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What will happen if two identical microspheres, with fundamental whispering-gallery modes excited in each
of them, become optically coupled? Conventional wisdom based on coupled-mode arguments says that two
new modes, bonding and antibonding, with two split frequencies would be formed. In this Rapid Communi-
cation, we demonstrate, using exact multisphere Mie theory, that in reality an attempt to couple two funda-
mental modes of microspheres would result in a complex multiresonance optical response with the field
distribution significantly deviating from predictions of coupled-mode-type theories.
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INTRODUCTION

Optical microresonators have attracted a great deal of at-
tention recently because they can support modes with small
volumes and high-Q factors, which is beneficial for many
applications as well as for studies of fundamental problems
of light-matter interaction �1�. These resonators, placed near
each other, can become optically coupled due to their eva-
nescent fields. A double-resonator photonic molecule is the
simplest of such configurations and was suggested in �2� and
studied both experimentally and theoretically in a number of
papers �3–7�. A number of new devices, such as, for instance,
coupled-resonator optical waveguides �CROW�, were sug-
gested based on more complicated configurations of coupled
high-Q resonators �8�.

In the case of microspheres, the resonances can be de-
scribed as whispering-gallery modes �WGM� �l ,m ,s� charac-
terized by angular l, azimuthal m, and radial s numbers. High
values of Q usually correspond to modes with l�1, which,
therefore, possess a high degree of degeneracy. The modes
with the same orbital and radial but different azimuthal num-
bers have the same �complex-valued� frequency, but different
spatial distributions. Of greatest interest are so-called “fun-
damental modes” whose field is concentrated in the vicinity
of the equatorial plane of the sphere. It is believed that these
modes can be selectively excited by coupling to a tapered
fiber �9�. In coupled resonator structures, a goal usually is to
couple fundamental modes of individual spheres. To achieve
maximum coupling, these modes should be excited in the
equatorial plane containing the centers of both spheres. In
the framework of the popular coupled-mode approach �8�,
which may also be cast as the first-order perturbation theory
�10�, field distributions resulting from the coupling of the
fundamental modes, which we will call “maximally coupled
fundamental modes,” are often described as symmetric and

antisymmetric linear combinations of phase-matched funda-
mental modes of individual spheres.

While this approach was formulated in Refs. �8,10� for
coupled resonators with nondegenerate single-resonator
modes, it is often applied indiscriminately to degenerate situ-
ations such as spherical resonators with negligible deviations
from the ideal shape. We will show in this Rapid Communi-
cation that the coupled-mode theory, at least in its standard
form, is not applicable in this situation even in the case of
weak coupling. Indeed, because of the symmetry of the sys-
tem, configurations corresponding to the maximally coupled
fundamental modes do not represent correct zero-order nor-
mal modes of a bisphere system, and an attempt to excite any
one of them will result in excitation of modes with all azi-
muthal numbers m. Since optical coupling lifts the degen-
eracy of these modes, they will produce resonances at differ-
ent frequencies resulting in a multipeak optical response
instead of the double-peak structure expected from coupled-
mode arguments. We simulate this effect with the help of
exact numerical calculations based on the multisphere gen-
eralization of Mie theory �11�. These calculations also reveal
that the coupling between modes with different angular num-
bers, l, which is completely ignored in coupled-mode theo-
ries, significantly affects optical response in the case of
strong coupling.

