to x5^w(n)&, the average increment in the cumulati
phase. We take the increment from the value of^w(n)& at 6
GHz, which is the lowest value of the frequency in the fie
spectra measured in this study of fluctuations in the ph
This mapping is allowed because^w(n)& is a monotonically
increasing function of frequency. The new variablex runs
from 0 to 6425 rad for the frequency range 6–26 GHz. T
range of phase change is divided into 20 identical phase
tervals. This is small enough for the statistical process to
stationary but large enough that the quality of the statistic
improved when we average over both sample configurat
and overx within a given interval. The comparison of th
cumulant correlation functions in different frequency rang
is facilitated by considering the normalized correlation fun
tion. Writing the phase derivative asw85dw/dx and noting
that ^w8&51, we express the normalized cumulant corre
tion function of the phase derivative withx in the i th interval
as follows:

Ci~Dx!5Š^A~x!A~x1Dx!& i‹, ~1!

where

A~x!5@w8~x!21#/A^@w8~x!21#2&.

FIG. 4. Probability distribution ofj(n)5dw(n)/s(n) calcu-
lated at each frequency~from 6 to 26 GHz! for every configuration.
The line through the data is a fit of a Gaussian to the data. Thi
gives a standard deviation of 0.998.
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The symbolŠ ‹ represents the average over configuratio
and^ & i the average overx within the i th interval. The result
for 15 intervals~i from 5 to 19 corresponding to frequencie
running from 11.47 to 25.15 GHz! is shown in Fig. 5. The
inset in the figure gives a semilogarithmic plot ofC for in-
terval i 518. The plots of the correlation function overlap
a significant extent. At lower frequencies (i 51 –4! the dif-
fusive regime is not completely established and the co
sponding plots of the correlation function do not overla
Changes in the correlation function which develop at hig
frequencies are the sources of the deviation from the lin
relationship between the variance and average of the p
seen in Fig. 3~c!. The half width of the correlation function is
dx50.5 rad. Because the degree of correlation of the ph
derivative exhibits a rapid decay with an exponential tail, t
cumulative phase at a given frequency is essentially a s
over a large number of statistically independent increme
The Gaussian distribution ofdw shown in Fig. 4, obtained by
sampling over configuration and over frequency, is thu
consequence of the central limit theorem.

When a correlation functionC(Dx) falls more rapidly
than (Dx)21, the variance of the increment inx over some
range is proportional tox over a frequency range in whic
the correlation function is stationary@10#. Only the constant
of proportionality between the variance andx is modified by
the correlation function. Thus, the nearly linear variation
var~w! with ^w&, seen in Fig. 3~c! for much of the frequency
range investigated, is related to short range of the correla
function of the phase derivative with average phase shift
to the independence of the correlation function upon the
quency range@10#.

The slope of the variation of var~w! with ^w& is related to
the range of the correlation function. This is seen by cons
ering the variance ofw at a specific value ofx, X:

var„w~X!…5^uw~X!2Xu2&5K U E
0

X

dx@w8~x!21#U2L .

~2!

fit

FIG. 5. Normalized cumulant correlation functionC(Dx) of the
phase derivative with average phasex for 15 intervals correspond
ing to frequencies running from 11.47 to 25.15 GHz. A semilog
rithmic plot of C18~Dx! is shown in the inset.
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The RHS of Eq.~2! can be expressed in terms of the cum
lant correlation function C̃(x,Dx)5Š^@f8(x)21#@f8(x
1Dx)21&1‹ of the phase derivative without the normaliz
tion factor used in Eq.~1!:

var~w!5E
2X

0

d~Dx!E
2DX

X

C̃~x,Dx!dx

1E
0

X

d~Dx!E
0

X2Dx

C̃~x,Dx!dx. ~3!

