Biophysical Journal Volume 71 September 1996 1539-1544 1539

Is There an Error Correcting Code in the Base Sequence in DNA?

Larry S. Liebovitch, Yi Tao, Angelo T. Todorov, and Leo Levine
Center for Complex Systems, Florida Atlantic University, Boca Raton, Florida 33431 USA

ABSTRACT Modern methods of encoding information into digital form include error check digits that are functions of the
other information digits. When digital information is transmitted, the values of the error check digits can be computed from
the information digits to determine whether the information has been received accurately. These error correcting codes make
it possible to detect and correct common errors in transmission. The sequence of bases in DNA is also a digital code
consisting of four symbols: A, C, G, and T. Does DNA also contain an error correcting code? Such a code would allow repair
enzymes to protect the fidelity of nonreplicating DNA and increase the accuracy of replication. If a linear block error correcting
code is present in DNA then some bases would be a linear function of the other bases in each set of bases. We developed
an efficient procedure to determine whether such an error correcting code is present in the base sequence. We illustrate the
use of this procedure by using it to analyze the /ac operon and the gene for cytochrome c. These genes do not appear to

contain such a simple error correcting code.

INTRODUCTION

Modern technology utilizes numbers to represent and trans-
mit information. The information in these numbers is con-
tained in a string of digits. Additional error check digits are
added to ensure that these numbers are correctly transmit-
ted. These error check digits are functions of the other
information digits. If an error does occur in the transmis-
sion, the error check digits computed from the altered in-
formation digits may differ from the error check digits
transmitted. Thus, it is possible to detect common types of
errors in transmission and to correct them. These error
correcting codes are used in almost all forms of digital
information in our society, such as the ISBN book codes
(International Standard Book Numbers), the UPC scanner
codes (Universal Product Codes), drivers’ licenses, credit
card numbers, airline ticket numbers, and bank account
numbers (Gallian, 1991).

For example, an ISBN number such as 0-19-508013-0
consists of the nine information digits 0-19-508013 that
encode the publisher and the title of a book. The 10th digit,
0, is an error check digit that is computed from the other
digits. For the ISBN code, the first nine digits are multi-
plied, respectively, by the numbers 10, 9, 8, 7, 6, 5, 4, 3, and
2. The error check digit is equal to the negative of this sum
modulus 11. In this case

—(0X10+1X9+9X8+5X7+0X6+8X5
+0X4+1X34+3X%X2)=0 (mod]11),

and thus the error check digit ¢ = 0. (The notation a = b
(mod m), invented by Gauss, means that a — b = km, where

Received for publication 26 January 1996 and in final form 30 May 1996.

Address reprint requests to Dr. Larry S. Liebovitch, Center for Com-
plex Systems, Florida Atlantic University, 777 Glades Road, Boca
Raton, FL 33431. Tel.: 407-367-2239; Fax: 407-367-2223; E-mail:
liebovitch@walt.ccs.fau.edu.

© 1996 by the Biophysical Society

0006-3495/96/09/1539/06 $2.00

k is an integer.) If an error were to occur in the transmission
of this ISBN number, so that the fourth digit, which is a 5,
was transformed to a 4, then

—0OX10+1X9+9X8+4XT7+0X6+8X5
(2
+0X4+1X3+3X2)=7 (mod1l),

and the value computed for the error check digit e’ = 7.
Because the value 7 computed from the information digits
differs from the value O of the error check digit e, we know
that there was an error in transmission. Different types of
error code schemes can detect different types of transmis-
sion errors. The ISBN error code can detect 100% of all
single digit changes and 100% of all transpositions of ad-
jacent digits.

Biology also uses a digital code to represent and transmit
information. Genetic information is encoded by a sequence
of digits, each with one of four possible values: adenine,
cytosine, guanine, and thymine (A, C, G, and T). This
digital code is replicated to transmit genetic information to
the next generation. This digital code is translated into an
analog code in the shape of proteins that carry out the
functions of living cells (Dawkins, 1987).

We wanted to know whether the base sequence in DNA
also contains a digital error correcting code. Such a code
would make it possible for repair enzymes to maintain the
fidelity of the base sequence. It would also increase the
accuracy of replication of DNA.

