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Abstract Multi-sphere Mie theory is used to analyze the
resonance response and the spatial distribution of the elec-
tromagnetic field in a system of a linear chain of mi-
crospheres. We assume that the system is coupled to a mono-
chromatic source that would have excited a fundamental
whispering gallery mode in a single sphere, and study the
modification of the resonance frequencies and the spatial
distribution of the field induced by optical coupling between
spheres. We find that the coupled-mode approach does not
give an adequate description of this situation, and that the
excitations of the chain cannot be presented as linear combi-
nations of the single-sphere fundamental modes. In the case
of chains with an odd number of microspheres, there exists
a single collective mode with frequency equal to that of the
single-sphere resonance, which reproduces the field pattern
of a single-sphere fundamental mode without distortion in
every odd-numbered sphere of the chain.
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1 Introduction

Optical microresonators attract a great interest due to their
potential for a variety of applications [1] and recent techno-
logical advances allowing for very accurate manufacturing
of the respective structures [2]. Individual resonators of var-
ious shapes such as microspheres [3], microdisks [4], mi-
crotoroids [5] etc. have been carefully studied and shown
to have practically achievable Q-factors (Q) as large as
1011–1013. Of particular interest are structures in which sev-
eral microresonators are optically coupled by evanescent
fields of their individual modes. The simplest such config-
uration is a double-resonator photonic molecule suggested
in [6] and studied both experimentally and theoretically in
many papers [7–9]. More complex configurations such as
triangular, square, hexagonal, or circular structures were
also studied [2, 10]. A number of new devices such as, for
instance, coupled-resonator optical waveguides (CROWs)
were proposed based on coupling of a large number of high-
Q resonators [11].

In the case of microspheres, resonances are whispering
gallery modes (WGMs) characterized by angular quantum
number l, azimuthal number m, radial number s, and po-
larization, TE or TM. In order to achieve high values of
Q-factor one needs to excite WGMs with large values of
l, which are characterized by a high degree of degeneracy.
Modes with the same orbital and radial numbers, l and s,
but different azimuthal numbers m have the same (complex-
valued) frequency, but different spatial distributions. Not all
of the degenerate modes are equally beneficial for applica-
tions (even though they all have the same Q-factor), because
they are characterized by different values of the mode vol-
ume and the surface field enhancement. Of greatest interest
are so-called ‘fundamental’ modes, which are characterized
by s = 1 and |m| = l. The field of these modes is tightly
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concentrated at the surface of the sphere in the vicinity of
the equatorial plane, resulting in the smallest mode volume
and greatest surface field enhancement. It is assumed that
these modes can be excited, for instance, by coupling to a
tapered fiber [12].

When microspheres are arranged in coupled structures
one would like to achieve a field distribution resulting
from coupling between the fundamental modes of individ-
ual spheres. In the spirit of a popular coupled-mode ap-
proach [11] such a distribution is usually described as a lin-
ear combination of phase-matched (m = l in one sphere and
m = −l in the other) modes whose coupling is character-
ized by an overlap integral of the respective modal func-
tions [13, 14]. Similar results are obtained in the first order
of the perturbation theory applied to a system of two or more
resonators [14].

We show in this paper that field configurations in the form
of symmetric and anti-symmetric combinations of single-
sphere modes are not consistent with the symmetry of the
system if the deviations of the spheres from the ideal shape
are negligible. More accurately, we demonstrate that if one
excites a fundamental mode in each of uncoupled ideal indi-
vidual spheres and brings them together for optical coupling,
the ensuing violation of the complete spherical symmetry
of the system will result in a field configuration contain-
ing a linear combination of all initially degenerate modes
with |m| ≤ l. The optical coupling removes the degeneracy
of these modes, producing a complicated optical response
with multiple peaks.

This situation cannot be described by the non-degenerate
perturbation approach used in [14] or, equivalently, by the
mode-coupling theories even in the case of weak coupling
because of the degeneracy of the unperturbed system. In the
language of the perturbation theory, the modes of individual
spheres do not form correct zero-order eigenfunctions, and
one needs to find a correct basis, which would diagonalize
the perturbation matrix. We will show here that an approach
based on a multi-sphere Mie theory allows one not only to
solve the problem of optical coupling of linear chains of mi-
crospheres numerically with a higher degree of accuracy,
but it also provides the most natural way of developing an
approximate description of the problem free of difficulties
associated with direct perturbative assault of the Maxwell
equations.

