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Abstract

Sustained resonance in a linear oscillator is achievable with a drive whose con-

stant frequency matches the resonant frequency of the oscillator. But in oscillators

with nonlinear restoring forces such as the pendulum, Duffing and Duffing-Van der

Pol oscillator, the resonant frequency changes as the amplitude changes, so a con-

stant frequency drive results in a beat oscillation instead of sustained resonance.

Duffing-type nonlinear oscillators can be driven into sustained resonance, called

autoresonance, when the drive frequency is swept in time to match the changing

resonant frequency of the oscillator. We find that near-optimal drive linear sweep

rates for autoresonance can be estimated from the beat oscillation resulting from

constant frequency excitation. Specifically, a least squares estimate of the Teager-

Kaiser instantaneous frequency versus time for the beat response to a stationary

drive provides a near-optimal estimate of the nonstationary drive linear sweep rate

needed to sustain resonance in the pendulum, Duffing and Duffing-Van der Pol os-

cillators. We confirm these predictions with model-based numerical simulations. An
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advantage of the beat method of estimating optimal drive sweep rates for maximal

autoresonant response is that no model is required so experimentally generated beat

oscillation data can be used for systems where no model is available.
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PACS: 05.45.-a, 46.40.Ff

1 Introduction

Control of nonlinear oscillations to achieve a desired state is important in

many fields, from engineering to medicine. Sustained resonance is usually an

undesirable state in mechanical systems where it can lead to mechanical break-

down, for example, in an airplane wing. However, sustained resonance may be

desireable in electrical systems, for example, in electronic tuning to produce

maximum response to an input signal.

The open-loop (feed-forward) control scheme of driving a linear oscillator at

its resonant frequency achieves sustained resonance because linear oscillators

such as

ẍ+ ω2x = F cos(Ωt) (1)

have fixed resonant frequencies that are independent of amplitude, so that,

without damping, a drive of constant frequency results in a continually in-

creasing amplitude. By contrast, oscillators with nonlinear restoring forces

such as the pendulum (Eq. 2), Duffing (Eq. 3), and Duffing-van der Pol oscil-
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lators (Eq. 4), which we call Duffing-type oscillators,

ẍ+ sin(x) = F cos(Ωt) (2)

ẍ+ x− εx3 = F cos(Ωt) (3)

ẍ+ x− εx3 + µ(1 − x)ẋ = F cos(Ωt) (4)

have resonant frequencies that depend on their instantaneous amplitudes.

We call the instantaneous resonant frequency at lowest amplitude the low-

amplitude oscillator frequency, ωo, which we set equal to 1. The simple open-

loop control of setting the drive frequency equal to the low-amplitude os-

cillator frequency will not sustain resonance in these oscillators. Driving a

Duffing oscillator at its low-amplitude oscillator frequency produces a tran-

sient increase in amplitude. But since the oscillator frequency is amplitude

dependent, as the amplitude increases the oscillator frequency shifts away

from the drive frequency, thereby decreasing the oscillator amplitude. As the

amplitude decreases, the oscillator frequency shifts back towards the drive

frequency and the amplitude of the oscillator increases again. Therefore, driv-

ing a Duffing-type oscillator at its low-amplitude oscillator frequency results

in a beat response consisting of a slow amplitude-modulation (AM) of a fast

frequency-modulated (FM) carrier. The beat response is amplitude-modulated

as the oscillator slips in and out of resonance. The beat response is frequency-

modulated as the oscillator frequency changes due to amplitude changes. This

is shown in Figs. 1(a)-(c) for the pendulum, softening Duffing oscillator and

softening Duffing-Van der Pol oscillator respectively, all with equivalent non-

linear restoring force terms.

Sustained resonance instead of a beat oscillation is possible for Duffing-type

oscillators by starting in resonance and sweeping the drive frequency to match
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the shifting oscillator frequency, or, alternatively, sweeping an oscillator pa-

rameter that moves the oscillator frequency in the opposite direction of its

amplitude-dependent frequency shift, effectively cancelling the amplitude-dependence

of the oscillator frequency. Owing to the practical importance of maximal res-

onant response and the pervasiveness of Duffing-type oscillators, the “secret”

of starting in resonance and sweeping the drive frequency to sustain resonance

has been discovered and rediscovered many times over the years under differ-

ent names. The earliest example is centuries old, that of church bell-ringers

decreasing their bell-ringing frequency as oscillation amplitude increases (a

form of feedback control), now called the “bell-ringer mode” of the driven

pendulum [1].

