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Fractal ion-channel behavior generates fractal firing patterns in neuronal models
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Fractal behavior has been observed in both ion-channel gating and neuronal spiking patterns, but a causal
relationship between the two has not yet been established. Here, we examine the effects of fractal ion-channel
activity in modifications of two classical neuronal models: Fitzhugh-Nagumo~FHN! and Hodgkin-Huxley
~HH!. For the modified FHN model, the recovery variable was represented as a population of ion channels with
either fractal or Markov gating characteristics. Fractal gating characteristics changed the form of the interspike
interval histogram~ISIH! and also induced fractal behavior in the firing rate. For the HH model, the K1

conductance was represented as a collection of ion channels with either quasifractal or Markov gating prop-
erties. Fractal gating induced fractal-rate behavior without changing the ISIH. We conclude that fractal ion-
channel gating activity is sufficient to account for fractal-rate firing behavior.@S1063-651X~99!11205-4#

PACS number~s!: 87.17.Nn, 87.16.Uv, 87.17.Aa, 02.50.Ey
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I. INTRODUCTION

A pervasive and important problem in neuroscience is
understand how the structure and function at one leve
organization is manifest in the structure and function
higher and larger levels of organization. For example, at
molecular level, the voltage and current across the cell m
brane is controlled by ion channel proteins. At a higher le
of organization, information of relevance is represented
the rate or timing of action potentials. In this paper, we u
numerical simulations to explore the influence of the kinet
of ion channels on the statistical properties of the durati
of times between action potentials. We show that differ
models of ion channel kinetics produce fundamentally diff
ent interspike interval statistics.

In classical models of voltage-gated conductances and
derlying ion channels@1–3#, it is assumed that the ion chan
nels switch between a small number of states with kine
rate constants that depend only on the present state o
channel. In this Markov process formulation, the time t
channel has already spent in that state and the history o
previous states of the channel are irrelevant. The phys
interpretation of this model is that the physical state of
ion channel at one time does not depend on its physical s
at an earlier time.

That such a complex protein, consisting of thousands
amino acids that are acted upon by an array of forces~e.g.,
random thermal forces, atomic bonds, and electrostatic
hydrophobic forces!, should exhibit memoryless behavior
counterintuitive, and in fact a large body of experimen
@4–10# and computational@11,12# evidence indicates that a
least some ion channels and other proteins exhibit signific
memory effects@13#. In the case of ion channels, th
PRE 591063-651X/99/59~5!/5970~11!/$15.00
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memory can take the form of kinetic rate constants that
not constant but rather arefractal @14,15#, in that the rate
constants are proportional tot2c, where t is the time the
channel had already spent in a given state andc is a constant
@15–18#.

At the systems level, analysis of spike trains from a va
ety of neuronal preparations@19–25# has shown several hall
marks of fractal behavior in interspike interval statistic
These effects include a slow decrease of fluctuations of fir
rate about the mean as the rate is computed over longer
periods; a periodogram that decreases in a power-law fas
with frequency; and an Allan factor that increases as
power-law function of the counting time@26#. We illustrate
this behavior by including results recorded from a repres
tative auditory-nerve fiber in cat, stimulated by a pure tone
the characteristic~most sensitive! frequency, which was 10.2
kHz for this particular neuron@27#. Statistics obtained from
this recording are included in the plots of Fitzhugh-Nagum
and Hodgkin-Huxley simulation results that follow.

What is the origin of the fractal characteristics found
the timing of action potentials recorded from nerves? Wh
a number of different causes have been proposed@28,29#,
fractal fluctuations in the membrane voltage@30,31# appear
to provide the best explanation. It seems reasonable to a
the fractal kinetics of the ion channels are responsible for
fractal fluctuations in the membrane voltage, and theref
for the fractal characteristics of the action potential timing.
this paper we determine how the kinetics of ion chann
influence the timing of the action potentials in the clas
Fitzhugh-Nagumo and Hodgkin-Huxley neuronal mode
We find that Markov and fractal ion channel kinetics produ
different statistical properties in the timing of the action p
tentials. Our results suggest that the fractal properties fo
5970 ©1999 The American Physical Society
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PRE 59 5971FRACTAL ION-CHANNEL BEHAVIOR GENERATES . . .
for the timing of the action potentials may arise from t
fractal kinetics of ion channels.