More specifically, we will describe in this paper the op-
tical response and the field distribution in a linear chain of
coupled spheres under the excitation conditions that would
have generated fundamental modes in an isolated sphere, us-
ing a combination of numerical and approximate analytical
calculations. The general results will be applied to particular
cases of N = 2,3, 4, and 5 spheres.

2 Fundamental modes and coordinate systems

The system considered in the paper consists of a linear chain
of N dielectric spheres of radius R and refractive index n po-
sitioned at a distance d ≥ 2R between their centers (an ex-
ample with the number of spheres N = 2 is shown in Fig. 1).
We assume that there is a monochromatic incident field,
Einc, of frequency ω, exciting certain WGM resonances in
the system, which are described by scattered, Esc, and inter-
nal, Ein, fields. Our task is to find the resonance frequencies
and the total field distribution in and around the spheres,
which we solve with the help of the standard multi-sphere
Mie theory [9, 15, 16]. In this approach one divides the elec-
tromagnetic field in the region of space occupied by spheres
into incident, internal, and scattered fields. Considering an
ith sphere whose center is located at point ri , one presents
the field incident at this sphere, E

(i)
inc, and the respective in-

ternal field, E
(i)
in , as linear combinations of single-sphere

vector spherical harmonics (VSH) Mm,l (TE polarization)
and Nm,l (TM polarization) centered at the chosen sphere:

E(i)
inc =

∑

l,m

[
ζ

(i)
l,mNm,l(r − ri ) + η

(i)
l,mMm,l(r − ri )

]
, (1)

E(i)
in =

∑

l,m

[
c
(i)
l,mNm,l(r − ri ) + d

(i)
l,mMm,l(r − ri )

]
. (2)

The scattered field is expressed as a sum of the fields scat-
tered by each sphere:

Es =
N∑

i=1

∑

l,m

[
a

(i)
l,mNm,l(r − ri ) + b

(i)
l,mMm,l(r − ri )

]
. (3)

Using Maxwell boundary conditions and the addition the-
orem for the vector spherical harmonics [17, 18], one can
derive a system of equations relating the scattering coeffi-
cients a

(i)
l,m and b

(i)
l,m to the coefficients of the incident field

Fig. 1 Configuration of a two-sphere system and possible coordinate
systems. Arrowed lines show schematically two single-sphere funda-
mental modes
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ζ
(i)
l,m and η

(i)
l,m:

a
(i)
l,m = α

(N)
l (x)

{
ζ

(i)
l,m +

∑

j �=i

∑

l′,m′

[
a

(j)

l′,m′A
l′,m′
l,m (x, rj − ri )

+ b
(j)

l′,m′B
l′,m′
l,m (x, rj − ri )

]}
, (4)

b
(i)
l,m = α

(M)
l (x)

{
η

(i)
l,m +

∑

j �=i

∑

l′,m′

[
b

(j)

l′,m′A
l′,m′
l,m (x, rj − ri )

+ a
(j)

l′,m′B
l′,m′
l,m (x, rj − ri )

]}
, (5)

where α
(N)
l and α

(M)
l are single-sphere Mie scattering co-

efficients for TM and TE polarizations, respectively, which
have poles at the specific values of the dimensionless fre-
quency parameter x, defined as x = nRω/c. Real and imag-
inary parts of these poles determine the frequency and the
spectral width of the WGM resonances of single spheres.
Explicit expressions for the scattering coefficients as well
as for the translational coefficients A

l′,m′
l,m (rj − ri ) and

B
l′,m′
l,m (rj − ri ), which describe optical coupling between

the spheres via modes of the same or different polarizations,
respectively, can be found, for instance, in [9, 15, 16]. One,
however, needs to be careful because different authors use
different normalization for VSH, which also affects the de-
finition of the translation coefficients. We will use here the
formulation presented in [15].