Sustained resonance can also be achieved by starting off-resonance and slowly

passing through resonance leading to capture into resonance via phase-locking

of drive and oscillator. This “phase stability principle” was discovered by Vek-

sler [2] and McMillan [3] in 1944 and 1945 and used in the synchrotron and

synchrocyclotron. The term autoresonance was first introduced by Kolomen-

ski and Lebedev [4] in the context of cyclotron resonance stability. Friedland

[5–7] has applied autoresonance to plasma physics, atomic physics, and plan-

etary dynamics, and has described autoresonance as “a salient property of

many nonlinear systems to stay in resonance with driving perturbations de-

spite variation of system parameters” [8]. An energy-based theory of autores-

onance applicable to Duffing-type oscillators was developed by Chacon [9].

Hübler proposed an open-loop method of resonant stimulation of nonlinear os-

cillators with application to resonance spectroscopy and introduced the “prin-

ciple of the dynamic key” that “optimal driving forces have the same dynamics

as the time-reflected transient dynamics of the unperturbed system” [10,11]. In
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Hübler’s method the system’s differential equation is integrated starting at the

desired highly stimulated state. By time-reversing the data, the ideal forcing

function is obtained. An advantage of Hübler’s method is that all resonances

are taken into account in determining the ideal forcing function. However,

the ideal forcing functions determined by Hübler’s method may be difficult to

generate and use in modeling. A major limitation of Hübler’s method is the

requirement of an accurate model.

Despite the importance of sustained resonance in nonlinear oscillators, there

exists no simple way to determine optimal drive sweep rates that maximize

autoresonant response in Duffing-type oscillators. Perfect frequency matching

over time between drive and oscillator frequency for Duffing-type oscillators is

not possible with a single swept periodic drive because the generation of har-

monics in response to periodic excitation would require multiple drive sweeps

for synchronization of drive and oscillator frequencies. Also, perfect frequency

matching of drive and oscillator frequency, even for the fundamental oscillator

frequency, would require a nonlinear sweep due to the nonlinear amplitude-

frequency relation for Duffing-type oscillators. Fig. 2 shows the backbone curve

for the softening Duffing oscillator [12].

The ease of generating linear sweeps and their convenience in modeling make

it useful to consider the problem of predicting optimal drive linear sweep

rates that maximize autoresonant response in Duffing-type oscillators. How-

ever, no method currently exists for predicting optimal drive linear sweep rates

that maximize autoresonant response in Duffing-type oscillators. This paper

introduces a simple beat method for estimating optimal linear sweep rates

that maximize autoresonant response in Duffing-type oscillators. In the beat

method, the oscillator is driven, either experimentally, or if a model is avail-
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able, in numerical simulation, at its low-amplitude resonant frequency and a

least squares estimate of the slope of the instantaneous frequency versus time

curve for the beat response provides an estimate of the optimal sweep rate

needed for the drive to track the changing oscillator frequency and sustain

resonance.

This paper is organized as follows. Section Two presents the steps used in ap-

plying the beat method to estimate optimal drive linear sweep rates that maxi-

mize autoresonant response in the pendulum, softening Duffing, and softening

Duffing-Van der Pol oscillators. Section Three uses the near-optimal sweep

rate estimates provided by the beat method as starting points to numerically

search for optimal sweep rates. Estimated and optimal sweep rates are com-

pared. The existence of extremely sharp sweep rate transitions from maximal

autoresonant response to loss of autoresonance are shown to occur and the im-

plication to optimal sweep rate estimation is discussed. Section Four presents

conclusions of this investigation in predicting optimal drive linear sweep rates

that maximize autoresonant response in Duffing-type oscillators.

2 A beat method for predicting optimal drive linear sweep rates

that maximize autoresonant response in Duffing-type oscillators

The slow amplitude variation of the beat oscillation response of Duffing-type

oscillators driven at their low-amplitude oscillator frequency results from the

instantaneous frequency of the oscillator changing in response to amplitude

changes, causing the oscillator to slip in and out of resonance. The slope of the

oscillator’s instantaneous frequency versus time curve is a linear approxima-

tion of the optimal drive linear sweep rate that tracks the changing oscillator
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frequency, thereby sustaining resonance.

