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Optical transport and statistics of radiative losses in disordered chains of microspheres
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Optical transport in a one-dimensional chain of microspherical resonators with size disorder is studied
in the spectral range of high-Q whispering gallery modes. An ab initio approach is used to develop a
theoretical framework for analysis of steady-state transport parameters with main emphasis on properly
defined radiative loss coefficient. Probability distribution and scaling properties of the latter are established and
explained.
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Collective optical excitations arising in the chains of
microresonators due to evanescent coupling of high-Q whis-
pering gallery modes (WGM) have been attracting recently
significant interest. The initial proposal to use such structures
as low-loss waveguides in Ref. [1] initiated a number of
experimental [2,3] and theoretical [3–5] papers, in which
properties of collective WGM optical excitations in coupled
microspheres and microdisks have been studied. While un-
derstanding the effects of unavoidable size fluctuations of the
individual resonators on optical properties of this structure
is important for device development, theoretical efforts in
this direction have been so far limited only to analysis of
phenomenological models [6]. However, relations between
microscopic parameters of these structures and their transport
properties, which is crucial for applications, can only be
obtained on the basis of an ab initio approach. This approach
is also vital for understanding fundamental optical properties
of microresonator chains as representatives of a distinct class
of one-dimensional disordered optical systems demonstrating
Anderson localization. These systems are characterized by
intrinsic radiative losses and differ significantly from other
models used to study the interplay between localization
and losses [7,8]. First, the losses in these systems are
intimately connected with formation of the collective modes
and cannot be introduced “by hand.” They appear naturally
at each site of the structure and are characterized by random
rates correlated with the underlying disorder. Additionally,
the chain of microresonators present a rare example of
an one-dimensional optical system defined on a discrete
lattice.

In this work we study numerically light transport through
such a system with emphasis on statistical properties of
radiative losses. The structure under consideration consists
of N microspherical resonators arranged in a linear chain.
We assume that all spheres have the same refractive index
and positioned at the same distance d from each other but
allow for their radii to fluctuate. The disordered portion of
the chain is assumed to be connected to the segments built of
identical spheres, which play the role of incoming and outgoing
leads. All radii are drawn independently of each other from a
statistical ensemble with uniform distribution characterized by
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a rms value δ, used as a measure of disorder in the system. The
radius of the spheres in the leads is chosen to coincide with the
average of this distribution. The description of the system is
based on a multisphere Mie approach, which uses presentation
of the incident, scattered, and internal fields of each sphere in
the form of linear combination of appropriate vector spherical
harmonics. The coefficients in this expansion obey an exact
system of linear algebraic equations [9] and become the main
subject of study. The coupling between spheres is described by
translation coefficients U

l′,m
l,m (zn − zn′), which couples spheres

located at points with coordinates zn and zn′ , and WGM with
different polar numbers l and l′ and different polarizations.
At the same time, modes with different azimuthal numbers m

remain uncoupled if the polar axis of the coordinate system is
chosen along the axis of the chain. In the case of high-Q modes,
which are characterized by l � 1, U

l′,m
l,m (zn − zn′) decrease

very fast with the distance between spheres allowing use
of the nearest-neighbor approximation. If, in addition, the
spectral distance between modes with different l and different
polarizations is large enough, nondiagonal in l and cross-
polarization translation coefficients can also be neglected [5].
In this case the system is described by an equation of a
tight-binding type

1

α
(l)
n

a(l,m)
n = U

(l,m)
n,n−1a

(l,m)
n−1 + U

(l,m)
n,n+1a

(l,m)
n+1 , (1)

where a(l,m)
n is the expansion coefficient of the field scattered by

nth sphere and α(l)
n is a single sphere Mie scattering coefficient

for nth sphere whose poles define WGM resonances. In what
follows, we shall fix polar and azimuthal numbers at l = 29,
m = 1 and abridge our notations by dropping these indexes.