Previous authors have thought about the existence of such
digital error correcting codes in the base sequence in DNA.
Forsdyke (1981) proposed that the intervening base se-
quences (introns) that are not translated into proteins could
contain error check information about the expressed base
sequences (exons) that are translated into proteins. Rz-
eszowska-Wolny (1983) proposed that an appropriate ar-
rangement of the DNA on nuclesomes may be crucial for
this system to operate.

1540 Biophysical Journal

Our approach here is different from these previous ap-
proaches. Rather than constructing models of possible error
correcting code mechanisms, we sought to develop an effi-
cient procedure that could be used to search through se-
quence data to determine whether such an error code is
present, or not present, in DNA. This paper presents the
procedure that we developed. This procedure can detect a
class of error correcting codes called linear block error
correcting codes. It is capable of detecting the existence of
such a code even when the number and placement of the
error check digits are not known a priori. We illustrate how
this procedure can be carried out by using it to analyze the
base sequence of the lac operon and the structural gene for
cytochrome c.

ASSUMPTIONS

In essence, we are asking, “Are the choices of some bases in
DNA derivable from a function of other bases upstream or
downstream in the native sequence?” If we consider func-
tions of all possible types, then this is a far too general
question to answer. We thus restricted our attention to
searching for the existence of linear block error correcting
codes (Guiasu, 1977). Almost all of the error correcting
codes now in use in our technology are of this form. These
codes have the form

(ax, +ay, +azxs + ... +ax,)=0 (modk), (3)

where x; are the factors of the error check code and the g; are
the information and/or error check digits. For example, for
the ISBN error code

(%1, X2, X3, X4y X5, Xgy X7, Xg, X9, X10)
@
=(10,9,8,7,6,5,4,3,2,1),

and the modulus k = 11. The first nine digits ¢; (1 =i < 9)
are the information digits, and the 10th digit, a,, is the error
check digit.

In our case, the g; are the bases of DNA, that is A, C, G,
and T. It was easier to work with numbers rather than
letters. Thus, we transformed the symbol sequence of bases
into a sequence of integer digits by encoding A, C, G, and
T, respectively, as 0, 1, 2, and 3. We chose the modulus k =
4. The use of modulus 4 means that the a; are restricted to
values of either 0, 1, 2, or 3, and thus the error check digits
determined from Eq. 3 correspond to one of the four DNA
bases. :

We assume that the DNA consists of “words,” each of
which has 7 bases. Because three bases form a codon that
encodes a specific amino acid or a termination signal, one
might restrict n = 3. However, bases in DNA serve other
functions besides their role in codons. For example, base
sequences provide sites for DNA-binding proteins that reg-
ulate gene function, and the sequence of introns plays a role
in the subsequent splicing of RNA. There is no a priori
reason to suggest that the error correcting code would be

Volume 71 September 1996
necessarily limited to the same structure as that of the
codons. Thus, to keep our method as general as possible, we
let n be an adjustable parameter. In analyzing sequence data
we let n vary over the range 3 = n = 8.

Each word will consist of both information digits and
error check digits. There will be one or more error check
digits in each word. We assume that the same number of
error check digits occurs in each word and that these digits
are in the same location in each word. However, we do not
need to assume how many error check digits are present in
each word or where they are located.

Thus, we are now asking, “Are the choices of some bases
in each word of n bases of DNA derivable from a linear
combination (modulus 4) of other bases in that word?” To
test whether this is the case, we choose a set of m words. We
let b;; be the value of the jth base in the ith word. We now
apply Eq. 3 to each word. Thus, we now have the following
set of m equations:

b“xl + quz + wa:; + ...+ blnx,, =0 (mod 4)

b21x1 + b22X2 + b23X3 + ...+ b2,,x,, =0 (mod 4)

&)

bpx, + bypxs + bysxs + ... + by, =0 (mod 4).

The values b; (1 =i=m, 1 =j = n) are determined from
the sequence of bases. Thus, we have a set of m equations
with n unknowns x; (1 =< i < n). If there is an error check
code present, we will find that there is a set of n values of
the error code factors x; that satisfy these m equations. We
expect that the sequence of bases will be much longer than
the length n of each word. Thus, there will be many words
and hence m will be greater than n. That is, we have a set of
m equations with n unknowns, where m > n. This set of
equations can be satisfied by the trivial solution that x; = 0.
Besides this trivial solution, we must determine whether this
set of equations has no other solutions, one other solution,
or a set of many other solutions.