The beat method of estimating optimal drive linear sweep rates that maximize

autoresonant response consists of six steps:

1. The beat response of a Duffing-type oscillator to a stationary drive set to

the low-amplitude oscillator frequency is obtained either experimentally or, if

a model is available, by numerical simulation.

2. Instantaneous frequencies during the first half-cycle of the beat response are

calculated using the Energy Separation Algorithm [13] based on the Teager-

Kaiser energy operator [14].

3. Initial transient instantaneous frequency estimates are ignored until they

stabilize to the oscillator’s starting frequency.

4. A simple local minima moving filter is applied to the instantaneous fre-

quency data to smooth the instantaneous frequency versus time curve.

5. A least squares estimate of the slope of the smoothed instantaneous fre-

quency versus time curve provides a near-optimal estimate of the drive sweep

rate that maximizes autoresonant response.

6. The estimated near-optimal drive sweep rate may be sufficient for some

purposes or may be used to provide a starting value to numerically search for

the optimal sweep rate.

In the following sections we apply the beat method to estimate optimal drive

linear sweep rates that maximize autoresonant response in the pendulum,

softening Duffing and softening Duffing-Van der Pol oscillators described by

Eqs. (2), (3) and (4).
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2.1 Beat Method Step 1: Obtain the beat response of a Duffing-type oscillator

to a stationary drive set to the low-amplitude oscillator frequency

Beat responses were obtained from numerical simulations of Duffing-type oscil-

lators driven at their low-amplitude oscillator frequency nondimensionalized

to equal 1. Numerical simulations were conducted using the high-level Dy-

nast system simulation software that uses “a stiff-stable implicit multi-step

backward-differentiation formula” [15,16]. Beat responses for the pendulum,

softening Duffing oscillator and softening Duffing-Van der Pol oscillator are

shown in Figs. 1(a)-(c) respectively.

2.2 Beat Method Step 2: Estimate instantaneous frequencies during the first

half-cycle of the beat response

We use the continuous Energy Separation Algorithm (ESA) based on the

continuous Teager-Kaiser (TK) energy operator for instantaneous frequency

estimation and incorporate it in a high-level system numerical simulation lan-

guage. While the TK energy operator and ESA were developed primarily to

be used as discrete algorithms, their continuous forms were used here be-

cause high-level simulation languages like Dynast more easily accommodate

differential operators than difference operators. An alternative continuous ap-

proach to calculating instantaneous frequencies based on the Hilbert transform

is inconvenient for incorporating into high-level simulation languages because

time-domain convolution integration is required. The TK-ESA has been shown

to provide accurate instantaneous frequency estimates for frequency swept sig-

nals [17].
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The TK differential energy operator

Ψ(u) = [u̇(t)]2 − u(t)ü(t) (5)

was developed to track instantaneous oscillator energy and defined to yield a

result proportional to energy a2 ω2 when applied to the signal (i.e., solution)

u(t) = a cos(ωt+ φ) of a harmonic oscillator [14].

From the frequency, amplitude and energy relationships for a harmonic oscil-

lator, Kaiser, Maragos and Quatieri showed that instantaneous frequency and

instantaneous amplitude can be extracted from signals having combined am-

plitude modulation and frequency modulation by applying the TK differential

energy operator to the signal and its first derivative (the Energy Separation

Algorithm) as follows [13].

Ψ(u̇) = [ü(t)]2 − u̇(t)
...
u (t) (6)

a(t) =
Ψ(u)√
Ψ(u̇)

(7)

ω(t) =

√√√√Ψ(u̇)

Ψ(u)
(8)

The TK-ESA instantaneous frequency versus time for the beat response of

a pendulum, softening Duffing oscillator, and softening Duffing-Van der Pol

oscillator, driven at their low-amplitude oscillator frequencies is shown in Fig.

3(a)-(c) respectively for the first half-cycle of the beat. Only the first half-cycle

of the beat is used because the resonant increase in beat amplitude occurs in

this portion of the cycle.
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2.3 Beat Method Step 3: Ignore initial TK-ESA instantaneous frequency es-

timates until transients settle

The first TK-ESA instantaneous frequency estimates were ignored until tran-

sients settled, i.e., when instantaneous frequency estimates started matching

the known starting frequency (ω = 1). The initial transients in the TK-ESA

instantaneous frequency estimates can be seen in Fig. 3.