FUNDAMENTAL MODES AND COORDINATE SYSTEMS

Before we can start studying effects of optical coupling on
fundamental modes of single spheres it is necessary to recall
one simple but often overlooked fact. Characterization of
WGM by numbers l, and m depends on the choice of the
polar axis of the coordinate system used to define spherical
coordinates. Respectively, a mode whose field is concen-
trated in a particular plane is characterized as one with
�m � = l only in a coordinate system with polar axis perpen-
dicular to that plane. In the case of “maximally coupled fun-
damental modes” this characterization of single sphere*lev.deych@qc.cuny.edu
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modes can only be made if the polar axis is perpendicular to
the line connecting the centers of the spheres. This coordi-
nate system is labeled by lower case letters in Fig. 1. How-
ever, this coordinate system is not consistent with the axial
symmetry of the bisphere, and, therefore, azimuthal number,
m, defined in this coordinate system can no longer be used to
characterize coupled modes of the system. This means that
maximally coupled fundamental modes cannot be presented
as a combination of the modes with �m � = l contrary to the
assumption of the coupled mode theories. A coordinate sys-
tem with its polar axis along the line of symmetry of the
system �XYZ system in Fig. 1� is consistent with the symme-
try of the system, and normal modes of the coupled system
can again be classified according to the azimuthal number m,
defined in these coordinates �5�. However, the field distribu-
tion corresponding to the fundamental mode �L ,L ,1�z of the
xyz coordinate system can only be described as a linear com-
bination of �L ,m ,1�Z modes of the XYZ system: �L ,L ,1�z
=�mRLm �L ,m ,1�Z. Coefficients RLm are determined by the
Wigner d function �12�, and in our particular case take the
form of

RLm =
�− i�L

2L � �2L�!
�L + m� ! �L − m�!

. �1�

FUNDAMENTAL MODES IN THE BISPHERE

For our calculations we consider two identical dielectric
spheres of radius R and refractive index n positioned at a
distance 2R+d between their centers �see Fig. 1�. The field
of the system is assumed to be monochromatic with fre-
quency �; following a standard multisphere Mie approach
�11�, we separate it into a combination of incident, scattered,
and internal fields, which are presented as linear combina-
tions of single-sphere vector spherical harmonics �VSH� of
TE and TM polarizations. In this representation, the fields are
characterized by expansion coefficients �l,m

�1,2�, bl,m
�1,2�, dl,m

�1,2� of
incident, scattered, and internal fields of a given polarization
for each sphere. Using Maxwell boundary conditions and the
addition theorem for the VSH �11�, one can derive an infinite
system of linear equations relating expansion coefficients
bl,m

i of the scattered field to the expansion coefficients of the
incident field �l,m

i �11�. Coupling between spheres in this
approach is described by so-called translation coefficients

Al,m
l�,m��r j −ri� defined separately for same- and cross-

polarization coupling. Explicit expressions for Al,m
l�,m��r j −ri�

as well as the equations for the expansion coefficients can be
found, for instance, in Refs. �5,11,12�. These coefficients are
nondiagonal in m in the xyz coordinate system of Fig. 1, but
become diagonal, when the polar axis of the spherical coor-
dinate system is directed along the axis of symmetry of the
system. Once bl,m

i are found, one can calculate the expansion
coefficients for the internal field, dl,m

i , noting that the relation
between coefficients of internal and scattering fields is deter-
mined solely by the boundary conditions at the surface of a
given sphere and does not depend on the presence of other
spheres. The resulting expression takes the following form:

dlm
�i� =

i

x

1

jl�x��nxjl�nx��� − jl�nx��xjl�x���
blm

�i� , �2�

where x=nkR is a dimensionless frequency �k is a vacuum
wave number�, jl�x� is the spherical Bessel function, and
�zjl�z��� means differentiation with respect to z. Knowing
coefficients dlm, we can find the total energy of the field
concentrated inside spheres as a function of frequency, which
is best suited to characterize the optical response of our sys-
tem in the spectral range of high-Q WGMs �5�. In order to
simulate excitation of “maximally coupled fundamental
modes,” we assume that the incident field has TE polariza-
tion and is described by expansion coefficients of the follow-
ing form: �l,m

�i� =�lL�i1RLm in the XYZ coordinate system. The
resulting infinite system of equations for scattering coeffi-
cients is solved numerically neglecting cross-polarization
coupling, which is usually small. The diagonality of the
translation coefficients in the chosen coordinate system sig-
nificantly simplifies calculations, which can be conducted in-
dependently for each value of m. We calculate internal en-
ergy as a function of frequency in the spectral interval
around x=21.463, a WGM resonance with L=29 and s=1
for a polystyrene single sphere �n=1.59� studied, for in-
stance, in Ref. �13�. The infinite system of equations should
be truncated at some l= lmax determined from the condition of
convergency of the procedure. For several representative fre-
quencies, we checked that the convergency is achieved at
lmax=48, and that the inclusion of terms with
l�L does not significantly affect the results for the internal
energy. At the same time, terms with l�L should be included
since spectral overlap of some modes with l�L with the
mode l=L results in resonant enhancement of their contribu-
tion �5,14�. For practical calculations, we truncate the infinite
system at l=L and solve the remaining equations using ma-
trix inversion.