II. METHODS

A. Markov Fitzhugh-Nagumo simulation

The Fitzhugh-Nagumo equations provide a symbo
model of neuronal activity, in which all dynamical variable
of the neuron are reduced to two quantities: the ‘‘voltag
variablev(t), which corresponds to the membrane volta
and the ‘‘recovery’’ variablew(t), which corresponds to re
fractory properties of the neuron. The equations are

t dv~ t !/dt5v~ t !@v~ t !2a#@12v~ t !#1s~ t !2w~ t !,
~1!

dw~ t !/dt5v~ t !2w~ t !,

wheret anda are parameters of the system, ands(t) is an
input signal. For these simulations, we chooset50.005 to
keep the time scales ofv(t) and w(t) well separated, and
s(t)5a51/2 ~a constant! for simplicity. None of these
choices qualitatively affects the results we present for this
the fractal Fitzhugh-Nagumo simulations, nor does
choice ofvD below.

To explore the effects of finite-size ion channels on
Fitzhugh-Nagumo model, we recastw(t) as the proportion
of channels that are open. For a finite number of channelN,
then W(t)[Nw(t) will be open, andN2W(t) will be
closed. This permits the representation of Eq.~1b! by a two-
state Markov process

closed
v~ t !
�

12v~ t !
open, ~2!

where v(t) and 12v(t) become the opening and closin
rates, respectively, since

dw~ t !/dt5
dW~ t !/dt

N
5

v~ t !@N2W~ t !#2@12v~ t !#W~ t !

N

5v~ t !2w~ t ! ~3!

as defined in Eq.~1b!. Since each channel is interchangea
with the next, and represented by a memoryless process
need only keep track of thenumberof channels in the two
states, greatly facilitating the simulation. To ensure that
transition ratesv(t) and 12v(t) are non-negative, we re
strict v(t) to lie in the range 0<v(t)<1.

The simulation is updated as follows. At each iteration
exponentially distributed random variablets with a mean de-
pending onW(t) andv(t) is generated, which represents t
time to the next channel transition. The rate of chan
dv(t)/dt derives from Eq.~1a!; over the timets the resulting
increment ofv(t) would be tsdv(t)/dt. If this increment
exceeds a thresholdvD (50.02), then the voltage is incre
mented byvD , and the time incremented byvD /@dv(t)/dt#;
no channel states change. Otherwise, the voltage is in
mented by ts dv(t)/dt, and a random channel state
changed@with the probabilities of the two possible trans
tions also depending appropriately onW(t) and v(t)]. The
cycle then repeats. We define the Fitzhugh-Nagumo mod
c
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have fired each timev(t) first exceeds 0.8, following at leas
one occurrence ofv(t),0.2 since the last firing. One hun
dred simulations were run for 2.23105 seconds each, with
different random seeds. The results were quite similar am
the trials; results from two representative simulations
shown in the following.

B. Fractal Fitzhugh-Nagumo simulation

For the Markov ion channels employed in the abo
simulation, the channel behavior is memoryless, and th
fore does not depend on past activity. This permits the us
a single number,W(t), to describe the states of all the cha
nels. Markov behavior also implies exponentially distribut
times between switching events~given a fixed voltage!.

Ion channels with fractal behavior, in contrast, ha
memory. Thus the time each channel has spent in its pre
state influences its behavior, and the probability dens
function p(t) of the times between switching events n
longer follows an exponential form. Rather, the intereve
times often decay as a power-law function@15–17,26,19–
21,28,29,22–25,32,18#. For analytical convenience@33#, we
choose the functional form

p~t!5at0
a~t1t0!2(a11) ~4!

over non-negativet, with t0 and a positive parameters
without loss of generality we sett051. Similar power-law
forms for p(t) yield qualitatively similar results. Setting th
mean dwell times in the two states for this probability de
sity function equal to those for the Markov case yields

a5H 11v for opening

22v for closing.
~5!

Simulation becomes much more complicated~and computa-
tionally intensive! than for the Markov case, since for eac
channel the remaining times to the next switching event m
be updated every time the voltage changes. Ten simulat
were run for 108 seconds each, using different random see
The results were qualitatively similar among the trials;
sults from two representative simulations are shown in
following. Fractal channels have memory and hence resp
more slowly than Markov channels. This greatly reduces
overall firing rate, requiring a much longer simulation tim
for the same number of spikes.