The Mie coefficient αn has the following exact representa-
tion αn = −iηn/(gn + iηn), where ηn and gn are well known
real functions [9]. The resonance frequency is determined
by the condition gn = 0 so αn is exactly equal to −1 at the
resonance. This important property determines the residue of
αn at the resonance pole. In the vicinity of the pole αn can be
presented as

αn ≈ −iγn

ω − ωn + iγn

, (2)

where ωn is the resonance frequency of the nth sphere, and γn

is the respective radiative decay rate. Tight-binding Eq. (1) in
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this approximation can be rewritten as

(ω − ωn + iγn)an = −iγn(Un,n−1an−1 + Un,n+1an+1). (3)

If all spheres are identical, with ωn ≡ ωr and γn ≡ γ , Eq. (3)
is solved by an ∝ exp(iqnd), where the wave vector q obeys
a dispersion relation

ω − ωr + iγ = −2iγU cos(qd). (4)

Taking into account that translation coefficients Un,n′ are
complex valued with their imaginary part U

(2)
n,n′ much larger

than the real part U
(1)
n,n′ [5], it is clear that the dispersion of

these collective excitations is determined by parameter γU (2),
while γ and γU (1) are responsible for their decay.

It is important to note that in the case of coupled resonators,
parameter γ determines not only the radiative decay of the
modes but also their dispersion. As a result one cannot
eliminate radiative losses of the collective mode by setting
γ = 0 since it will also destroy the mode itself. For the disor-
dered chain this fact has even more profound consequences.
Indeed, in this case the intersite coupling coefficient tn,n−1,
which, according to Eq. (3), is tn,n−1 = γnUn,n−1 does not
have the expected symmetry property tn,n−1 = tn−1,n, which is
crucial for defining the energy flux.

To develop a consistent framework for description of the
transport properties of this structure we first convert Eq. (3) to
the time domain in the slow changing amplitude approxima-
tion. Multiplying the resulting equation by a∗

n and combining
it with its complex-conjugated counterpart multiplied by an

we obtain

∂|an|2
∂t

+ γn|an|2 = γn(Jn − Jn+1), (5)

where we defined

Jn = − i

2
U

(2)
n,n−1(an−1a

∗
n − a∗

n−1an) (6)

and neglected terms of the order of γnU
(1)
n,n±1. The sign of Jn

is chosen to reflect the negative group velocity of collective

excitations defined by dispersion law (4). While Jn looks very
much like a flux, its place in Eq. (5), characterized by prefactor
γn, does not allow for such a direct interpretation. Dividing
Eq. (5) by γn and summing up the resulting equations over
all spheres, we see that Jn referring to inner sites 1 < n < N

cancel out yielding the following result:

N∑
n=1

1

γn

∂|an|2
∂t

+
N∑

n=1

|an|2 = −JN+1 + J1. (7)

The first term in this expression can be presented as∑N
n=1(1/γn)(∂|an|2/∂t) ≡ (1/�)

∑N
n=1(∂|an|2)/∂t . This ex-

pression defines a collective decay rate constant � for the
chain and substituting it instead of the time-dependent term in
Eq. (7) one can see that it is �Jn that should be interpreted as
the flux. However, one can also see that � cancels out of all
quantities defined as ratios of fluxes, and, therefore, reflection
and transmission coefficients can be found directly from Jn.
This becomes particularly clear in the stationary regime, which
is of the main interest in this Rapid Communication, where pa-
rameters γn cancels out completely producing exact equation

N∑
n=1

|an|2 = −JN+1 + J1, (8)

valid outside of the resonant approximation.
To study transport properties of the system under consider-

ation a standard transfer-matrix formalism based on Eq. (1)
is used. The transfer matrix is defined in the plane-wave
representation [10], which is introduced by presenting the
excitation within the disordered region as:

an = a+
n eiqnd + a−

n e−iqnd (9)

an−1 = a+
n eiq(n−1) d + a−

n e−iq(n−1) d , (10)

where a±
n are complex amplitudes of the forward/backward

traveling wave and complex-valued wave vector q = k + iξ is
defined by dispersion relation Eq. (4). Transfer-matrix relating
amplitudes at (n + 1)th and nth site is given by