We also solve the system of equations for coefficients blm
analytically in the so-called single-mode approximation ne-
glecting interaction between modes with different l numbers.
An expression for the scattered field in this approximation
can be presented in the following form:

Es =
1

2�
m

RLm	MLm�r − r1� + MLm�r − r2�
�L

−1 − ALm
Lm�r2 − r1�

+
MLm�r − r1� − MLm�r − r2�

�L
−1 + ALm

Lm�r2 − r1� 
 . �3�

z, X

x, Y

y, Z

FIG. 1. �Color online� Configuration of a two-sphere system and
possible coordinate systems. Arrowed lines show schematically two
single-sphere fundamental modes.
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This expression describes an optical response with reso-
nances at two sets of frequencies: one is given by the zeros
of �L

−1−ALm
Lm and the other by the zeros of �L

−1+ALm
Lm. The role

of coupling between spheres is described by translation co-
efficients ALm

Lm, which shifts resonant frequency from the
single-sphere values by different amounts for different values
of m. As a result, terms with different azimuthal numbers
resonate at different frequencies so that one ideally could
expect 2�L+1� resonance peaks in the optical response of the
system contrary to the coupled-mode theory expectation of
just two resonances. The actual number of observed peaks
depends on the relation of spectral intervals between adjacent
peaks to their widths. With increasing distance between
spheres, the former decreases and adjacent resonances start
overlapping. At a certain value of intersphere gap d, the two-
peak structure emerges. These peaks, however, cannot be
identified with frequencies of bonding and antibonding states
of the coupled-mode theory since neither the positions nor
the widths of these peaks agree with its predictions. Indeed,
the double-peaked spectrum in our calculations arises as a
result of overlapping of multiple resonances when decreased
coupling pushes them all toward the single-sphere resonance
making spectral separations between them smaller than their
radiative widths. In the absence of radiative broadening, all
these resonances would have maintained their individuality
for an arbitrary weak coupling. Respectively, the positions of
the emerging peaks are determined by an interplay of the m
dependence of the radiative lifetimes of individual reso-
nances, coupling parameters ALm

Lm, and the excitation param-
eters RLm and cannot be directly related to the overlap inte-
gral of the coupling mode theory. Moreover, the widths of
the peaks in our calculations are due to inhomogeneous
broadening caused by the overlap of unresolved resonances
with different m rather than due to homogeneous radiative
broadening of individual resonances contrary to the standard
assumption of the coupled-mode approaches. The results of
exact numerical and single-mode analytical calculations are
shown in Fig. 2 for d=0 ��a� and �b�� and for d�0.28R �c�.
One can see that in the case of strong coupling, the results of
the single-mode approximation deviate strongly from multi-
mode numerical calculations in the number, positions, and
heights of the respective peaks. One can also notice signifi-
cant lowering of the heights of the peaks when intermode
coupling is taken into account, which indicates a large �three
orders of magnitude� reduction of Q factors of some of the
resonances due to coupling to low-Q modes with l�L. The
effects of the intermode interaction are much less pro-
nounced in the weak-coupling regime when the spheres are
separated, Fig. 2�c�. It is remarkable that in the multimode
calculations, the inclusion of the low-Q modes does not af-
fect the width of the respective spectral maxima contrary to
the expected broadening �5�. The absence of this broadening
confirms once again that the width of the peaks in the case
under consideration is determined by the inhomogeneous
broadening and depends only on the splitting of the most
strongly coupled modes. This splitting is much weaker for
spatially separated spheres, and this is why the entire spec-
trum in Fig. 2�c� occupies a much narrower frequency inter-
val than the spectra shown in Figs. 2�a� and 2�b� �note the
different scale on the horizontal axes in Fig. 2�c��.