2.4 Beat Method Step 4: Smooth the instantaneous frequency versus time

curve using a local minima moving filter

A simple local minima moving filter was applied to the instantaneous fre-

quency data to smooth the instantaneous frequency envelope. The TK-ESA is

sensitive to high-frequency noise because the TK energy operator uses differen-

tial operators. Therefore the instantaneous frequency value at each simulation

time point was replaced by the lower bound over a forward window of 20 val-

ues for softening oscillators and replaced by the higher bound for hardening

oscillators. Figs. 4(a)-(c) show the results of this smoothing applied to the

data originally plotted in Figs. 3(a)-(c).

2.5 Beat Method Step 5: Perform a least squares slope estimate of the smoothed

instantaneous frequency versus time curve

MS Excel was used to provide a least squares estimate of the slope of instanta-

neous frequency versus time data for the first half-cycle of the beat tesponse.

The slope of the instantaneous frequency versus time curve for the first half-
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cycle provides an estimate of the optimal autoresonance drive linear sweep

rate.

2.6 Beat Method Step 6: Use the near-optimal sweep rate estimate provided by

the beat method as a starting value to numerically search for the optimal

sweep rate

To use the estimated sweep rates to search for optimal sweep rates, the con-

stant frequency drive on the right-hand side of Eqs. (2), (3) and (4) was

replaced by a drive with linear frequency sweep Ω = ωo + α t:

F cos(ωot+
(αt2)

2
) (9)

since θ =
∫

Ω dt.

Negative sweep rates, corresponding to downward frequency sweeps, are needed

to track the changing oscillator frequency and sustain resonance in softening

oscillators (backbone curve bends to the left), while positive sweep rates are

needed for hardening oscillators (backbone curve bends to the right).

The near-optimal sweep rate estimates provided by the beat method may be

sufficient for generating a maximal autoresonant response. If this is not the

case, and if a model is available, sweep rate estimates provided by the beat

method can be used as starting values to numerically search for optimal drive

sweep rates. To find optimal drive sweep rates, sweep rates were systematically

varied above and below the starting sweep rate estimated by the beat method.

The drive sweep rate that resulted in a maximal autoresonant response within
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a fixed simulation time (t = 3000 s) for each oscillator type was identified as

the optimal drive sweep rate.

A test of the beat method is provided by a comparison of estimated and opti-

mal sweep rates for generating maximal autoresonant responses. Table 1 shows

estimated and optimal periodic drive linear sweep rates for the pendulum, soft-

ening Duffing oscillator, and softening Duffing-Van Der Pol oscillator. Within

a parameter space spanning many orders of magnitude, the differences between

estimated and optimal sweep rates were 9.1%, 8.8%, and 6.2% respectively.

The beat method was also tested for hardening versions of the Duffing and

Duffing-Van der Pol oscillators, where the cubic restoring force term is positive

in Eqs. (3) and (4). Table 2 shows estimated and optimal periodic drive linear

sweep rates for the hardening Duffing oscillator and hardening Duffing-Van

Der Pol oscillator. Percent differences between estimated optimal sweep rates

were 3.2% and 5.6% respectively. As the pendulum is an inherently softening

oscillator, only the Duffing and Duffing-Van der Pol oscillators are included

in this category.

Time responses for the pendulum, softening Duffing oscillator and softening

Duffing-Van der Pol oscillator driven with optimal sweep rates are shown in

Figs. 5(a)-(c) respectively. Time responses for the same oscillators driven with

estimated sweep rates are shown in Figs. 6(a)-(c) respectively. It was, at first,

surprising, with single-digit percent differences between estimated and opti-

mal sweep rates, that in only one of the three Duffing-type oscillators, the

Duffing-Van der Pol oscillator, did the estimated sweep rate actually result in

autoresonance. The explanation lies in the extremely sharp sweep rate transi-

tion from maximal autoresonant response to loss of autoresonance that occurs
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immediately above the optimal sweep rate and discussed in the next section.

3 Extremely sharp sweep rate transitions from maximal autoreso-

nant response to loss of autoresonance immediately above opti-

mal sweep rates

For all oscillators tested, numerical simulations show a gradual increase in au-

toresonant response with increasing sweep rate up to a maximal autoresonant

response at the optimal sweep rate. This is followed by an extremely sharp

transition from maximal autoresonant response to loss of autoresonance as

the sweep rate is increased above the optimal sweep rate. Table 3 quantifies

the extremely sharp transitions by listing the difference in sweep rate between

optimal autoresonant response and loss of autoresonance for all oscillators

tested.

