

Tsampikos Kottos

Wesleyan University and Max Planck Institute, Goettingen

Avalanches of Bose-Einstein Condensates in Leaking Optical Lattices

We study the decay of an atomic BEC population N(τ) from the leaking boundaries of an Optical Lattice (OL). For a rescaled interatomic interaction strength $\lambda > \lambda_b$, self-trapped Discrete Breathers (DB's) are created, preventing the atoms from reaching the leaking boundaries. Collisions of other lattice excitations with the outermost DB's, result in avalanches (jumps) in N(τ) which for $\lambda_b < \lambda < \lambda_*$ follow a scale free distribution P(J= δ N) \cong 1/J^{α}. A theoretical analysis of the mixed phase-space of the system, indicate that $1 < \alpha < 3$ in agreement with our numerical findings. We point out that although our focus is given to atomic BECs, our results are also relevant in a large variety of contexts, most prominently being the light emittance from coupled non-linear optics waveguides

Monday November 10, 2008 Starts at 12:15 PM Coffee at 12:00 PM Physics Conference Room, SB B326