Pn = 1

2i sin qd

⎛
⎜⎜⎜⎝

1 − αne
−iqd (Un,n+1 + Un,n−1)

αnUn,n+1
e−2iqnd 1 − αn(e−iqdUn,n+1 + eiqdUn,n−1)

αnUn,n+1

−e2iqnd 1 − αn(eiqdUn,n+1 + e−iqdUn,n−1)

αnUn,n+1
−1 − αne

iqd (Un,n+1 + Un,n−1)

αnUn,n+1

⎞
⎟⎟⎟⎠ . (11)

This transfer matrix can be presented in an alternative form

Pn =
(

1/trn −rl
n/trn

rr
n/trn t ln − rl

nr
r
n/trn

)
, (12)

where amplitude reflection and transmission coefficients are
introduced according to rl

n = a+
n /a−

n ; rr
n = a−

n+1/a
+
n+1; t ln =

a−
n+1/a

−
n ; t rn = a+

n /a+
n+1. Comparing Eq. (11) and Eq. (12),

coefficients t rn , rr
n , rl

n, t ln can be expressed in terms of
microscopic parameters αn and Un,n±1. Presenting the total
transfer matrix P (N) = PNPN−1 · · · P1 in the form of Eq. (12)

with respective coefficients TN and RN , one can derive the
following recurrence relations

T r
N = t rNT r

N−1

1 − rl
NRr

N−1

, Rr
N = rr

N + Rr
N−1t

l
N t rN

1 − rl
NRr

N−1

,

(13)

T l
N = t lNT l

N−1

1 − rl
NRr

N−1

, Rl
N = Rl

N−1 + rl
NT l

N−1T
r
N−1

1 − rl
NRr

N−1

.

Parameters TN and RN here are just auxiliary quantities, while
real intensity reflection and transmission coefficients must
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be defined in terms of ratios of related fluxes. The respective
expressions are derived by identifying amplitudes of incident,
reflected, and transmitted waves as a−

1 = 1, a+
1 = Rl

N ,
a+

N+1 = 0, and a−
N+1 = T l

N . Such identification is consistent
with definition of Jn in Eq. (6) and takes into account that
due to negative group velocity of excitations in the leads the
direction of the flux is opposite to that of the phase velocity.
Presenting Jn in the plane wave approximation one can identify
incident, reflected, and transmitted fluxes and define respective
coefficients

T (N) = U
(2)
N+1,N

U
(2)
1,0

e2Nξd
∣∣T l

N+1

∣∣2
, (14)

R(N) = e−2ξd
∣∣Rl

N+1

∣∣2 − 2 sinh(ξd)|Rl
N+1

∣∣ sin(kd + φR)
∣∣

eξd sin(kd)
,

(15)

where φR is the phase of Rl
N+1. With these definitions

Eq. (8) can be given a form of flux conservation equation
R(N) + T (N) + A(N) = 1, where A(N) is defined as

A(N) = e−ξd
∑N

n=1 |an|2
U

(2)
1,0 sin(kd)

. (16)

Introduced quantity A(N) can be directly interpreted as the
radiative loss coefficient determining the ratio of the flux
radiated by the system to that of the incident wave. This
quantity differs from radiative lifetimes studied, for instance,
in Ref. [11]. While the latter describes leakage of a normal
mode excited in an intrinsically Hermitian system through its
boundaries, A(N) characterizes intrinsic losses observed in the
steady-state transport regime.