C. Markov Hodgkin-Huxley simulation

The Hodgkin-Huxley equations describe neuronal activ
phenomenologically as the product of a set of nonlinear c
ductances. The classical equations for an isopotential p
of membrane are

C dv/dt52@ ḡNam
3h~v2vNa!

1ḡKn4~v2vK!1gL~v2vL!2I #,

dm/dt5am~12m!2bmm, ~6!

dh/dt5ah~12h!2bhh,

dn/dt5an~12n!2bnn,
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whereC is membrane capacitance per unit area;v is mem-
brane potential;ḡNa and ḡK are maximal values of the
sodium- and potassium-sensitive conductances per
area, respectively;m, h, and n are the sodium-conductanc
activation function, sodium-conductance inactivation fun
tion, and potassium-conductance activation functions,
spectively; vNa, vK , and vL are the reversal potential
associated with sodium, potassium, and leakage con
tances, respectively;gL is the Ohmic leakage conductanc
per unit area; andI represents current density from an exte
nal source ~e.g., an intracellular electrode!. While the
Hodgkin-Huxley equations are less compact than
Fitzhugh-Nagumo equations, conductance-based equa
have the great advantage that the variables in question ca
measured experimentally under a voltage clamp. In
work, we used the classical values of Hodgkin-Huxley p
rameters at 6 °C@1,34#, translated into the modern voltag
convention.

Our method differs from that of Ref.@1# in two important
m
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respects, however. Their equations treated the memb
variables ascontinuous and deterministic; the variables
can take any of an infinite number of possible values alo
a continuum, and display no randomness whatsoever
our models, we follow the behavior of individual channe
which are discrete and stochastic; each channel can tak
only one of two possible values, and the chann
change state in a random manner. The conductance
the channel-based Hodgkin-Huxley models we employ
thus produced by the summed actions of voltage-ga
and ion-selective channels, each of which is a stocha
device. The voltage- and time-dependent sodium cond

tance (ḡNam
3h) can be represented as the product of

conductance of a single open Na1 channel (gNa) and the
number of open Na1 channels per unit area. In our channe
based description of the Hodgkin-Huxley equation, Ea
Na1 channel is a Markov process with the following ra
scheme@2#:
m0h1

3am

�
bm

m1h1

2am

�
2bm

m2h1

am

�
3bm

m3h1

ah↑↓bh ah↑↓bh ah↑↓bh ah↑↓bh

m0h0

3am

�
bm

m1h0

2am

�
2bm

m2h0

am

�
3bm

m3h0. ~7!
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In this scheme only the statem3h1 is open. Similarly, the
potassium conductance (ḡkn

4) is the product ofgK and the
mean number of open K1 channels per unit area. Potassiu
channels have the rate scheme@2#

n0

4an

�
bn

n1

3an

�
2bn

n2

2an

�
3bn

n3

an

�
4bn

n4 , ~8!

where the lone open state is staten4. For this rate scheme
standard Markov analysis yields the average open and cl
times for the K1 channels:

E@TO#51/~4bn!,

E@TC#5
~an1bn!42an

4

4an
4bn

. ~9!

In our stochastic Hodgkin-Huxley algorithm, which ha
been described in detail previously@35,36,34#, we take ad-
vantage of the memoryless property of Markov processes
tracking only the number of Na1 and K1 channels in each
possible state. We establish an initial distribution of sta
ed

y

s

from the expected values at rest. We update this distribu
by drawing the time of next state transition from a joi
probability density function, and determine the specific tra
sition that occurred from a conditional distribution@34#. We
then update the value ofV by integrating the current-balanc
equation and begin the process anew. In this work, we
sumegNa5gK520 pS and channel densities of 60 (Na1)
and 18 (K1) channels/mm2, giving the same maximal con
ductances as in the deterministic model@34#. We model a
membrane patch of area 10mm2. The number of channels
in the modeled patch (600 Na1 channels, 180 K1 chan-
nels! is small enough for channel noise to generate spo
neous activity@36,34#. We report detailed statistics on tw
runs: one with zero current input, and one wi
24 mA/cm2, yielding different average interspike interval
as expected. Simulations were run for 117 027 and 87
spike events, respectively.