In order to further elucidate the effects of optical
coupling on the spatial field distribution in the bisphere,
we present absolute values of the expansion coefficients
of the internal field dlm inside the first sphere for all
values of 0� l�29 and respective values of �m � � l.
In order to visualize the results, we present pairs
l ,m as a one-dimensional array ordered according to
the following rule: �29,−29� , �29,−28� , . . . , �29,0� , �29,1�,
. . . , �29,29� , �28,−28� , . . . and we plot �dlm�2 versus a number
of the respective pair in this array. Figure 3 presents the
results of these calculations for l	25 for one of the reso-
nance frequencies, x=21.415. Optical coupling manifests it-
self in this figure in two ways. First, the m dependence of
these coefficients for l=29 is significantly changed compared
to the coefficients of the incident field RLm, which would
represent the field distribution in an uncoupled sphere. Coef-
ficients of the internal field as functions of m in a bisphere
demonstrate maxima at those values of m that are at the
resonance for a chosen value of x. In the case shown in Fig.
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FIG. 2. The internal energy of a bisphere as a function of di-
mensionless frequency, x. �a� Single-mode approximation, d=0; �b�
numerical calculations including all modes with l�29, d=0; �c� the
double-peak spectrum obtained for d=0.28R: solid line, numerical
multimode calculations; broken line, single-mode approximation.
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FIG. 3. Squared absolute values of the internal field coefficients
for all values of l and m for l	25. Arrows indicate the regions
corresponding to coefficients with given l and varying m.

OPTICAL COUPLING OF FUNDAMENTAL WHISPERING-… PHYSICAL REVIEW A 77, 051801�R� �2008�

RAPID COMMUNICATIONS

051801-3



3, the resonant modes correspond to �m � =4, and these modes
are most strongly represented in the resulting internal field of
the bisphere. An additional manifestation of the optical
coupling is the appearance of internal field coefficients with
l�L. While individual contributions from modes with
l�29 appear to be small, their cumulative effect is respon-
sible for dramatic changes in the internal energy spectrum
seen in Fig. 2�b�.

CONCLUSION

In this Rapid Communication, we studied the optical re-
sponse of a bisphere under an excitation aimed at producing
so-called maximally coupled fundamental modes. We found
that the spectrum of electromagnetic energy, stored inside the
bisphere under these excitation conditions, is characterized
by multiple resonance frequencies in contrast with just two
resonances predicted by coupled-mode-type approaches. The
question arises, however, as to how our results agree with
observations of bonding and antibonding orbitals with two
split frequencies reported in many experimental works.
These experiments should be separated into two different
groups. In the experiments of Refs. �3� or �13�, the observed
modes were true normal modes of the bispheres, character-
ized by a well-defined azimuthal number m. These modes are
not strongly coupled fundamental modes in the sense de-
scribed above, so they are not the subjects of this paper. The
second types of experiments, such as described in Refs.

�6,7�, deal with modes of the spatial configuration similar to
those discussed here. It should be noted, however, that these
experiments dealt with spheres of different diameters, mean-
ing that the resonant single-sphere modes corresponded to
different azimuthal numbers l. Our calculations did not cover
this situation, which is more complicated. Nevertheless,
when interpreting these types of experiments, one should be
aware that an observed two-peak structure can appear as a
result of the collapse of the multipeak response demonstrated
in this paper rather than as a splitting of a single-sphere
mode into binding and antibinding orbitals of the coupled-
mode theory. Our calculations show that the two-peak spec-
trum might represent an inhomogeneously broadened enve-
lope of unresolved multiple resonances, each with its own Q
factor. As a result, it would be a mistake to relate the spectral
width of these peaks to radiative lifetimes and their spectral
separation to the strength of optical coupling. An additional
factor that needs to be taken into account is the deviations of
the spheres from an ideal shape, which results in a lifting of
the original degeneracy, assumed in this paper. If, however,
the spectral interval between former degenerate modes is
smaller than the strength of the optical coupling, the effects
discussed here still remain relevant. Our results, therefore,
call for extreme caution when using coupled-mode theory in
analyzing experimental data and developing theoretical mod-
els for coupled optical resonators with degenerate �or almost
degenerate� resonances.
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