Femtosecond and subfemtosecond time scales typically rule electron dynamics at conductor surfaces. Recent advances in experimental techniques allow the experimental study of such dynamics. In this talk we shall analyze electron dynamics at the surfaces of nanostructures with emphasis on screening, chirality and spin dependence of charge transfer, plasmonics, dipolar excitons in double layer graphene and the associated superfluidity and Bose-Einstein condensation. We will discuss the effect of energy gaps on possible “Veselago lenses” for completely flat graphene sheets. We will also discuss how plasmon instabilities may be exploited for tunable radiation generation which may be employed in detectors.