D. Fractal Hodgkin-Huxley simulation

As in the case for the Fitzhugh-Nagumo model, frac
behavior was imparted to the ‘‘recovery’’ variable, in th
case the K1 conductance. To this end, we replaced the fiv
state nonfractal model shown in Eq.~8! with an eleven-state
rate scheme of the form
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n0*
an* /k9

�
bn* /k9

n1*
an* /k8

�
bn* /k8

n2*
an* /k7

�
bn* /k7

•••

an* /k
�

bn* /k
n9*

an*
�
bn*

n10* , ~10!
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where staten10* is the only open state. Although Eq.~10!
defines a Markov process, the dwell-time distribution in t
closed state will closely follow a power-law distribution o
the kind in Eq. ~4! for times t in the range 1/an* !t
!k9/(kan* 1bn* ), for k not too large, due to the scaling be
havior of this equation@37#. Each of the stages differs from
the next only by a scaling factor,k; such self-similarity im-
parts fractal behavior onto this simulated ion chann
Single-channel data from K1 channels in cultured mous
hippocampal neurons yieldk54 @17#; for 11 states, this
yields a closed-time distribution with smooth power-law b
havior over roughly six decades. Closed-time distributio
for this model, while analytically tractable, prove quite com
plicated. For convenience, we treat instead the case o
infinite chain of closed states, with the left-hand side of E
~10! extending without limit. With the help of renormaliza
tion theory we obtain

E@TO#51/bn* ,
~11!

E@TC#51/~an* 2bn* !.

Setting the respective forms forE@TO# and E@TC# in Eqs.
~9! and ~11! equal yields

bn* 54bn ,
~12!

an* 5
4~an1bn!4bn

~an1bn!42an
4

.

While this choice ofan* and bn* yields identical average
dwell times to that of the classical~nonfractal! Hodgkin-
Huxley model in the steady state, the existence of lo
memory in the closed-time distribution leads to chang
properties of the Hodgkin-Huxley system. In particular, t
fractal Hodgkin-Huxley model thus generated exhibited
significantly lower average firing rate than the Mark
Hodgkin-Huxley system. To facilitate comparison with th
Markov simulations, we adjusted the input current to ma
the average interspike intervals obtained in that case;
resulting values were 40 and 80mA/cm2, respectively, for
the runs which matched the two nonfractal Hodgkin-Hux
runs listed earlier in average rate. These simulations were
for 103 873 and 100 559 spike events, respectively.

E. Data analysis

The action potentials by which neurons transmit inform
tion over macroscopic distances are comprised of a serie
brief electrical spikes, the amplitude and energy of which
widely assumed not to be significant variables. Rather, i
generally accepted that the times of occurrences of the sp
carry the information. Randomness is involved, since
sembles of identical single-neuron experiments lead to
e

l.

-
s

an
.

g
d

a

h
he

un

-
of
e
is
es
-
f-

fering sequences of nerve firings. A stochastic point proc
@38# is a mathematical construction which represents th
firing events as random points on a line.

Figure 1 shows several representations that are usefu
the analysis of point processes. Figure 1~a! demonstrates a
sample function of a point process as a series of impu
occurring at specified timestn . Since these impulses hav
vanishing width, they are most rigorously defined as the
rivative of a well-defined counting processN(t) @Fig. 1~b!#,
a monotonically increasing function oft, that augments by
unity when a firing event occurs. Accordingly, the point pr
cess itself is properly written asdN(t), since it is only
strictly defined within the context of an integral.

The point process is completely described by the se
firing event times$tn%, or equivalently by the set of inter
event intervals$tn%. However, the sequence of counts d
picted in Fig. 1~c! also contains much information about th
process. Here the time axis is divided into equally spa
contiguous counting windows of durationT sec to produce a