Our goal is to study effects of the optical coupling on
fundamental modes of single spheres. One has to realize,
however, that the classification of WGMs as fundamental
is linked to a particular choice of a coordinate system: the
mode with |m| = l is associated with an equatorial plane
perpendicular to the polar axis z. When dealing with a
single-sphere problem, one can designate any plane passing
through the sphere’s center as an equator and have a fun-
damental mode assigned to it by choosing a polar axis of
the spherical coordinate system in the appropriate direction.
The situation changes, however, when one wants to optically
couple fundamental modes of two or more spheres. In this
case, in order to achieve maximum coupling, one would like
to have field distributions, which, in the absence of coupling,
would have been concentrated in the vicinity of the plane
containing the centers of the spheres. In order to classify
these fields as fundamental modes, one has to designate this
plane as equatorial by choosing a polar axis of the coordi-
nate system to be perpendicular to the line connecting the
centers of the spheres. This coordinate system is labeled by
lower case letters in Fig. 1.

Using this coordinate system one can simulate coupled
fundamental modes of a definite polarization, for instance
TE, and with a given angular momentum L by choosing ex-
pansion coefficients for the incident field, Einc, coupled to

the first sphere as

ζ
(1,2)
l,m = 0, η

(i)
l,m = δlLδmLδi1, (6)

and assuming that its frequency is in the vicinity of the res-
onance with the lowest radial number, s = 1. The incident
field chosen in the form of (6) excites in a single sphere a
required high-Q fundamental mode with l = L and m = L,
so that this choice enables us to study effects of optical cou-
pling on this particular mode. However, this choice of a co-
ordinate system is not consistent with the symmetry of the
linear chain and, as a result, the azimuthal number m does
not conserve in this system. The formal manifestation of this
fact is the presence of non-diagonal in m elements in the
translation coefficients, which mixes single-sphere modes
with different azimuthal numbers. As a result, the configura-
tion of the fields in the coupled spheres cannot be presented
as a combination of the modes with |m| = l, contrary to the
assumption of the coupled-mode theories.

While one can solve (4) and (5) using the xyz coordi-
nate system with the coefficients of the incident field given
by (6), the non-diagonal in m nature of the translation coef-
ficients makes calculations too complicated and masks the
physical meaning of the effects under discussion. It is more
convenient to use a different coordinate system with po-
lar axis along the line of symmetry of the system (XYZ

system in Fig. 1), in which the translation coefficients are
diagonal in m and the normal modes of the coupled sys-
tem can again be classified according to the azimuthal num-
ber [9, 19]. However, the field distribution corresponding to
the fundamental mode of the xyz coordinate system cannot
be characterized by a VSH with a single m in the XYZ sys-
tem. In order to describe the same field distribution using
new coordinates one has to use transformation properties of
VSH [15]. As a result the incident field given by (6) in xyz

coordinates is described now by coefficients

ζ
(i)
l,m = 0, η

(i)
l,m = δlLδi1RLm,

(7)

RLm = (−i)L

2L

√
(2L)!

(L + m)!(L − m)! .

Since translational coefficients in the new coordinate sys-
tem become diagonal in m, expansion coefficients in (5) and
(4) with different values of the azimuthal number become
independent and can be solved separately. In what follows
we will also neglect the cross-polarization terms, described
by coefficients Bl′m

lm , which are usually much smaller than

Al′m
lm [9]. Then, we need only to be concerned with the coef-

ficients blm and (5).

3 Bi-spheres

In order to understand qualitatively the effect of the coupling
on the field distribution, we will first consider a case of a bi-
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sphere and solve (5) in the so-called single-mode approxi-
mation neglecting interaction between modes with different
l numbers (see details in [9, 19]). Scattering coefficients for
both spheres in this approximation become

b
(1,2)
0l,m

= 1

2
δlLRlm

[
1

α−1
L − ALm

Lm(r2 − r1)

± 1

α−1
L + ALm

Lm(r2 − r1)

]
, (8)

where the lower index 0 indicates that this approximation
corresponds to the zero order in the inter-mode coupling co-
efficients. Substituting these expressions into (3), one ob-
tains an expression for the scattered field:

Es = 1

2

∑

m

RLm

[
MLm(r − r1) + MLm(r − r2)