PROCEDURE
First method: testing all possible solutions

Our first approach was to test all possible sets of solutions
for the variables x,, x5, ... x, for the given sequence of
bases. There are 4" sets of possible solutions. We took the
first word m = 1 consisting of the bases b,;, by, ... by,
and tested each solution to determine whether it satisfied the
condition

b“xl + blz.xz + ...+ bl,,xn =0 (mod 4). (6)

We kept a list of these solutions. We then tested each of
these solutions to determine whether it satisfied the condi-
tion imposed by the base pairs b,;, b,,, . . . by, in the second
word m = 2. That is, we tested each remaining solution to

Liebovitch et al.

determine whether it satisfied the condition

byx; + bypx, + ... + byx,=0 (mod4). @)

We continued this process of testing the remaining solutions
on additional words until either no solutions remained, or a
set of one or more solutions was found for x;, x,, . . . x,, that
were consistent for all m words. If solutions were found,
then the values of x;, x,, ... x, specify the factors of the
error check code. Only the solutions surviving from all of
the previous tests needed to be tested for each new word.

To test the rate of convergence of this method we con-
structed different sets of test data. In the first set of test data
we used words of n = 6 digits, where the first five digits, a,,
a,, as, a4, as, were the information digits with values O, 1,
2, or 3, and the last digit a4 was the error check digit
computed from the solution to the condition

(aix, + ap, + ayxy + agxy + asxs + ag) =0 (mod4), (8)

where the factors x;, x,, X3, X4, X5, X¢ Of the error check code
were given by

(x1, X2, X3, X4, X5, X6) = (1,3,1,3,1,1) (mod4). (9)

The input data consisted of all 4> = 1024 possible words.
From the initial set of 4% = 4096 of all possible solutions for
X1, X3, . . . Xg, this method found the following solutions:

(x,, X2y X35 X4y X5, x6) = (1, 3, 1, 3, 1, 1) (mOd 4)
(1, X2, X3, X4, X5, X5) = (0,0,0,0,0,0) (mod 4) a
(xl, Xo, X3, X4, X5, x6) = (2, 2, 2, 2, 2, 2) (mOd 4)

0)

(xl, X2y X3, X4y X5, x6) = (3, 1, 3, 1, 3, 3) (mOd 4).

The first solution is the one that was used to generate the
test data. Note that Eq. 3 is also satisfied if the variables (x,,
X,, X3, X4, X5, X¢) are multiplied by the same common factor.
The additional solutions are equivalent to the first solution
multiplied, respectively, by the factors 0, 2, and 3 using
arithmetic operations modulus 4. Because there are four
possible common factors, 0, 1, 2, and 3, each actual solution
has four different representations.

In the second set of test data we constructed words of all
combinations of the six digits a,, a,, a3, a4, as, ag. Thus, in
this case there is no possible solution for x;, x,, . . . x¢, and
thus no error correcting code is present.

This method converged more rapidly than we had antic-
ipated. For example, for the first set of test data, when an
error correcting code was present, each stage of testing one
word eliminated about one-fourth of the remaining possible
solutions. This approximately exponential rate of conver-
gence was found when the words were tested in random
order, with or without replacement. Convergence was
slower when the words were tested in order of increasing
value. For the second set of test data, where no error
correcting code was present, convergence was also expo-
nentially fast. In 10 separate runs, only six to nine words

Error Correcting Code in DNA 1541

were needed to be tested before all possible 4096 solutions
were eliminated. However, as the number of bases » in each
word increases, the total number of solutions also increases
exponentially as 4", and thus, even for modest n, the com-
puter memory requirements of this method became imprac-
tical. Hence we developed a more efficient procedure.

Second method: modified Gaussian elimination

The more efficient procedure is based on the standard
Gaussian algorithm of elimination to solve m equations with
n unknowns (Fraleigh and Beauregard, 1987; Kolman and
Shapiro, 1990). However, the standard algorithm assumes
that the coefficients and variables have real values and that
the operations use standard arithmetic operations. In our
case, the facts that the coefficients and variables are re-
stricted to integer values and that the operations use mod-
ular arithmetic introduce a number of changes throughout
the procedure. The properties of modular arithmetic in the
solution of simultaneous equations are described in the
textbook by Stewart (1952). The steps of this modified form
of Gaussian elimination are as follows.