Two types of plots help visualize the extremely sharp transitions from max-

imal autoresonant response to loss of autoresonance due to small changes in

sweep rate. Figs. 7(a)-(c) display the maximum amplitude reached in a fixed

simulation time as a function of sweep rate for the pendulum, the softening

Duffing oscillator, and softening Duffing-Van der Pol oscillator respectively.

Figs. 8(a)-(c), 9(a)-(c), and 10(a)-(c) show time responses for each oscilla-

tor, respectively, at three different sweep rates: (a) slightly below optimal, (b)

optimal, and (c) slightly above optimal.

The observed extremely sharp sweep rate transitions from autoresonance to

loss of autoresonance are consistent with the finding of sharp sweep rate tran-

sitions in general nonstationary responses reported by Agrawal and Evan-
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Iwanowski [18]: “Detailed analysis of nonstationary responses leads to a startling

situation. The separation between ...categories...is very sharp. For instance the

small difference in the transition (sweep) rates between 1.269 and 1.268 – i.e.,

only 0.001 – produces a marked difference in the nonstationary response.”

Estimated sweep rates that are near-optimal but lower than the optimal sweep

rate result in autoresonance. However, due to the extremely sharp sweep rate

transitions from maximal autoresonant response to loss of autoresonance oc-

curring immediately above the optimal sweep rate, estimated sweep rates that

are near-optimal but higher than the optimal sweep rate will generally not re-

sult in autoresonance. The value of the beat method in these cases is that

the beat method is the only method currently available for estimating near-

optimal sweep rates that can then be used as starting values to numerically

or experimentally search for optimal sweep rates that generate maximal au-

toresonance response.

4 Conclusions

The possibility of predicting optimal drive linear sweep rates for autoresonance

in Duffing-type oscillators was investigated in this paper. The main results of

this investigation are:

1. Optimal drive linear sweep rates that generate maximal autoresonant re-

sponse in softening and hardening Duffing-type oscillators can be estimated

from the beat response to fixed frequency excitation at the oscillator’s low-

amplitude resonant frequency. Interestingly, this means that, for Duffing-type

oscillators, the beat response to a stationary drive can be used in estimating an
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optimal nonstationary drive parameter (i.e., sweep rate). Duffing-type oscilla-

tors driven at their low-amplitude resonant frequency develop an amplitude-

modulated and frequency-modulated beat oscillation. A least squares estimate

of the smoothed slope of the instantaneous frequency versus time curve for

the beat response during the first half-cycle is a near-optimal estimate of the

optimal drive linear sweep rate needed to sustain resonance in Duffing-type

oscillators. The near-optimal sweep rates estimated by the beat method can

also be used as starting values to experimentally or numerically search for

optimal sweep rates that generate maximal autoresonance response.

2. There are extremely sharp sweep rate transitions from maximal autoreso-

nant response to loss of autoresonance as drive sweep rate increases immedi-

ately past the optimal sweep rate. This is consistent with, but even more pro-

nounced, than earlier findings by Agrawal and Evan-Iwanowski [18] of the ex-

istence of such sharp transitions for general nonstationary responses. In those

cases where sweep rate estimates provided by the beat method were close to

but above the optimal sweep rate and therefore did not generate autoresonant

responses, the estimates provided useful starting values to numerically search

for optimal sweep rates that did generate maximal autoresonant response.

3. The beat method offers two advantages over Hübler’s method of predict-

ing optimal forcing functions for resonant stimulation of nonlinear oscillations.

First, the beat method provides a near-optimal estimate of a single parameter,

the linear drive sweep rate, that makes it possible to use a linear sweep (an

easily generated forcing function) to achieve maximal autoresonant response.

This contrasts with the more complicated optimal forcing functions obtained

from Hübler’s method that may be more accurate but more difficult to ex-

perimentally generate or use in modelling. Second, unlike Hubler’s method,
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the beat method does not require a model. Therefore, in addition to using

models in numerical simulations, the beat method can also use experimental

beat oscillation data obtained by driving a Duffing-type oscillator at its low-

amplitude oscillator frequency. A least squares estimate of the slope of the

smoothed TK-ESA instantaneous frequency versus time curve for the exper-

imental beat response to a stationary drive at the oscillator’s low-amplitude

resonant frequency provides an estimate of the optimal drive linear sweep rate

for generating maximal autoresonant response.