α−1
L − ALm

Lm(r2 − r1)

+ MLm(r − r1) − MLm(r − r2)

α−1
L + ALm

Lm(r2 − r1)

]
, (9)

which gives a clear physical picture of the phenomenon un-
der consideration. This expression describes an optical re-
sponse with resonances at two sets of frequencies: one is
given by the zeroes of α−1

L −ALm
Lm and the other by the zeroes

of α−1
L + ALm

Lm. The role of coupling between spheres is de-
scribed by translation coefficients ALm

Lm, which shift the res-
onant frequency from the single-sphere values by different
amounts for different values of m. As a result terms with dif-
ferent azimuthal numbers resonate at different frequencies
so that one ideally could expect 2(L+1) resonance peaks in
the optical response of the system, contrary to the coupled-
mode theory expectation of just two resonances. The actual
number of observed peaks depends on the relation of spec-
tral intervals between adjacent peaks to their widths.

One can notice that the numerators of terms in (9) corre-
sponding to different values of m have a form of symmet-
ric and anti-symmetric combinations of respective single-
sphere modes, which is typical for the coupled-mode ap-
proaches. This result follows, of course, from the diagonal in
m nature of the translation coefficients, which play the role
of the perturbation matrix in this approach. In other words,
WGMs, defined in the coordinate system XYZ, form a cor-
rect basis, in which the perturbation is diagonal in the space
of the degenerate states.

More accurate treatment of the situation requires tak-
ing into account terms which are non-diagonal in the angu-
lar number l. These terms describe coupling between non-
degenerate WGMs in different spheres, which result in shift-
ing frequencies of the resonances as well as in changes of
their widths [9, 19]. One can describe effects of these terms
within a perturbation approach, where an effective small pa-
rameter is the expression αlA

Lm
lm (r2 − r1). The nature of the

smallness of this parameter is not trivial: the non-diagonal
in l elements of the translation coefficients are not by them-
selves small; actually, they grow with l. The product αlA

Lm
lm

is nevertheless small because αl decreases as its pole moves
away with increasing l from the frequency of the main mode
with l = L.

In the case of a bi-sphere the first-order correction to the
scattering coefficients b

(1,2)
1l,m with l �= L can be presented in

the following form:

b
(1,2)
1l,m = 1

2
b

(1)
0LmαlA

Lm
lm (r2 − r1)

[
1

1 − αlA
lm
lm

∓ 1

1 + αlA
lm
lm

]
,

(10)

where b
(1)
0Lm is given in (8) and we neglected second-order

corrections to the denominator, which would modify real
and imaginary parts of the resonance frequency of the lth
mode obtained in the single-mode approximation. This per-
turbation theory would break down if in the vicinity of the
main resonant frequency, xL, modes with several other val-
ues of l would also have their resonances with high enough
values of Q. This situation is quite possible at least for
some values of L, as was pointed out in [9, 19]. If this hap-
pens, all resonant modes must be treated exactly, while the
rest of them can still be treated perturbatively (see details
in [9, 19]).

The bi-sphere problem can also be solved numerically
exactly using, for instance, matrix inversion. The number
of terms with different angular numbers which have to be
taken into account is determined from convergency of the
procedure. For computations we chose L = 29 and a spec-
tral interval in the vicinity of the resonance frequency of the
mode with radial number s = 1, x29,1 = 21.46. We checked
(for a few representative frequencies) that the convergency
is achieved if one takes into account all l ≤ 40, and that
the terms with l > L do not change the results significantly.
Therefore, in order to shorten computational time we car-
ried out most of the calculations taking into account all
1 < l ≤ L. Including all coefficients with l < L, is neces-
sary to insure that we include all possible resonance modes
that can significantly affect the results.