FIG. 1. Representations of a point process.~a! The events are
represented by a sequence of idealized impulses, occurring at t
tn , and forming a stochastic point processdN(t). For convenience
of analysis, several alternative representations of the point pro
are used.~b! The counting processN(t). At every spike occurrence
the value ofN(t) augments by unity.~c! The sequence of count
$Zk%, a discrete-time non-negative integer-valued stochastic p
cess, is formed from the point process by recording the numbe
spikes in successive counting windows of lengthT. ~d! The se-
quence of counts$Zk% can be conveniently described in terms of
count indexk. Information is lost because the precise times of sp
occurrences within each counting window are eliminated in t
representation. Correlations in the discrete-time sequence$Zk% can
be readily interpreted in terms of real time.
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sequence of counts$Zk%, where Zk5N@(k11)T#2N@kT#
denotes the number of firing events in thekth window. As
illustrated in Fig. 1~d!, this sequence forms a discrete-tim
random process of non-negative integers. In general, in
mation is lost in forming the sequence of counts, althou
for a regular point process the amount lost can be m
arbitrarily small by reducing the size of the counting windo
T. An attractive feature of this representation is that it p
serves the correspondence between the discrete time ax
the counting process$Zk% and the absolute ‘‘real’’ time axis
of the underlying point process. Within the process of cou
$Zk%, the elementsZk andZk1n refer to the number of count
in windows separated by precisely (n21)T sec, so that cor-
relation in the process$Zk% is readily associated with corre
lation in the underlying point processdN(t).

The complete characterization of a stochastic process
volves a description of all possible joint probabilities of t
various firing events occurring in the process. Different s
tistics provide complementary views of the process;
single statistic can describe in general a stochastic pro
completely. For example, statistics that describe the rela
occurrences of the interspike intervals~such as the interspike
interval histogram, see Sec. II E 1! cannot distinguish be
tween two point processes containing the same intervals
in a different order.

The point processes corresponding to neuronal firing
terns are not true fractals in time, since the associated
eralized dimensions are not fractional@30,31,39#. However,
the rate of firing is indeed a fractal, and turns out to b
closely related to fractal Brownian motion. Thus neuron
firing behavior is well described by fractal-rate stochas
point processes@39#, for which the Allan factor~Sec. II E 3!
and the periodogram~Sec. II E 4! exhibit scaling. Such scal
ing leads naturally to power-law behavior@39#, so that scal-
ing of these statistics implies that the Fitzhugh-Nagumo
Hodgkin-Huxley simulations are well modeled by a proce
with a fractal rate, and therefore indeed have a fractal
much as biological neurons do.

1. ISI histogram

The interspike-interval~ISI! histogram is simply the rela
tive frequency of interspike-interval occurrence in the d
set, ignoring all correlations among the intervals. The
histogram therefore cannot distinguish between proce
with a fractal rate and those with a nonfractal rate. The o
type of point process which is uniquely specified by the
histogram is the renewal point process family, in which t
interspike intervals are independent and all drawn from
same distribution.

2. Rate function

Perhaps the simplest measure of neuronal activity is
estimate of the rate: the number of spikes registered per
time @40#. In terms of the numbers of countsZk introduced in
Sec. II E, the rate estimatel k̂ of thekth window of duration
T is given byl k̂5Zk /T. For a process with a fractal rate, th
rate estimates exhibit fluctuations whose magnitude~e.g., the
standard deviation! decreases more slowly, as the counti
time used to compute the rate increases, than would be
pected for processes with nonfractal rates.
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3. Periodogram

The periodogram is an estimator of the power spec
density S( f ). Much as for continuous-time processes, t
power spectral density computed for the neural spike eve
reveals how power is concentrated in various freque
bands. In general, the power spectral density varies with
quency, the sole exception being the homogeneous Poi
process, for whichS( f )5l for all frequenciesf. The homo-
geneous Poisson process corresponds to memoryless
cesses such as the registration of radioactive decay ev
and provides an important benchmark in point-proc
theory just as the Gaussian does in the theory of continu
stochastic processes. Any deviation froml in the value of
S( f ) therefore indicates that the point process in questio
not homogeneous Poisson in nature. In the case of afractal
rate, the power spectral density decreases as a power
function of frequency over a broad range of frequencies,
that S( f ); f 2bS for some power-law exponentbS .

We employ the periodogram of the sequence of cou
$Zk%, rather than from the point process itself@41#. This
method introduces a bias at higher frequencies, since the
time resolution information is lost as a result of the nonze
size of the count windows. However, the component o
process which imparts a fractal quality to its rate principa
involves lower frequencies where this bias is negligible, a
thus the difference between the two methods does not
nificantly affect our results. Since employing the sequence
counts permits the use of vastly more efficient fast Fou
transform methods, impossible for a periodogram based
the point process itself, we employ this technique.

4. Allan factor

Another measure of correlation over different time sca
is provided by the Allan factor, a relative variance based
a particular wavelet transform@42#. The Allan factorA(T) is
the Allan variance of the number of spikes in a specifi
counting timeT divided by twice the mean number of spike
in that counting time. The Allan variance is defined in term
of the variability of successive counts@43,44#. In terms of
the sequence$Zk% illustrated in Fig. 1~c!, the Allan factor
becomes

A~T![
E@~Zk112Zk!

