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Effects of Spatial Nonuniformity on Laser Dynamics
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Semiclassical equations of lasing dynamics are rederived for a lasing medium in a cavity with a
spatially nonuniform dielectric constant. The nonuniformity causes a radiative coupling between modes of
the empty cavity, which results in a renormalization of self- and cross-saturation coefficients. Possible
manifestations of these effects in random lasers are discussed.
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Introduction. —Random lasers, in which optical feed-
back is provided by scattering of light due to spatial
inhomogeneity of the medium rather than by well defined
mirrors, has recently attracted a great deal of attention
[1,2]. In the case of weak scattering, when the propagation
of light can be described within diffusion approximation,
the nature of lasing in such systems has been well under-
stood starting with a pioneering work by Letokhov [3]
followed by a large volume of subsequent experimental
and theoretical studies. The case of strong scattering, how-
ever, when light can be at the verge of Anderson localiza-
tion, remains much more controversial. Experimental
results of Ref. [4] and consecutive works with strongly
scattering systems (see recent reviews in Refs. [1,2]) led to
an assumption that lasing observed in those experiment is
due to the formation of prelocalized, if not completely
localized, states of light, which play a role of lasing cav-
ities [5] and provide coherent resonant optical feedback as
opposed to nonresonant feedback affecting only intensity
of light in the diffusion case. The presence of narrow
multiple lasing peaks [4] as well as Poisson statistics of
emitted radiation [6] were considered as evidence in the
favor of this interpretation of these experiments. However,
it was shown in Ref. [7] that the nonresonant feedback can
also result in lasing with multiple narrow peaks. Moreover,
the authors of Ref. [8] demonstrated that the Poisson
statistics also cannot be considered as an exclusive attrib-
ute of lasing with the resonant feedback.

In this situation, the recent results of Ref. [9] assume
a particular significance. In these experiments a multi-
peak lasing was observed in poly(methyl methacrylate)
(PMMA) sheets containing a rhodamine dye as an active
material and titanium dioxide microparticles as scatterers.
This system is characterized by a strong inhomogeneous
broadening of the lasing transition, and most of the lasing
peaks are separated in the frequency domain by a homoge-
neous line width of the lasing transition, �a. This is natu-
rally explained by the competition of modes ‘‘feeding’’
from the same population inversion and spectral hole burn-
ing in inhomogeneously broadened systems [9]. However,
above certain value of the pumping intensity, there were
observed two lasing peaks coexisting within the homoge-
neous line width �a and having synchronized temporal
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behavior. This observation is indicative of the genuine
two-mode lasing, which can occur in regular cavity lasers,
when the mode competition is weakened by spatial hole
burning [10]. Such a behavior, however, cannot take place
in the case of the nonresonant feedback, because in diffu-
sive systems lasing only occurs at the frequency of an
atomic transition [3] (multiple peaks in Ref. [7] are due
to inhomogeneous broadening of the transition used to
generate emission and do not signify a truly multimode
behavior).

Thus, as of today, the results of Ref. [9] provide the most
convincing evidence of the resonant feedback in random
lasers. It is important, therefore, to achieve a clear under-
standing of the specifics of nonlinear mode interaction in
such systems. However, since the experiments of Ref. [9]
deal with just a single realization, the randomness, by
itself, is not important here. What is important is the spatial
inhomogeneity of the quasicavity, supporting the modes of
interest. The main objective of this Letter, therefore, is to
study how this spatial inhomogeneity affects lasing thresh-
old and spatial hole burning. Our consideration, however,
is not constrained by random lasers, and can be applied to
any type of lasers with spatially nonuniform cavities.
Currently, there is a tremendous interest in lasing in sys-
tems with a modulated dielectric constant, for instance,
photonic crystals. The results presented here are relevant
for these systems as well. Moreover, current technologies
allow for engineering structures with virtually arbitrary
spatial profile of the dielectric function. The results of
this Letter can be used to manipulate properties of lasers
by using spatial dependence of the cavity dielectric func-
tion as a new design parameter.

A general multimode theory of lasing in systems with an
arbitrarily inhomogeneous dielectric constant, ��r�, pre-
sented here is an extension of semiclassical Lamb theory
[10] for the media whose dielectric constant is inhomoge-
neous in the direction of propagation of the laser beam
(inhomogeneity in the perpendicular directions results in
wave guiding effects, which are well studied in laser
physics (see, for instance, [11]). This inhomogeneity modi-
fies the orthonormalization condition for the eigenmodes
of the cavity, making the standard inner product of the
modes belonging to different eigenfrequencies different
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from zero. The main effect resulting from this nonortho-
gonality is a new type of linear coupling between normal
modes of the empty cavity, which is mediated by the
polarization of the active medium.