Using the found scattering coefficients we calculate ex-
pansion coefficients of the internal field d

(i)
l,m:

d
(i)
lm = i

x

1

jl(x)[nxjl(nx)]′ − jl(nx)[xjl(x)]′ b
(i)
lm, (11)

where jl(x) is the spherical Bessel function and [zjl(z)]′
means differentiation with respect to z. Knowing the coef-
ficients d

(i)
lm , we can find the total energy of the field con-

centrated inside spheres as a function of frequency, which is
best suited to characterize the optical response of our sys-
tem in the spectral range of high-Q WGMs [9]. Figures 2a
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Fig. 2 The internal energy of a
bi-sphere as a function of
dimensionless frequency, x.
a Single-mode approximation,
d = 0; b numerical calculations
including all modes with l ≤ 29,
d = 0; c the double-peak
spectrum obtained for
d = 0.28R: solid
line—numerical multi-mode
calculations, broken
line—single-mode
approximation

and b present the spectra of the internal energy obtained
by two procedures: exact multi-mode numerical computa-
tion and calculations based on the single-mode approxima-
tion (9). One can see that while the single-mode model re-
produces the multi-resonance optical response, it deviates
strongly from exact numerical calculations in number, po-
sitions, and heights of the respective peaks. Comparing the
latter for Figs. 2a and b, we can conclude that the inter-mode
coupling significantly reduces Q-factors of the respective
resonances.

With increasing distance between spheres the distance
between resonance peaks decreases because of the reduced
coupling, and adjacent resonances start overlapping. At a
certain value of the inter-sphere gap d , the two-peak struc-
ture seen in Fig. 2c emerges. These peaks, however, cannot
be identified with frequencies of bonding and anti-bonding
states of the coupled-mode theory even though they are well
described by the single-mode approximation. Indeed, the
double-peaked spectrum in our calculations arises as a result
of overlapping of multiple resonances when decreased cou-
pling pushes them all toward the single-sphere resonance,
making spectral separations between them smaller than their
radiative widths. In the absence of radiative broadening all
these resonances would have maintained their individuality
for an arbitrarily weak coupling. Respectively, the positions
of the emerging peaks are determined by an interplay of the
m dependence of the radiative lifetimes of individual reso-
nances, the coupling parameters ALm

Lm, and the excitation pa-
rameters RLm and cannot be directly related to the overlap
integral of the coupled-mode theory. Moreover, the widths
of the peaks in our calculations are due to inhomogeneous
broadening caused by the overlap of unresolved resonances
with different m rather than due to homogeneous radiative

broadening of individual resonances, contrary to the stan-
dard assumption of the coupled-mode approaches.

In order to further elucidate the role of the inter-mode
coupling we present the absolute values of the coefficients
of the internal field d

(i)
lm for all values of 0 < l ≤ 29 and re-

spective values of |m| ≤ l. In order to visualize the results
we present pairs l,m as a one-dimensional array ordered
according to the following rule: (29,−29), (29,−28), . . . ,

(29,0), (29,1), . . . , (28,−28), . . . and plot coefficients dlm

versus a number of the respective pair in this array. Fig-
ure 3 presents the results of these calculations for l ≤ 25
for one of the resonance frequencies, x = 21.415. One can
see that the largest values of the coefficients correspond to
the main angular number l = 29, which as a function of m

shows two large symmetric peaks for m = ±4. The posi-
tions of the peaks are determined by the dependence of the
resonant frequency on the azimuthal number: the resonance
at the chosen frequency results from the component of the
internal field with |m| = 4. Besides main coefficients cor-
responding to l = 29 there are present other coefficients as
well, which, however, have much smaller values. The sec-
ond largest coefficient corresponds to l = 25, which is in
agreement with the fact that a frequency of the mode with
this value of l and with the radial number s = 2 is almost
in resonance with our main mode, l = 29, s = 1 [9]. The
effect of this resonance is still small because of the low Q

value of the l = 25, s = 2 mode, and not sufficient spectral
overlap between the two. Nevertheless, the inter-mode cou-
pling results in significant deviations from predictions of the
single-mode model, while one can expect that in this case
an accurate description of the electromagnetic field in our
system can be obtained with the first-order expression (10).
The situation can be different, however, when one considers
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Fig. 3 Internal field coefficients
for all values of l and m for
l ≤ 25. Arrows indicate the
regions corresponding to
coefficients with given l and
varying m

Fig. 4 Distributions of the field
intensity at several resonant
frequencies. a For x ≈ 21.40.
b For x ≈ 21.46. c For
x ≈ 21.50

a b c

Fig. 5 Distribution of the field in the regime of weak coupling
for the lower frequency (left-hand figure) and the higher frequency
(right-hand figure) resonances of the double-peak spectrum shown in
Fig. 2c

coupling between other fundamental modes. For instance,
the TE mode with l = 39, s = 1 has a very strong spectral
overlap with another TE mode with relatively high Q-factor
(l = 34, s = 2) [9, 19], which results in a strong resonant
interaction between the two modes. Therefore, the perturba-
tive approach of (10) breaks down in this case and one can
expect strong deviations from the single-mode approxima-
tion, not to mention the coupled-mode approach.