2#

2E@Zk#
. ~13!

In general the Allan factor also varies as a function of
argument, with the sole exception again being the homo
neous Poisson process, for whichA(T)51 for all counting
times T. For any point process, the Allan factor assume
value of unity for counting timesT less than half the smalles
interspike interval. The Allan factor of a process with a fra
tal rate increases as a power-law function of the count
time over a broad range of counting times, so thatA(T)
;TbA for some power-law exponentbA , where 0,bA<3.

The Allan factor and the power spectral density are
lated by the integral equation

A~T!5
2

p2lT
E

2`

`

S~ f !sin4~p f t ! f 22 d f . ~14!
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TABLE I. Statistics for Markov- and fractal-channel Fitzhugh-Nagumo simulations with different in
currents, and for the auditory-nerve recording.

Markov Fractal Auditory
Run 1 Run 2 Run 1 Run 2 Neuron

Duration ~sec! 219999 220000 86554700 80626300 1799.18
Number of spikes 294827 294884 166801 213696 127500
Mean interspike interval~sec! 0.746198 0.746056 518.91 377.294 0.014111
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In particular, for processes with fractal rates for which t
power-law behavior of the Allan factor extends to arbitrar
large frequencies, and for which 0,bA,3, we have the the-
oretical resultbA5bS . In practice, the finite length of an
data set will introduce significant bias and variance into
timates ofbS , and some variance into estimates ofbA , so
that exact agreement will not be obtained@39#.

III. RESULTS

A. Fitzhugh-Nagumo

Rate estimates of the raw simulation results for
fractal-channel Fitzhugh-Nagumo model~not shown! exhib-
ited apparent nonstationarity at the beginning. This is lik
due to memory of the initial condition stored in the states
the channels, although equilibrium distributions were e
ployed in the initialization of the simulations~suggesting that
this system typically does not remain near equilibrium!. To
ensure stationarity, the first 25% of the spikes were d
carded. The Markov-channel Fitzhugh-Nagumo simulatio
showed no such nonstationarity, and therefore no sp
were discarded from these simulations.

The mean interspike intervals of the fractal-chan
Fitzhugh-Nagumo simulations differed significantly fro
each other, and differed greatly from those of the Marko
channel Fitzhugh-Nagumo simulations, as shown in Tabl
To facilitate comparisons among the different simulatio
and the representative neural recording, all data sets w
normalized by dividing the interspike intervals by their r
spective means before subsequent data analysis. The re
ing normalized results have their average interspike inter
all set to the same value~unity!, but all other characteristic
of the spike trains remain unchanged by the normaliza
procedure. In particular, this procedure is irrelevant to
presence or absence of fractal behavior.

1. ISI histogram

For the discrete-channel Fitzhugh-Nagumo models,
Markov- and fractal-channel simulations exhibit substa
tially different interspike-interval distributions from eac
other and from the representative neural recording, e
when normalized by their respective means~see Fig. 2!. The
Markov-channel simulations generate much narrower
more repeatable distributions than their fractal-channel co
terparts. Evidently, fractal ion-channel behavior in
Fitzhugh-Nagumo model leads to long-term fluctuatio
which do not average out over the course of an intersp
interval, and which lead to a broadening of the interval d
tribution. The neural recording yields an ISI histogram
sembling that of the fractal-channel Fitzhugh-Nagum
-
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model, although slightly narrower. The excess of intersp
intervals near the smallest intervals shown in this neu
often occurs in auditory-nerve recordings@45#.

2. Rate function

Fractal ion channels in Fitzhugh-Nagumo simulatio
yield firing rate estimates which exhibit fluctuations ov
long time scales, several times the 5000 sec windows use
construct the rate estimates in this example~see Fig. 3!. Such
fluctuations appear not to be artifacts of nonstationarit
since no apparent trends can be observed in the data~after
the first 25% of the intervals have been removed, as spec
above!. The auditory-nerve recording exhibits similar, a
though somewhat smaller, fluctuations. The Markov-chan
simulations, in contrast, exhibit almost undetectable fluct
tions as is typical for nonfractal point processes avera
over 5000 intervals.