The coefficients of the variables in the set of equations in
Eq. 5 can be represented as the matrix

by byn bz ... by
by byp by ... by
by by by ... by (11
bml bm2 bm3 “ o bmn

The solutions for the unknowns x; are unchanged if one row
of the matrix is multiplied by a factor and added to the other
rows or if two rows are interchanged. The Gaussian elimi-
nation method uses such operations to transform the matrix
into the Gaussian form

n ba bz ... biy
0 b by ... bl
0 0 by ... bl
(12)
0 0 0 ... b,
0 0 0 ... 0

Note that some of the matrix elements b'; may be equal to
zero. The form of this matrix is that there are one or more
rows at the bottom that consist of elements that are all equal
to zero. Above those rows of zero elements, each row has
more contiguous zero elements on the left than the row
above it. For example, if the initial matrix (Eq. 11) has the
form

13)

N O == WwN
NO WWe=N
NN =WwWWwo
N W WK ==
O W = = =

15642 Biophysical Journal

then a Gaussian form (Eq. 12) can be shown to be

1 313 3
002 3 3
0000 2
00000 14)
00000
00000

The values of x; (1 = i = n) can be computed in a
straightforward way from the Gaussian form (Eq. 12). The
value of x, can be directly determined from the simple
equation represented by the first row above the rows that are
identically zero. Then the value of x,_; is directly deter-
mined from the simple equation represented from the row
above it. This procedure is iterated until all of the values of
x; are determined. Thus, the Gaussian elimination method
consists of first transforming the matrix of the coefficients
of the equations into Gaussian form, and then the solutions
of the values of x; can be easily found by back-substitution,
working upward through the matrix.

To transform the matrix (Eq. 11) into the Gaussian form
(Eq. 12), we begin by examining the element b,,. If this
element is equal to zero, we select another row with a
nonzero element in the first column and interchange it with
the original first row. Let us denote this new matrix by B
= (b"). The nonzero element b? is called the “pivot.” We
then subtract multiples of the top row from those rows
further down until all those rows have a zero element in the
first column. In the standard Gaussian elimination method,
any nonzero element can serve as the pivot. In our case, if
possible, we choose a pivot whose value is equal to 1. Note
that an element whose value is equal to 3 can be converted
to one whose value is equal to 1 by multiplying the row by
3, because 3 X 3 = 1 (mod 4). We choose such an element
as the pivot because we can multiply 1 by a factor to
produce 0, 1, 2, or 3 and thus use it to zero out any element
in the rows further down. We do not want to choose an
element whose value is equal to 2 as a pivot, because all of
the products of 2 (mod 4) are equal to O or 2, and thus they
cannot be used to zero out the elements further down that
are equal to 1 or 3. If there are no rows that contain elements
equal to 1 or 3 in the column position we need for the pivot,
then all of those rows must consist of elements that are
equal to O or 2 in that column, and thus we can choose any
row with its element equal to 2 as the pivot because it can
be used to zero out the elements in all of the rows further
down.

This procedure leaves the first row and the first column
unchanged and changes the values of the other elements

b, where

B = BOBY — bIBY (15)

1]

foralli =2,3,...,m;j=1,2,...,n;so that the matrix

Volume 71 September 1996

(Eq. 11) has the form

0
pQ b9 by ... bY
1
0 by By ... b
1 1
0 5y bBY ... bBY (16)
0 b3 bW - bR

Some of the elements b;; in the matrix (Eq. 16) may be equal
to zero. We then iterate this procedure, starting with the
second row and second column, interchanging rows if nec-
essary, so that b} is a nonzero element, and then pivoting
on that element. As noted above, if possible, an element
whose value is equal to 1 is chosen as the pivot. The new
elements are given by

b = bb{) — b} an

foralli=3,4,...,m;j=1,2,...,n; so that the matrix

(Eq. 11) has the form

b bY B b
0 B b ... b
0 o0 by ... B (18)
0 0 B ... b2

We continue to iterate this procedure until the original
matrix (Eq. 11) now has the Gaussian form:

oY by B3 ... bl
0 by by ... b
0 0 g ... Y (19)
0 0 o0 bo "

In this form, all of the elements are equal to zero for the
rows i > n. There may also be additional rows i = n that
consist of all elements that are equal to zero. Such rows
imply that some variables x; take on all four possible values
of 0, 1, 2, and 3 in the set of solutions. Thus, the matrix (Eq.
19) can be rewritten as