To conclude our discussion of the bi-sphere we present
calculations of the distribution of the intensity of the field
on the surfaces of the spheres in the XZ plane. These distri-
butions were calculated at three different resonance frequen-

cies from those seen in Fig. 2 and are shown in Figs. 4a, b,
and c. One can see that the field distribution in the spheres
drastically changes from one frequency to another, and is
very far from resembling bonding and anti-bonding orbitals
of the mode-coupling theory. In order to reinforce the point
that even in the weak-coupling regime the two resonances do
not correspond to the bonding and anti-bonding orbitals, we
also constructed the distribution of the field for frequencies
corresponding to both peaks shown in Fig. 2c. The results
shown in Fig. 5 demonstrate that even in this case the re-
sulting distribution of the field cannot be described as linear
combinations of two fundamental modes.

4 Multi-sphere chains

In order to treat the case of N spheres exactly one needs to
solve numerically the system of 2 × lmax × N equations (4)
and (5). Neglecting cross-polarization terms the number of
equations is reduced by half, but still for a large number of
the spheres it is too expensive. We have carried out these cal-
culations for N = 3,4,5 keeping the number of modes with
different angular numbers up to lmax = L. In Figs. 6, 7, and
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Fig. 6 N = 3

Fig. 7 N = 4

8 we present |d2
i | = ∑

l,m |d(i)
lm |2, which is the sum over all

l and m of the absolute values of the expansion coefficients
of the internal field for all spheres in each of these chains.

These figures show not only positions of the resonance
frequencies, which are obviously the same for all spheres in
a chain, but also the distribution of the internal field between
the spheres. There are several interesting features seen in

these figures that deserve a discussion. First of all, one could
expect that the number of peaks must increase with the num-
ber of spheres in the chain as each new structural element re-
sults in additional splitting of the frequencies; we, however,
do not see it in the figures. Explanation for the fewer than ex-
pected number of resonance maxima is quite simple—new
resonances must occupy the same frequency range regard-
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Fig. 8 N = 5

less of the number of the spheres in the chain. Therefore,
new additional spheres result in an increased density of the
resonant frequencies and, since all these resonances have fi-
nite widths, many of them overlap forming single inhomo-
geneously broadened peaks. What is more interesting is that
the number of resonances as well as their distribution over
the frequency interval differs significantly between chains
with even and odd numbers of spheres. Indeed, for N = 3
and N = 5 the strongest resonances are found in the vicinity
of the single-mode frequency x29,1 with one strongest max-
imum being exactly at this frequency. On the other hand, in
the cases of N = 2 and N = 4, the resonances are spread
over a larger frequency interval with the vicinity of x29,1 be-
ing essentially devoid of the peaks. Another difference be-
tween odd and even chains is the distribution of the field be-
tween the spheres. For instance, the peak corresponding to
the single-sphere resonance shows the same largest height in
all odd-numbered spheres in the cases of N = 3,5, while it
does not appear at all in the even-numbered spheres. A qual-
itatively similar pattern can be noticed for two other main
peaks to the right of x29,1. At other frequencies, the intensity
of the field demonstrates a different behavior; for instance,
the largest peak between x = 21.45 and x = 21.46 decreases
gradually from the first sphere to the third, and then goes up
again reaching the original value at the fifth sphere. In the
case of N = 4 the situation is qualitatively different: now
spectra are almost identical for first and last spheres and for
spheres numbers 2 and 3 with the first of these pairs showing
a much stronger field intensity.

