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Enhancement of p-type doping of ZnSe using a modified  (N+Te)éd-doping
technique
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Delta doping techniques have been investigated to enhangettipee doping of ZnSe. Tellurium

was used as a codopant for improving the nitrogen doping efficiency. The net acceptor concentration
(NA—Np) increased to 1.810*cm 2 using singles doping of N and TéN+Te), while it was

limited to 8x 10" cm™2 by & doping of N alone. A promising approach was developed in which
three consecutivé-doped layers of N-Te were deposited for eagdhdoping cycle. An enhancement

in the (No—Np) level to 6x10"¥cm 2 has been achieved in ZnSe using this technique. The
resultant layer has an average ZnTe content of only about 3%. This doping method shows potential
for obtaining highly p-type doped ohmic contact layers without introducing significant lattice
mismatch to ZnSe. Low-temperature photoluminescence spectra reveal some Te-related emissions.
© 2000 American Institute of PhysidsS0003-695000)00816-0

The success ip-type doping of ZnSe using a discharge In this letter, we investigate thg-type doping of ZnSe
nitrogen source has generated interest in wide band gapith N by severals-doping techniques. Both doping of N
II-VI semiconductors for fabrication of blue-green lasefs.  alone ands doping of N with Te as codopant were em-
net acceptor concentratiolg—Np) of high 1"cm 3 has  ployed. Only a small enhancemefip to 1.5< 108cm3)
been achieved, with rather lower free hole concentrations.was obtained by N and Te codoping. Finally, a variation of
However, thisp-type conductivity is still not sufficient for the s&doping sequence, in which three consecuiMoping
practical device applications such as the formation of ohmigayers of N and Te were depositpN+Te)s%-doping], was
contacts. Itis well known that nearly all wide band gap semi-developed. By this approach, thsl{—Np) level increased
conductors exhibit preference for one type of doping. Foko 6x 10'8cm~3. An average ZnTe concentration of only 3%
example, ZnSe can be readily dopetype with free electron a5 obtained in these samples. These results suggest the pos-
concentration(n) of 3X 10*°cm™* and ZnTe can be highly  ihjlity of forming an ohmic contact layer for ZnSe, with a
p-type doped with free hole concentratiop) of 1 (gatively small lattice mismatch, using  the
x10%%cm 2> (N+Te)s%-doping technique. Low temperature photolumi-

: ; 5

To improve thep-type doping of ZnSe, Juref al” used  hogcenceéPL) measurements reveal several broad emissions,

delta doping with both N and Te, which gave a valu@all  gegper than the typical donor-acceptor-pair emissions of
7x10"cm . The method they used results in the format'or‘ZnSe:N, which are considered to be Te related emissions.

of a ZnSe/ZnTe:N superlattice where full atomic layers of oo performed by molecular beam epitaxy

highly N-doped ZnTe are separated by 10 monolayfgilss) éMBE)' Atomic N was produced by an radio-frequer(c)-

of undoped ZnSe. In that case, the average ZnTe content

the sample is about 9%, corresponding0.7% lattice mis- ischarge N source. A" samples were grown(0@1) p-type
S . S, GaAs substrates. Prior to the growth of theloped layer,

match to ZnSe. Thig-type doping level is significantly uniformly N-doped ZnSe was grown as a buffer layer. The

higher than those of uniformly N-doped ZnSe/ZnTe short y P 9 yer.

period superlattic€{ p~2x 10 cm™3) and ZnSeTe alloys growth rate was 0.&m/h._ The optimum discharge condi-
(p~1x10Ycm 3 with similar Te content. The higher tions fo; the N source, which produced i~ Np) level of
p-type doping by the method of Juref al® suggests that mid 10t”cm 2 in uniformly doped ZnSe:N, were used. These

spatial isolation of incorporated N from ZnSe is useful for &€ an rf power of 400 W and a pure (6N) flow corre-
achieving high doping efficiencies. sponding to a chamber background pressure of 8