The nonorthogonality of eigenmodes due to the inho-
mogeneity of ��r� should not be confused with nonortho-
gonality of Fox-Li modes of uniform but leaky (open)
cavities, which arises due to nonhermitian nature of the
respective eigenvalue problem and does not result in any
additional linear coupling between the modes [12]. The
only consequence of the nonhermitian nature of such cavi-
ties is the presence of an additional factor in the linear
susceptibility of the active medium, which was carefully
studied in the past and shown to be responsible for the
excess noise in unstable cavities [13].

Multimode laser equations for an inhomogeneous
medium.—We consider an ideal cavity specified by an
inhomogeneous dielectric function ��r� and some bound-
ary conditions. The cavity is filled with an active me-
dium characterized by its polarization P�r�. Let us assume
that we know the full system of eigenmodes, fk�r�, and
respective eigenfrequencies !k of such a cavity in the
absence of the polarization. These modes can be used to
present electric field, E, and polarization P in the form
of their linear combinations: E � �kEk�t�fk�r�, P �
�kPk�t�fk�r�, where we assume that only s-polarized
modes couple to the active medium, and ignore the vector
nature of the field and the polarization. The orthonormal-
ization condition for these modes involves inhomogeneous
dielectric function ��r� [14]:

R
��r�f�k1�r�fk2�r�dr � k1k2 ,

which means that the wave functions fk�r� themselves are
neither normalized nor orthogonal. As a result, the dy-
namic equations for the amplitudes, Ek, takes the following
form

�E k�t� � �!k � i�k�2Ek�t� � �4�
X
k1

Vkk1
�Pk1�t�; (1)

where we introduced cavity losses, characterized by phe-
nomenological parameters �k. The main peculiarity of
Eq. (1) is the presence of the linear coupling between
different polarization amplitudes Pk, characterized by non-
diagonal elements of the matrix

Vkk1 �
Z
f�k1�r�fk2�r�dr: (2)

The presence of such a coupling is the main difference
between homogeneous and inhomogeneous cavities. The
magnitude of coupling parameters Vkk1 depends on the
spatial profile of the dielectric constant, and can be tailored
to enhance (or diminish) the coupling effects.

Similar equations can be, in principle, derived for in-
homogeneous open cavities as well, where eigenmodes fk
should be replaced by appropriate Fox-Li modes. The
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hermitian orthogonality in this case is replaced by the bi-
orthogonality, which involves adjoint set of modes. For a
general case of nonuniform open cavity this condition was
derived, for instance, in Ref. [15]. We shall leave, however,
this topic for future work.

A gain medium is described within the model of two-
level atoms, characterized by dephasing rate ��1

a , and
population relaxation time �, and we use a standard density
matrix approach in order to derive equations for polar-
ization amplitudes Pk and population difference �N. The
next standard step in the derivation of rate equations would
be rotating wave and slow amplitude approximations,
which amount to presenting mode amplitudes Ek and Pk
as Ek�t� � �k�t� exp��i�kt�, Pk�t� � �k�t� exp��i�kt�,
where �k and �k are slowly changing amplitudes, and �k
is a frequency of the respective lasing mode. However,
forcing this procedure onto Eq. (1) yields linear oscillating
terms of the form

P
Vkk1�

�1���k1� exp��i��k ��k1���k1 ,
which render derivation of meaningful rate equations im-
possible. Here

��1��!� �
j�j2�N0

4@

1

!�!0 � i�a
(3)

is a linear susceptibility of the gain medium with j�j being
dipole matrix element of the lasing transition. Parameter
�N0 represents nonsaturated population inversion, and
characterizes the strength of the pumping.