O b9 B9 ... bY
0o 5 by ... b
0 0 52 ... bB?
e e e (20)
0 0 0 p-v
0 0 0 --- 0

where some of the elements b;; in the matrix (Eq. 20) may
be equal to zero. In addition, there may be additional rows
with elements equal to zero at the bottom and rows above
them with leftward contiguous elements equal to zero. Thus,
using the elements from the matrix (Eq. 20), the set of

Liebovitch et al.

equations is given by

b(lol)xl + b(zxz + b(o)x +... b(O)xn 0 (mod4)
bxat bBx, + ... bPx, =0 (mod 4)
b%)xs .. bPx, =0 (mod4)
bﬁ;‘“ =0 (mod4).
2D

It is now much easier to determine the values of the
variables x; from the transformed set of equations (Eq. 21)
than from the original set of equations (Eq. 5). We start with
the last equation b Vx, = 0 mod (4). If b= = 1 or
b®~D = 3, then the only solution is x, = 0. If bf,':, D= =2,
then x, =0 or x, = 2. f b& D = 0, then x, = 0, x, =
x, = 2, or x, = 3. We then use these all of these values of
x, and the penultimate equation to determine the values of
x,_;- We continue this process, using back-substitution to
determine the solutions for all x;, keeping track of all the
different solution sets.

When one or more sets of x; (1 = i = n) (other than the
trivial solution x; = 0) are found that satisfy the m equa-
tions, it means that within each word some bases are linear
combinations of other bases and thus a linear block error
correcting code may be present. This procedure for detect-
ing linear error correcting codes can tell us whether a linear
relationship is present, but it cannot tell us which are the
“information” bases and which are the “error check™ bases.

APPLICATION OF THE PROCEDURE

As an illustration of the use of this method we used the
modified Gaussian elimination method described above to
determine whether a linear block error correcting code was
present in the base sequence in two genes: the lac operon
and the structural gene for cytochrome c. Sequence data
were downloaded from GenBank. We encoded the linear
sequence of bases into words of length n, where 3 = n < 8.
We constructed these words in a number of different ways.
We used the method of Mantegna et al. (1994), where
consecutive words of length n were obtained by progres-
sively shifting a window of length n by one base for each
new word. We also formed words by progressively shifting
the window by two to n base pairs. A shift of n bases
produces a set of nonoverlapping consecutive words over
the DNA sequence. We also varied the starting location on
the DNA for the first base, from the first to the (n — 1)th
base in the gene. We performed the analysis both on the
native sequence data and on the same bases shuffled into a
random order.

RESULTS

When the number of words, m, analyzed is small, the
constraints imposed by the equations (Eq. 5) are not very

Error Correcting Code in DNA

1543

TABLE 1 Solutions from the native base sequence

m n=3 n=4 n=>5 n==6 n=17 n=38
4 0.383

5 0.209 0.438

6 0.128 0.253 0.473

8 0.065 0.088 0.017 0.208 0.539

9 0.042 0.022 0.157 0.243 0.271 0.361
10 0.013 0.039 0.035 0.012 0.087 0.230
11 0.027 0.032 0.013 0.052 0.077 0.100
12 0.013 0.000 0.025 0.053 0.025 0.052
13 0.000 0.013 0.033 0.000 0.017
14 0.000 0.017

15 0.000

The modified Gaussian elimination method was used to determine the
solution set of factors x,, x,, . . . x,, of an error correcting code present in m
words of n bases each. The fraction of such n by m segments constructed
from the native base sequence of the cytochrome ¢ gene that were found
with nonzero solutions is presented here as a function of n and m.

restrictive. Thus, by chance alone solutions for the variables
Xy, Xg, ... X, Will be found. To determine whether these
solutions arose by chance or represented an error checking
code, we therefore determined how the number of nontrivial
solutions varied as a function of n and m. These results are
presented in Tables 1 and 2. For both large n and m, we
found that there were no solutions for x,, x,, . . . x,,, and thus
an exact error correcting code consistent over large sections
of DNA was not present. To determine whether an approx-
imate error correcting code was present over more limited
regions of DNA, we compared the number of solutions
found for the native sequence and its surrogate formed by
randomizing the order of the bases of the native sequence.
As shown in Tables 1 and 2, the number of solutions was
similar in both the native and randomized sequences for
similar values of n and m. This implies that an approximate
error correcting code was not present in the genes that we
analyzed.