4. Autoresonance can be achieved by starting the drive sweep in resonance

using the low-amplitude oscillator frequency instead of by “passage through

resonance.” Friedland [8] suggests starting autoresonant sweeps off-resonance,

slowly passing through resonance to assure phase-locking, instead of starting

the sweep in resonance which “may require fine tuning of parameters.” The

beat method accomplishes this fine tuning of the sweep rate parameter, at

least in low-dimensional Duffing-type oscillators, so that autoresonance can

be achieved by drive sweeps that start in resonance at the oscillator’s low-

amplitude resonant frequency. Starting drive sweeps in resonance has the ad-

vantage that resonance can be maintained throughout the drive sweep rather

than only after capture into resonance. As noted by Friedland, as the number

of degrees of freedom of the driven system increases, fine tuning of parameters

becomes more difficult. Hence, in multi-dimensional systems, autoresonance

via “passage through resonance” may be preferable to starting in resonance.

5. The continuous forms of the TK energy operator and ESA were found to be

suitable for determining the instantaneous frequency versus time curve needed

to estimate optimal drive linear sweep rates for autoresonance in Duffing-type

oscillators. One advantage of the continuous forms of these algorithms over
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other instantaneous frequency algorithms is the relative ease of incorporating

them in high-level system simulation languages.

References

[1] R.D. Peters, Resonance response of a moderately driven rigid planar pendulum,

American Journal of Physics 64 (2) (1996) 170–173.

[2] V.I. Veksler, A new method of accelerating relativistic particles, Comptes

Rendus (Dokaldy) de l’Academie Sciences de l’URSS, 43, (8) (1944) 329–331.

[3] E.M. McMillan, The synchrotron–a proposed high energy particle accelerator,

Physical Review 68 (1945) 143–144.

[4] A.A. Kolomenski, A.N. Lebedev, Autoresonance motion of a particle in a plane

electromagnetic wave, Doklady Akademii Nauk SSSR 145 (1962) 1259–1261.

[5] A. Loeb, L. Friedland, Autoresonance laser accelerator, Physical Review A33,

(1986) 1828–1835.

[6] B. Meerson, L. Friedland, Strong autoresonance excitation of Rydberg atoms:

The Rydberg accelerator, Physical Review A 41 (1990) 5233-5236.

[7] J. Fajans, E. Gilson, L. Friedland, Autoresonant (nonstationary) excitation of

a collective nonlinear mode, Physics of Plasmas 6 (1999) 4497-4503.

[8] L. Friedland, Efficient capture of nonlinear oscillations into resonance, Journal

of Physics A: Mathematical and Theoretical 41 (2008) 1–8. doi:10.1088/1751-

8113/41/41/415101.

[9] R. Chacon, Energy-based theory of autoresonance phenomena: Application to

Duffing-like systems, Europhysics Letters 70 (2005) 56–62.

17
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List of Figure Captions

Fig. 1. Beat oscillation response for the: (a) pendulum, (b) softening Duffing

(ε = 1/6), and (c) softening Duffing-Van der Pol oscillator (ε = 1/6, µ = 0.005)

to a drive (F = 0.005) of constant frequency set to the low-amplitude oscillator

frequency (ω = 1).

Fig. 2. The resonant frequency of the softening Duffing oscillator in Eq. (2)

depends on its amplitude, plotted here as the nonlinear backbone (F = 0)

curve of Amplitude vs. Frequency Ratio.

Fig. 3. TK-ESA instantaneous frequency versus time for the first half-cycle

of the beat response for the: (a) pendulum (ω = 1, F = 0.005), (b) softening

Duffing oscillator (ε = 1/6, ω = 1, F = 0.005), (c) softening Duffing-Van

der Pol oscillator (ε = 1/6, µ = 0.005, ω = 1, F = 0.005), all driven at their

low-amplitude oscillator frequency. Initial numerical simulation transients and

later high-frequency noise are visible.

Fig. 4. TK-ESA instantaneous frequency versus time for the first half-cycle

of the beat response for the: (a) pendulum (ω = 1, F = 0.005), (b) softening

Duffing oscillator (ε = 1/6, ω = 1, F = 0.005), (c) softening Duffing-Van der

Pol oscillator (ε = 1/6, µ = 0.005, ω = 1, F = 0.005), all driven at their low-

amplitude oscillator frequency, ignoring initial numerical simulation transients

and applying a local minima moving filter. (ε = 1/6, ω = 1, F = 0.005).