The physical origin of this problem is quite clear—in
the presence of the linear coupling the modes of a passive
medium are not genuine normal modes of the entire sys-
tem. As a result, an attempt to excite such a mode leads to
exchange of energy between coupled modes and to non-
stationary oscillations of the respective intensities. The rate
equations, therefore, should be derived for the normal
modes of the entire system, which would include cavity
and the gain medium. To this end, it is convenient to
transform Eq. (1) in the frequency domain using conven-
tionally defined Fourier transformation:
X
k1

��!k � i�k �!�kk1 � 2�!0Vkk1�
�1��!��


 ~Ek1�!� � 2�!0

X
k1

Vkk1
~P�3�
k1
�!� (4)

where a tilde on top of a symbol signifies the Fourier
transform of the respective quantity, and the polarization
is separated into a linear and third-order nonlinear contri-
bution, ~P�3�. The former is taken into account in Eq. (4) by
introducing a linear susceptibility ��1��!�, and the expres-
sion for the latter was derived in a standard way from the
full system of density matrix equation using a standard
perturbation approach.
~P �3�
k �

j�j4�N0

32�2
@
3

X
kk1k2k3

Akk1k2k3
Z
d!1d!2

~Ek1�!�!1�

�!�!0 � i�a��i!1 � 1=��

� ~Ek2�!2� ~Ek3�!1 �!2�

i�!0 �!2� � �a
� c:c

�
: (5)
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Anticipating the future use of the rotation wave approxi-
mation applied to genuine normal modes of the system (see
Eq. (8) below) I substituted 2!�!�!k � i�k� instead of
!2 � �!k � i�k�2, neglected the nonresonant part of the
linear susceptibility, and replaced all frequencies ! in
nonresonant expressions with atomic frequency !0. The
latter approximation is justified because we will only con-
sider the case where frequencies of all participating modes
lie within a homogeneous line width of the lasing transi-
tion. Nonlinear coupling parameters in Eq. (5), Akk1k2k3 , are
defined as

Akk1k2k3 �
Z
��r�f�k�r�fk1�r�fk2�r�f

�
k3
�r�d3r: (6)

Lasing threshold and nonlinear dynamics of the inten-
sities.—In order to illustrate the effects of spatial inhomo-
geneities on the lasing threshold we find eigenfrequencies
of linearized Eq. (4) in a two-mode case. Imaginary parts
of these frequencies, �1;2 are both positive below the lasing
threshold. With increasing pumping, however, one of them,
�1, for instance, first changes its sign, and this point
determines the lasing threshold. If we assume that �1 �
�2, a simple expression for the lasing threshold can be
derived:

�N0tr �
�N0

0tr

V11

�
1�

�
V12

V11

�
2 �1

�2

�
(7)

where N0
0tr

is a threshold value of �N0 in a system with a
uniform dielectric constant. Two effects of the nonuni-
formity appear in this expression. First, factor V11, which
would be equal to unity for a uniform medium, affects the
threshold even in the absence of the linear coupling be-
tween the modes. The value of this parameter depends on
the spatial profile of the dielectric function; with an appro-
priate choice of the latter one can achieve a decrease in the
lasing threshold. The second effect reflected in Eq. (7) is
due to the coupling between the modes and results in
further decrease of the threshold.

In order to derive rate equations we have to diagonalize
the linear part of Eq. (4). To this end, we will, first, neglect
the dispersion of the linear susceptibility. This approxima-
tion is justified if we are only interested in dynamics of
intensities rather than lasing frequencies, and because all
the frequencies of interest lie within the width of the atomic
transition. After that we have to solve the eigenvalue
problem for the remaining matrix, which is, however,
essentially nonhermitian. Therefore, we have to find two
adjoint sets of vectors—right (jeii) and left (h~ejj), which
obey the bi-orthogonality condition h~ejjeii � 0 when i �

j. In order to preserve standard expressions for intensities
we shall normalize our right eigenvectors using condition
he�i jeii � 1 (so-called power normalization [12]). As a
result the product �i � h~eijeii � 1. In order to eliminate
linearly coupled terms from Eq. (4) we present cavity
mode amplitudes, ~Ek, as a linear combination of the right
eigenvectors, jeii,
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~E k�!��2�
X
Tki�Zi�!��!��i��Zi�!��!��i��;

(8)

where columns of matrix Tki are formed by the vectors jeii.
In Eq. (8) we also introduced a slow changing amplitude
approximation applied to the amplitudes of the true normal
modes of the system. In the frequency domain, this ap-
proximation consists of presenting the amplitudes as a
product of a frequency dependent part and a delta function,
containing a lasing frequency �i. Matrix Tki is not a
unitary matrix, and, transformation of Eq. (4) to the new
basis has to rely on matrix ~Tki, whose rows consist of
vectors h~eij. The product of matrices T and ~T is a diagonal
matrix with elements �i. The resulting equations for slow
amplitudes Zi take the form