TABLE 2 Solutions from the randomized base sequence

m n=23 n=4 n=>5 n==6 n=717 n=28
4 0.403

5 0.223 0.505

6 0.179 0.327 0.438

7 0.090 0.225 0.246 0.438

8 0.051 0.122 0.192 0.312 0.544

9 0.017 0.021 0.117 0.119 0.287 0.439
10 0.034 0.023 0.035 0.108 0.066 0.206
11 0.000 0.035 0.016 0.019 0.033 0.059
12 0.000 0.021 0.006 0.041 0.028
13 0.000 0.017 0.000 0.014
14 0.000

The modified Gaussian elimination method was used to determine the
solution set of factors x,, x,, . . . x,, of an error correcting code present in m
words of n bases each. The fraction of such n by m segments constructed
from the bases of the cytochrome ¢ gene shuffled into a random sequence
that were found with nonzero solutions is presented here as a function of
n and m.

1544

DISCUSSION

Error checking codes make it possible to detect and correct
errors in digital information. An error correcting code in the
base sequence in DNA would make it possible to repair
corrupted sequences and increase the fidelity of replicating
DNA. Rather than investigating theoretical possibilities of
such codes, we have presented here a procedure that makes
it possible to determine whether one type of error correcting
code is or is not present in the sequence of bases in real
DNA. We have only illustrated the use of this procedure by
applying it to analyzing the base sequence of two genes. A
comprehensive test for the existence of an error correcting
code would require an exhaustive application of this proce-
dure to large segments of DNA, including structural genes,
introns, promoters, and protein-binding regions. That work
is beyond the scope of the present paper. The goal of this
paper has been to establish a procedure by which such a
search can be conducted and illustrate how it can be carried
out.

The procedure presented here is limited to determining
the presence of the type of error correcting code called a
linear block code. This type of error correcting code is itself
quite general and has been used extensively in our present
technology. However, there are more general codes based
on finite groups (Gallian, 1991) or nonlinear functions. A
lack of evidence for the presence of such a linear block code
does not rule out the possibility that more complex error
correcting schemes may be present in DNA. Such complex
codes imply that some bases are complicated functions of
the bases in upstream or downstream sequences. This raises
the difficult mathematical question: How does one deter-
mine whether some symbols in a sequence of symbols are
functions of other symbols?

Biophysical Journal

Volume 71 September 1996

The biological community has thought of DNA as pri-
marily a set of codons that encode amino acids, perhaps
with a few regulatory regions here and there. In a more
general sense, the issue we raise in this paper is whether
there are additional ways that information is encoded in
DNA. Perhaps, rather than thinking of DNA as a list of
proteins and analyzing the statistical properties of genes and
their base sequences, we should think of DNA as a sequence
of digital symbols to be analyzed more as a language
(Mantegna et al., 1994) and solved as a code breaking
problem.

This work was supported in part by National Institutes of Health grant
EY06234.

REFERENCES

Dawkins, R. 1987. The Blind Watchmaker. W. W. Norton and Company,
New York.

Forsdyke, D. R. 1981. Are introns in-series error-detecting sequences?
J. Theor. Biol. 93:861-866.

Fraleigh, J. B., and R. A. Beauregard. 1987. Linear Algebra. Addison-
Wesley, Reading, MA.

Gallian, J. A. 1991. The mathematics of identification numbers. Coll.
Math. J. 22:194-202.

Guiasu, S. 1977. Information Theory with Applications. McGraw-Hill,
New York.

Kolman, B., and A. Shapiro. 1990. Precalculus: Functions and Graphs, 2nd
Ed. Harcourt Brace Jovanovich, New York.

Mantegna, R. N,, S. V. Buldyrev, A. L. Goldberger, S. Havlin, C.-K. Peng,
S. Simons, and H. E. Stanley. 1994. Linguistic features of noncoding
DNA sequences. Phys. Rev. Lett. 73:3169-3172.

Rzeszowska-Wolny, J. 1983. Is genetic code error-correcting? J. Theor.
Biol. 104:701-702.

Stewart, B. M. 1952. Theory of Numbers, 2nd Ed. Macmillan, New York.