Delta doping has been proposed to reduce complex-typ& 10 " Torr. For the growth of the N>-doped region, the
defect®1° For ZnSe:N, Zhuet al. have proposed that the conditions were kept the same. Figure 1 shows the shutter
Nge Vse cOMplex can be suppressed &yloping® However, control sequence used duringdoping. A ZnSe undoped
so far, Na—Np)~1x108cm™3 is the highesp-type dop-  SPacer region was first grown fby,s. seconds and then the
ing level achieved in ZnSe by doping with N alone. This Se shutter was closed foj, seconds to interrupt the growth

suggests that other mechanisms besides complex formatigd to produce a Zn-terminated surface. Then, all shutters
may be limiting thep-type doping level of ZnSe:N. were closed fort,, seconds to desorb excess Zn from the

surface, after which the N shutter was opened to deposit N

onto the Zn-terminated surface fg§ seconds. After another
dAlso at Physics Department of City College and Graduate Center of fm

CUNY. interruption time oft,, seconds, Zn was evaporated onto the
YElectronic mail: tamar@scisun.sci.ccny.cuny.edu N containing surface fat,, seconds followed by opening the
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FIG. 1. Shutter control sequence of convention&doping, single =) " I'“'
(N+Te)s-doping, and (N-Te)s%-doping techniques. Z| 10"
>< 0%
Se shutter for growth of the next undoped ZnSe spacer re- frae, .. (¢)
gion. This sequence was repeated over a hundred times in ol -

! . . 107 « ! ZnSe:N
order to obtain layers thick enough to perform electrical . !
measurements. The thickness of the undoped ZnSe spacing is ZnSe:(N+Te)s ;' -
determined byt,,s.. Since it was reported that the deposi- 10‘60 0T 02 03 04 05
tion of N on the Se-terminated surface degrades the ' ‘ D ) th 'm ) '
N-doping efficiencyt! only the Zn-terminated surface was epth (um)

used for our experiments. The shutter control of the single;g. 2. pepth-dependent\,—Np) levels of a conventionallys-doped
(N+Te)s-doping technique is the same as the one aboveample with 5 ML undoped spacés), a (N+Te)s-doped sample with 4
except that the Te shutter is opened and closed along witML spacer(b), and a (N-Te)s-doped sample with 7 ML spacéc).

the N shutter. Variousy 1. and undoped spacing thickness

(tzns9 Were employed. The results for some of the sampleshe undoped ZnSe spacing and one N containing layer. The
are listed on Table I. For thesg, andt,, were kept at 5s  (N,o—Np) levels are nearly constant-Gx 10" cm™2) in
while ty 1 andtz,se were varied. The optimum results were the s~doped and uniformly doped regions, suggesting that an

obtained whertz,=t,=ty=>5s, while a shortety 1, (3 9
gave less enhancement and a longer @@e9 decreased the previously observel We conclude tha® doping with N
p-type doping. For the growth of the (NTe)s®-doped
samples, the shutter control sequence was similar to that afoping of highly N-doped ZnSe.

the single (N+rTe)s-doping sequence except that the

(NAo—Np) level of high 137 cm™2 could not be surpassed as
alone does not produce any significant enhancement in the

In the single (N+Te)s-doping, the Ny—Np) level was

(N+Te) codoping steps were repeated three consecutivienmediately increased to 2510 cm™2. Figure 2b) shows
times, as shown in Fig. 1 by the dashed arrow.
The depth-dependentN(—Np) level of each sample ZnSe sample which has 500 nm of uniformly doped ZnSe:N
was determined by electrochemical capacitance—voltageuffer and 120 single (MTe)s-doped units(~200 nm
(EC-V) measurement€.PL measurements were performed where each unit contains 4 MLs of undoped ZnSe spacer and
at 12 K using the 325 nm line of a He—Cd laser. In order toone (N+Te) containing layer. As shown in Fig(18, the
minimize Te-related emission centers and a change in latticeN,—Np) level in the (N+Te)s-doped region is in the
constant, the lowest Te incorporation that still produces highange of 1-1.%10"®cm ™2 while in the uniformly doped
doping levels is preferred. Thus, the beam equivalent presZnSe:N layer it is 3% 10" cm 3. Several undoped spacer
sure of Te used was only>210 8 Torr. Current—voltage
(I-V) measurements were performed between two gold dotwas less than or equal to X30®¥cm ™3 (see Table)l sug-
evaporated onto the layer surface at room temperature. Thgesting that thep-type doping efficiency cannot be further
Au dots were 500um in diameter and 3 mm in separation enhanced by increasing the average incorporated Te and N. It
and there was no postdeposition annealing.
Figure 2a) shows the depth-dependemi {— Np) level
of the conventionals-doped ZnSe:N. This sample contains samples. In our experiments two factors differ from theirs
500 nm of a uniformly doped ZnSe buffer layer and 150that may explain this differencé1) our N plasma source
S-doped unit§~300 nm) where each unit contains 5 MLs of efficiency may be lower due to differences in the experimen-

TABLE I. (Npo—Np) values for several (MTe)s-doped samples.