Fig. 5. Time responses using optimal drive sweep rates obtained from a nu-

merical parameter search for the: (a) pendulum (ω = 1, α = −0.0001043), (b)

softening Duffing oscillator (ε = 1/6, ω = 1, α = −0.0001052) and (c) softening

Duffing-Van der Pol oscillator (ε = 1/6, ω = 1, µ = 0.005, α = −0.0000653)
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using the downward swept drive (F cos(ωt− 0.5(αt2)), F = 0.005)

Fig. 6. Time responses using estimated drive sweep rates obtained from the

beat method for the: (a) pendulum (ω = 1, α = −0.0001059), (b) softening

Duffing oscillator (ε = 1/6, ω = 1, α = −0.0001149) and (c) softening Duffing-

Van der Pol oscillator (ε = 1/6, ω = 1, µ = 0.005, α = −0.0000640) using the

downward swept drive (F cos(ωt− 0.5(αt2)), F = 0.005)

Fig. 7. Maximum amplitude as a function of sweep rate during a fixed simula-

tion time (t = 3000 s) for the: (a) pendulum, (b) softening Duffing oscillator,

(c) softening Duffing-Van der Pol oscillator, showing extremely sharp sweep

rate transitions from maximum autoresonance response to loss of autoreso-

nance immediately above the optimal sweep rate.

Fig. 8. Time responses at three drive sweep rates for the pendulum: (a) below

optimal (α = −0.0001037), (b) at optimal (α = −0.0001043), and, (c) above

optimal (α = −0.0001049), showing an extremely sharp sweep rate transition

from maximum autoresonance response to loss of autoresonance immediately

above the optimal sweep rate.

Fig. 9. Time responses at three drive sweep rates for the softening Duff-

ing oscillator: (a) below optimal (α = −0.0001046), (b) at optimal (α =

−0.0001052), and, (c) above optimal (α = −0.0001058), showing an extremely

sharp sweep rate transition from maximum autoresonance response to loss of

autoresonance immediately above the optimal sweep rate.

Fig. 10. Time responses at three drive sweep rates for the softening Duffing-

Van der Pol oscillator: (a) below optimal (α = −0.0000651), (b) at optimal

(α = −0.0000653), and, (c) above optimal (α = −0.0000655), showing an

20



extremely sharp sweep rate transition from maximum autoresonance response

to loss of autoresonance immediately above the optimal sweep rate.
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 6
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Figure 7
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Figure 8
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Figure 9
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Figure 10
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Oscillator Estimated sweep rate Optimal sweep rate % diff.

pendulum -0.0001142 -0.0001043 9.1

softening Duffing -0.0001149 -0.0001052 8.8

softening Duffing-Van der Pol -0.0000616 -0.0000653 5.8

Table 1

Oscillator Estimated sweep rate Optimal sweep rate % diff.

hardening Duffing 0.0001028 0.0000996 3.2

hardening Duffing-Van der Pol 0.0000520 0.0000550 5.6

Table 2

Oscillator Sweep rate differences for autoresonance transitions

pendulum 0.0000006

softening Duffing 0.0000006

softening Duffing-Van der Pol 0.0000002

hardening Duffing 0.0000006

hardening Duffing-Van der Pol 0.0000001

Table 3

Table 1. Comparison of estimated and optimal drive linear sweep rates for

maximal autoresonant response in the pendulum, softening Duffing oscillator,

and softening Duffing-Van der Pol oscillator. Estimated sweep rates were cal-
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culated using the beat method while optimal sweep rates were determined by

parameter search starting at the estimated sweep rate.

Table 2. Comparison of estimated and optimal drive linear sweep rates for

maximal autoresonant response in the hardening Duffing oscillator and hard-

ening Duffing-Van der Pol oscillator. Estimated sweep rates were calculated

using the beat method while optimal sweep rates were determined by param-

eter search starting at the estimated sweep rate.

Table 3. Sweep rate differences resulting in transitions between maximal au-

toresonant response and loss of autoresonance in the pendulum, softening

Duffing oscillator, softening Duffing-Van der Pol oscillator, hardening Duffing

oscillator and hardening Duffing-Van der Pol oscillator.
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