In order to understand the obtained results, one can rely
on a nearest-neighbor coupling approximation, which was
employed in [19] to study normal modes of chains of mi-
crospheres. This approximation works well in the case of

high-Q whispering gallery modes because the translation co-
efficients Al′m′

lm (ri −rj ) for l, l′ � 1 fall off with the distance
between the spheres very fast. In this approximation equa-
tions for the scattering coefficients can be written down as

1

αl

b
(i)
lm −

∑

l′
Al′m

lm

[
(−1)(l+l′)b(i−1)

l′m + b
(i+1)

l′m
] = η

(i)
lm, (12)

where Al′m
lm is a translation coefficient between the ith and

(i + 1)th spheres. The factor (−1)(l+l′) in front of b
(i−1)

l′m
reflects the symmetry of the translation coefficient upon in-
version: Al′m

lm (r1 − r2) = (−1)(l+l′)Al′m
lm (r2 − r1) (this factor

was omitted in [19], which resulted in a wrong dispersion re-
lation in the case of coupling between modes with angular
numbers of different parity). This equation should be com-
plemented by two boundary conditions:

b
(0)
lm = 0, b

(N+1)
lm = 0, (13)

where the first expression takes into account that there are
no spheres to the left of the first one, and the second reflects
the absence of a sphere to the right of the last one.

Solutions to (12) can be presented as a linear combination
of respective normal modes, Blm(i), satisfying the bound-
ary condition (13). To qualitatively understand the results
of simulations shown in Figs. 6, 7, and 8, it is sufficient to
solve (12) in the single-mode approximation, in which case
the normal modes are given by

Bk
Lm(i) = B̃k

Lm sin

(
πik

N + 1

)
, (14)

where k = 1,2, . . . ,N enumerates various normal modes,
and the amplitudes B̃k

Lm are determined by the incident field
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coefficients (7) and are equal (with accuracy to a normaliza-
tion factor) to

B̃k
Lm = sin

(
πk

N + 1

)
RLm

α−1
L − ALm

Lm cos( πk
N+1 )

. (15)

Poles of these amplitudes given by the equation

α−1
L − ALm

Lm cos

(
πk

N + 1

)
= 0 (16)

determine N complex-valued eigenfrequencies of the chain.
However, as was pointed out already, not all of these eigen-
frequencies show up as resonance peaks in the spectrum,
because many peaks with differing values of m are too
close to each other so that they overlap and form single in-
homogeneously broadened peaks. Despite this, (14), (15),
and (16) are very useful in understanding the results shown
in Figs. 6, 7, and 8.

First of all, let us note that in the case of odd N , there
always exists a mode characterized by k = (N + 1)/2, for
which cos(πk/(N + 1)) = 0. The eigenfrequency of this
mode coincides with the resonance frequency of the WGM
in a single sphere, and is independent of the azimuthal num-
ber m. This means that for this, and only for this, mode the
distribution of the field in each sphere of the chain repro-
duces the field of the single-sphere fundamental mode. Thus,
if one wishes to arrange propagation of an undistorted fun-
damental mode through a chain of spheres, one needs to deal
with a structure consisting of an odd number of elements
and work at the frequency of the single-sphere resonance.
The spectral width of the pulses that can propagate along
such a chain with little distortion is determined by a spectral
interval between the main single-sphere peak in Fig. 8 and
the closest adjacent peak. The spatial profile of this mode
is given by the expression B

(N+1)/2
Lm (i) ∝ sin(πi/2), which

is maximum at odd-numbered spheres, and turns to zero at
even-numbered ones, explaining the behavior observed nu-
merically, Figs. 6 and 8. Modes with smaller or larger val-
ues of k are characterized by a smoother dependence of the
sphere number, as is seen in the same figures. In the case of
even N the mode with k = (N +1)/2 does not exist, and this
why there are no peaks in the vicinity of the single-sphere
resonance in Fig. 7.