ZnSe spacer ty e

(Nao—Np)x 10 cm=3

the depth-dependentNiy—Np) level of a (N+Te)s-doped

thicknesses were used. In all of them, tié,( Np) level

should be noted that Jureg al> reported significantly higher
doping levels p~7x10®¥cm™3) in their (N+Te)d-doped

tal details and(2) in our 5doping sequence we purposely
deposit less Te in eachdoped layer than was done in Ref.
5.

In an attempt to further enhance tpetype doping, a

Sample (ML) (9  buffer  &region comment  modified technique, (M Te)s® doping, was developed. In-
A 4 5 03 15 enhanced stead of a single (MTe)s-doped layer, three consecutive
B 7 5 0.7 11 enhanced (N+Te)s-doped layers were deposited. Each set of three
C 14 5 0.6 1.2 enhanced
(N+Te)é layers was separated from another by several MLs
D 7 10 0.3 0.09 decreased .
E 6 3 0.3 05 less enhanced Of @n undoped ZnSe spacer. Figure)2shows the depth-

dependent I{,—Np) level of a (N+Te)s®-doped sample.
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dashed curve The solid curve exhibits a nearly ohmic be-
200 ZnSe:(N+Te)s® havior while the dashed one shows a nonohimi%/ curve
g 100 [ [(N,-N,)=6x10""cm’] typical of uniformly doped ZnSe:N. This improvement of the
= / |-V characteristics is consistent with the increase of the
- ol . / ____,/ p-type doping level. Thus, the (NTe)s°-doping technique
§ 7 \ has potential for achieving a highly dopgstype contact
5 100}, layer for ZnSe-based devices with only a small lattice mis-
O ‘ ZnSe:N match to ZnSe. This is a large improvement over the ZnSe/
200l [(N,No)=3x10""cm] ZnTe graded superlattice contact layer typically used in blue-
& s s s 0 green laser diodes, which introduces defects due to the

presence of a very large lattice mismatch.
Voltage (V) In conclusion, increasep-type doping levels, up to 6
FIG. 3. 1-V characteristics between two Au contacts on a-(I¢)5°-doped X 108 CmB’ were aChleYed by a (NTe)é‘g—dopmg method in
layer surfacgsolid curve and on a uniformly doped ZnSe:N layer surface. Which three consecutivé-doped layers of N plus Te were
deposited, separated by undoped spacer layers of ZnSe. The
_ . resultantp-type layer has an average ZnTe content of only
The sample contains 800 nm of unlforml_y doped ZnSe:Ngg, Thesep doping levels are comparable to the highest
buffer layer and 120 (NTe)s>-doped units(~350 nm _reported values, which were achieved in samples where a
where each unit has 7 MLs of undoped ZnSe. As shown in,qnolayer of ZnTe was introduced for eaglioped period.
Fig. 20), ghe QA_ Np) level was dramatically increased t0 g |atter method results in 9% average ZnTe content and a
3-6x10cm by the (N+Te)s*-doping technique while significant lattice mismatch to ZnSe. Nearly ohmic contacts
the Ie7vel n the uniformly doped ZnSe:N buffer layer is 3 \yere achieved by nonannealed Au dots evaporated onto the
x10"cm > Another sample with 12 ML undoped ZnSe layers. Thus, the (MTe)s%-doping technique has potential
spacing for each (NTe)s*-doped unit was grown. The for achieving a highlyp-type doped contact layer for ZnSe-
(Na—Np) level is also in the raglge_gf mid ¥em™, sig-  pased devices with only a small lattice mismatch to ZnSe.
nificantly higher than the 1810 cm™2 maximum value of This approach may be applicable to other wide band gap

the single (N-Te)s-doped sample with 4 MLs undoped a4erials where high doping levels are often difficult to
spacing. Although the average amounts of incorporated Tﬁchieve.

and N in the 12 ML-(NtTe)s%-doped and the 4 ML-

(N+Te)s-doped samples are expected to be equivalent The authors acknowledge the support of the Department
(3/12:1/4, the p-type doping level is significantly increased of Energy under Grant Nos. DE-FG02-98ER45694 and DE-
in the (N+Te)s® doped sample. It seems reasonable to asFG02-98ER45695.
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