We are interested here in transport properties of asymp-
totically long systems, when the number of spheres in the
chain, N , significantly exceeds the dimensionless localization
length Nloc defined as N−1

loc ≡ ζ∞ = limN→∞ ζ , where ζ =
− ln T (N)/(2N ) is a Lyapunov exponent (LE) of the structure.
Using recurrence relations of Eq. (13) and definitions given by
Eq. (15) we compute transmission and reflection coefficients
for a large number of realizations of the structure. These
results are used, first, to verify that the distribution of LE
is normal in accordance with main properties of strongly
localized systems. An average value of LE, which coincides
with ζ∞, and its standard deviation σ are found to obey scaling
relation τ = f (β), where τ = σ 2N/ζ∞, and β = |ξ |/ζ∞.
Scaling function f turns out to coincide with the one found in
Ref. [7] for one-dimensional continuous model with constant
absorption. While this result confirms the broad universality
of statistical properties of disordered systems with losses, one
should understand a fundamental difference between models
studied in [7,8] and in this work. In phenomenological models,
|ξ | and ζ∞ are two independent variables but in the model
considered here this is not the case: while one can vary ζ∞
independently of |ξ | by changing degree of disorder δ, the
|ξ | cannot be changed independently of ζ∞. Any change
of parameter |ξ | will also affect coupling between adjacent
spheres, and, therefore, the LE.

Using computed values of reflection and transmission
coefficients we find the coefficient of radiative losses from ex-
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FIG. 1. (Color online) (Main frame) Distribution function of
A(N): numerical histogram and its fit by the distribution of the Nloc.
(Inset) Linear relationship between A(N) and β for a single realization
for a wide range of frequencies. Refractive index of the spheres used
in calculations is n = 1.59.

pression A(N) = 1 − R(N) − T (N). The histogram representing
probability density of A(N) obtained for the disorder strength
δ = 0.001 and a fixed frequency kd = 3π/8 is shown in the
main frame of Fig. 1. [The frequencies here and thereafter are
given in terms of real parts k of the wave numbers obtained
from dispersion Eq. (4).] This figure also shows fit of this
distribution by function f (A) ∝ A−2 exp[−(a − A)2/(b2A2)]
which is generated from the normal distribution of ζ by
transforming it to the distribution of 1/ζ . The latter can be
interpreted as distribution of finite size localization length
N

f

loc. This intimate relation between distributions of A(N) and
N

f

loc can be qualitatively understood by assuming that, as
expected for localized systems, |an|2 ∝ exp[−n/N

f

loc]. With
this ansatz the sum in Eq. (16) can be evaluated to

∑
n |an|2 =

1/(1 − exp[−1/N
f

loc]) ≈ N
f

loc, where at the last step it is
assumed that N

f

loc � 1. This result differs from function
f (A) ∝ A−2 exp (−a/A) obtained in continuous models with
uniform absorption [8]. We verify the obtained result by
directly establishing the linear proportionality between the loss
coefficient and the localization length. Taking into account that
in the asymptotic regime N � Nloc the distribution of A(N) is
found to be independent of the system size we assume that
this proportionality have the form A(N) ∝ β. In order to verify
this conjecture we plot A(N) versus β for a single realization
of our system (no averaging!) using data obtained for multiple
frequencies in the interval π/4 < kd < 3π/4. The resulting
plot shown in the inset frame of Fig. 1 provides strong evidence
of this relation and, by extension, of the proposed form
of f (A).

In order to establish scaling properties of parameters a and
b of the probability density of A(N) we note that they can
be related to its mean value and variance even though this
relation is not as straightforward as in the case of distribution
of LE. Computing average value of A(N) and its variance for
a number of frequencies we determine that they both depend
on a single scaling parameter β. This is clearly seen in the
plots presented in Fig. 2, where these quantities are plotted
versus β.

To conclude, we developed a theoretical framework based
on ab initio approach to transport properties of disordered
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FIG. 2. (Color online) Scaling of mean value and variance of A(N).

chains of spherical microresonators and used it to study statis-
tical properties of the steady-state radiative loss coefficient in
the asymptotically long chains. The probability density of this
coefficient was found to differ from the distribution found in
the continuous models with uniform absorption. This function
was shown to coincide with the distribution of the localization
length and depend on a single parameter: ratio between the
localization length and the loss length in ordered chains.
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