Another feature of the case N = 4, namely the similar-
ity in the field distributions between spheres with i = 1 and
i = 4, as well as between spheres with i = 2 and i = 3, can
also be understood from (14). One can see that the distribu-
tion of the field seen in Fig. 7 is associated with modes char-
acterized by k = 2 and k = 3. The amplitudes of these modes
at their respective resonances are proportional to sin(2π/5),
which is larger than the amplitudes of modes with k = 1
and k = 4 proportional to sin(π/5). Therefore, the observed

spatial distribution of the field, which is a sum of contribu-
tions from all four modes, more closely resembles the pat-
tern characteristic for k = 2,3. Thus, we see that the single-
mode approximation can account for the spatial distribution
of the field in linear chains of spheres, but the number, exact
positions, and widths of the resonance peaks in their opti-
cal response can only be predicted on the basis of the full
multi-mode theory.

5 Conclusion

In this paper we carried out a careful study of propagation of
fundamental modes in a linear chain of spherical microres-
onators. We pointed out that the coupled-mode type of ar-
guments or simple perturbation theory calculations do not
apply to this situation because of the degeneracy of single-
sphere resonances. We also showed that the multi-sphere
Mie formulation provides not only a tool for accurate nu-
merical simulations of the properties of the chain, but can
also be used as a natural foundation for developing a pertur-
bation theory, in which the degeneracy of uncoupled modes
is taken into account automatically. We carried out accu-
rate numerical calculations of the chains consisting of two,
three, four, and five spheres, and complemented them by an
approximate analytical analysis based on single-mode and
nearest-neighbor approximations.

In the case of a bi-sphere our analysis revealed that the
electromagnetic energy stored in the spheres is characterized
by a much richer spectrum with multiple resonances than
just two peaks predicted by coupled mode type approaches.
These multiple resonances correspond to modes with dif-
ferent values of the azimuthal number, which are excited
in the system due to the violation of the complete spheri-
cal symmetry. The exact number of the resonance peaks and
their positions depend on the coupling strength and are de-
termined by an interplay between the inter-resonance spac-
ing and the widths of the resonances. Even in the case of
a weak coupling, when only two peaks in the spectrum sur-
vive, we argue that these peaks do not correspond to bonding
and anti-bonding modes of the coupled-mode theories.

Considering chains with N > 2 number of spheres we
found that there exists a significant difference between the
behavior of chains with N even and N odd. We showed
that qualitatively all these differences can be accounted for
within the framework of the simple nearest-neighbor single-
mode approximation. In the case of chains with odd N we
found that there exists a mode with a frequency which does
not depend on the azimuthal number and coincides with
the frequency of the single-sphere resonance. This mode
can be used for propagating the single-sphere fundamental
resonance along the chain with smallest possible distortion
caused by inter-sphere coupling.
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The question arises, however, of how our results agree
with observations of bonding and anti-bonding orbitals with
two split frequencies reported in many experimental works
on bi-spheres. One needs to separate these experiments into
two groups. In the experiments of [7] or [20] the observed
modes were true normal modes of the bi-spheres, character-
ized by a well-defined azimuthal number m. These modes
are not strongly coupled fundamental modes in the sense
described above, so they are not the subject of this paper.
The same is true for multi-sphere experiments presented
in [21, 22]. The second type of experiment, such as de-
scribed in [13, 23], deals with modes of the spatial config-
uration similar to those discussed here. It should be noted,
first of all, that these experiments dealt with spheres of dif-
ferent diameters meaning that the resonant single-sphere
modes corresponded to different azimuthal numbers l. Our
calculations did not cover this situation, which is more com-
plicated. Nevertheless, when interpreting this type of exper-
iment one should be aware that an observed two-peak struc-
ture can appear as a result of the collapse of the multi-peak
response demonstrated in this paper rather than as a split-
ting of a single-sphere mode into binding and anti-binding
orbitals of the coupled-mode theory. Our calculations show
that the two-peak spectrum might represent an inhomoge-
neously broadened envelope of unresolved multiple reso-
nances, each with its own Q-factor. As a result, it would be
a mistake to relate the spectral width of these peaks to radia-
tive lifetimes and their spectral separation to the strength of
optical coupling.

We are not aware of experimental works in which the
observation of coupling of fundamental modes would have
been attempted in a multi-sphere chain. We believe it would
be of great interest to observe a propagation of the funda-
mental mode along an odd-numbered chain of spheres via
the ‘non-distorting’ collective mode, discussed in the pa-
per.
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