�i
dZi
dt

� � ~�i ��i�Zi � 2�!0

X
j

uij�
�3�
j e

�i��j��i�t;

(9)

where uij � �k;k1
~TikVkk1Tk1j=�i, and the nonlinear contri-

bution to polarization, in the new basis, is given by

��3�
i �

j�j4�N0�

8@3�i�a

X
j;l;m

Rijlm
ZjZ

�
l Zme

�i��j��l��m��i�t

�j ��l ��m �!0 � i�a
;

(10)

Rijlm � �
X
ki

~TikAkk1k2k3Tk1m�Tk2j�Tk3l�
� � Tk3j�Tk2l�

��

(11)

where we have neglected frequency dependence of the
nonlinear coefficients Rijlm. Equations (9)–(11) provide a
basis for further analysis of the nonlinear dynamics of the
system under consideration.

In particular, the rate equations can be obtained in a
standard way by separating real and imaginary parts of
Eq. (9) and neglecting all oscillating terms on its right-
hand side:

dIi
dt

� 2Ii���i � #iIi �
X
j

$ijIj� (12)

Here Ii is the dimensionless intensity of the ith mode, �i is
its unsaturated amplification rate, and #i and $ij are self-
and cross-saturation parameters, respectively, which are
expressed in terms of coefficients Rijlm of Eq. (11).
These equations have the same form as standard lasing
rate equations for a uniform medium, with the only differ-
ence being that instead of the combination of nonsaturated
gain and loss terms, we have a single parameter �i, repre-
senting the imaginary part of the mode’s eigenfrequency.
The main effect of the linear coupling is a renormalization
of the nonlinear coupling coefficients. The most important
feature of this renormalization, which makes it experimen-
tally relevant, is a nontrivial dependence of the new coef-
2-3
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FIG. 1. Dependence of the nonlinear coupling parameter C on
�N0 (curve 1) and deviation of the intensity in a single mode
regime from a linear dependence on pumping (curve 2).
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ficients on the intensity of pumping. This dependence
arises because the coupling is carried by polarization,
and, hence, its strength is proportional to the unsaturated
inversion �N0. In order to illustrate the last point we
consider an example of only two interacting modes.
There are two possible regimes of behavior in this case:
single mode lasing, when the mode competition prevents
the second mode from lasing, and two-mode lasing, when
the spatial hole burning prevails over the competition. The
choice between these regimes is determined by a coupling
parameter C, defined by the ratio of cross- and self-
saturation parameters C � �$12$21�=�#11#22� [10]. In a
uniform medium, this parameter depends solely upon spa-
tial distribution of the cavity modes, determined by the
cavity’s geometry. In the situation considered here, this
parameter becomes dependent on the pumping intensity. In
order to illustrate the possible character of such depen-
dence, we simulated parameter C for a cavity which con-
sists of two dielectric materials with different dielectric
constants �1, and �2. The curve 1 on the figure shows the
dependence C��N0� for two closest in frequency modes of
such a cavity. The most striking feature of this graph is the
steep decrease of this coefficient with �N0, which means
that even if the modes of the empty cavity would not favor
the spatial hole burning, the increasing with pumping
linear interaction between the modes modifies their spatial
structure in a way which is beneficial for the two-mode
lasing. Similar behavior of C��N0� was also found for the
dielectric constant of the shape ��z� � �0 � az

2 or ��z� �
�0 �  cosz, where z is coordinate in the beam propagation
direction. This effect might explain the two-mode behavior
observed in random lasers [9]. The fact that increased
pumping can systematically drive C below unity for vari-
ous configurations of ��r� makes such effects much more
likely to occur in a random system than just a coincidental
combination of various parameters suggested, for instance
in Ref. [16]. A presence of the linear mode coupling in
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random lasers can be verified directly by observation of
dependence of I��N0� in single and multimode regimes,
which, if effects considered here are responsible for the
observed multimode behavior, should deviate from a
simple linear behavior expected in lasers with the uniform
dielectric constant (see curve 2 in Fig. 1).

Conclusion. —We derived nonlinear equations describ-
ing dynamics of lasing modes in a cavity whose dielectric
constant is spatially nonuniform in the direction of beam
propagation. For a number of spatial profiles of ��r� it is
shown that the nonuniformity enhances spatial hole burn-
ing and promotes two-mode lasing. This effect can explain
recent observation of two-mode behavior in random lasers.
The equations derived in the paper can also be used to
manipulate properties of lasers through a design of spatial
profile of the dielectric function.
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