The results in Eq.~3! can be put into a particularly simpl
form whenC̃ is independent of frequency range. Since
have already seen in Fig. 5 thatC is independent of fre-
quency range,C̃ will be independent of frequency range
long as var(w8) is. In Fig. 6 we plot var(w8) for the 15
intervals for which data are shown in Fig. 5. The fluctuatio
in the figure are a result of the noise in computing the av
age for 581 configurations. We find that the average valu
var(w8) is 0.46 in each of the frequency ranges. Theref
C(x,Dx) and C̃(x,Dx) are proportional. As a resultC̃ is
independent ofx. We have then

var@w~X!#5E
2X

0

~X1Dx!C̃~Dx!d~Dx!

1E
0

X

~X2Dx!C̃~Dx!d~Dx!. ~4!

SinceC̃(2Dx)5C̃(Dx), we have

var@w~X!#52XE
0

X

C̃~Dx!d~Dx!. ~5!

BecauseC̃ falls off rapidly, the integral*0
XC̃(Dx)d(Dx)

does not depend upon the upper limit and is a constant in
pendent ofX. Thus, var@w(X)# is proportional toX. The
value of the integral in Eq.~5! of C̃(Dx) in any interval is
obtained by multiplying the integral of the correlation fun
tion in Fig. 5 by the average value of var(w8) in that interval.

FIG. 6. The variance of the phase derivative vs average cu
lative phase.
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The results for 15 intervals fromi 55 –19 GHz are plotted in
Fig. 7. We find that the integral of the phase derivative c
relation function is nearly constant with an average va
over the frequency ranges considered of 0.50. As a resul
find that, for our sample,

var@w~X!#5X, ~6!

in good agreement with Fig. 3~c!. A linear fit of the results in
Fig. 3~c! gives var(w)51.01x for x,5000 with somewhat
larger values for the prefactor for higher values ofx. The
discrepancy may be the result of contributions to the integ
of the correlation function in Fig. 5 for values ofDx greater
than those for which the correlation function was above
noise.

IV. CONCLUSION

The significance of the cumulative phase is seen by c
sidering some of the ways it enters into a description of wa
transport in random media. The derivative of the phase w
angular frequency provides a convenient window on wa
dynamics in random media. We expect that the dwell time
a narrow bandwidth pulse centered at the carrier frequencv
incident in one channel and emerging from another chan
is equal todw/dv at v for the field in the outgoing channe
Thus the nearly linear increase of^w& seen in Fig. 3~a! re-
flects a nearly constant average passage time for the w
This can be understood by considering the dwell time in
strongly absorbing sample, the length of which is longer th
the absorption length,L.La , whereLa5ADta, D is the
diffusion constant andta the absorption time@12#. In this
case, the average transit time is proportional to the produc
the transit time through one absorption length,La

2/D, and the
number of absorption lengths in the sample,L/La . Thus,
^t&;LLa /D;LAta /D. Measurements in this sample hav
shown thatta and D happened to be proportional over
broad frequency range@11#. Thus the linear behavior of^w&
with frequency is a consequence of the properties of
particular system.

u-

FIG. 7. The integral over the average phase of the correla
function of the phase derivative evaluated in terms of the integra
the product of the average variance of the phase derivative and
normalized correlation function. The error bars take into acco
the uncertainty in the integral of the correlation function in view
the noise as seen in the inset of Fig. 5.
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The integrated energy within the sample due to an e
tation of a particular incident channel is proportional to t
dwell time for that channel. Thus, the density of states wit
the sample, which is proportional to the volume integral
the intensity within a medium in which all incident channe
have equal energy, is proportional to the sum over all in
channels of the dwell time of photons in each of these ch
nels @12,13#. Measurements of the phase derivative thus
yield the density of states in a random medium.

In summary, we have measured the cumulative phase
random medium and investigated its statistics. Its aver
increases monotonically with frequency and its variance
nearly equal to the average cumulative phase. We show
the Gaussian shape of its probability distribution at any f
quency is a direct consequence of the unchanging form
the correlation function of the phase derivative in o
om
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sample. The cumulative phase is a key statistical param
which, despite the complexity of the interference proce
allows a statistical study of wave dynamics and can be u
to determine the density of states in random media.
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