3. Allan factor

Simulations employing Markov ion channels yield Alla
factor plots which decrease to small values for larger cou
ing times, indicating that the firing is a comparably regu

FIG. 2. Doubly logarithmic plots of the interspike-interval~ISI!

histogrampT̂(t) vs normalized interspike intervalt, for Fitzhugh-
Nagumo simulations and the auditory-nerve recording. Solid li
indicate histograms constructed from fractal-channel simulati
~labeled ‘‘F1’’ and ‘‘F2’’ for runs 1 and 2, respectively!; dotted
curves derive from Markov-channel simulations~labeled ‘‘M1’’
and ‘‘M2’’ for runs 1 and 2, respectively!; and the dashed curve i
from the auditory-nerve data~labeled ‘‘D’’ !. As with the mean
interspike intervals, the forms of the ISI histogram plots for t
fractal-channel simulations differ from each other, and dif
greatly from those of the Markov-channel simulations. T
Markov-channel simulations yield ISI histogram plots in clo
agreement with each other. The ISI histogram of the neural rec
ing resembles that of the fractal-channel Fitzhugh-Nagumo mo
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FIG. 3. Doubly linear plots of estimates of the normalized r

l n̂ vs window numbern, for Fitzhugh-Nagumo simulations and th
auditory-nerve recording. Rates are calculated over a counting
dow of 5000 normalized time units. Solid lines indicate rate fun
tions constructed from fractal-channel simulations~labeled ‘‘F1’’
and ‘‘F2’’ for runs 1 and 2, respectively!; dotted curves derive from
Markov-channel simulations~labeled ‘‘M1’’ and ‘‘M2’’ for runs 1
and 2, respectively!; and the dashed curve is from the auditor
nerve data~labeled ‘‘D’’ !. All rate functions have unity means~by
construction! but are vertically displaced for display purposes; t
vertical extent of the plot corresponds to a rate difference of
The rate functions for the fractal-channel simulations and audito
nerve recording exhibit significant fluctuations~upper three curves!;
the Markov-channel simulations, in contrast, appear almost
fectly flat at these window sizes~lower two curves!.

FIG. 4. Doubly logarithmic plots of estimates of the Allan fact

Â (T) vs counting timeT, for Fitzhugh-Nagumo simulations an
the auditory-nerve recording. Solid lines indicate estimated Al
factors constructed from fractal-channel simulations~labeled ‘‘F1’’
and ‘‘F2’’ for runs 1 and 2, respectively!; dotted curves derive from
Markov-channel simulations~labeled ‘‘M1’’ and ‘‘M2’’ for runs 1
and 2, respectively!; and the dashed curve is from the auditor
nerve data~labeled ‘‘D’’ !. Markov-channel simulations yield plot
which decrease well below unity, indicating a firing pattern whi
is quite regular. Allan factor plots of fractal-channel simulatio
exhibit a power-law increase with counting time, indicative of fra
tal firing behavior. Estimated slopes are 0.68 and 0.69 for run
and 2, respectively. The auditory-nerve recording yields similar
havior, with an estimated slope of 0.71.
process~see Fig. 4!. This is consistent with the narrow IS
histogram shown in Fig. 2 and the absence of any fractal-
behavior. Introducing fractal ion channels, on the other ha
results in Allan factor plots which increase as power-la
functions of the counting time~straight lines on a doubly
logarithmic plot!, with an estimated slope of 0.6960.005
@39#. The auditory-nerve recording also exhibits a power-l
form, with an estimated slope of 0.71, but with a smal
magnitude at larger counting times consistent with
smaller fluctuations in the rate function shown in Fig. 3. Th
is a hallmark of fractal-rate firing activity.

4. Periodogram

The periodogram yields results in substantial accord w
those of the Allan factor~see Fig. 5!. For the Markov-
channel simulations, the resulting periodograms remain
low unity for smaller frequencies, again consistent with
orderly sequence of firings. For the fractal-channel simu
tions, the periodograms decrease as power-law function
frequency, with estimated slopes of 0.63 and 0.64 for run
and 2, respectively; the auditory-nerve recording yields
estimated slope of 0.54@39#. This measure also reveals fra
tal activity of somewhat reduced strength compared to
simulations, in accord with Figs. 3 and 4. Power-law exp
nents computed from the periodogram exhibit bias and o
more variance than those from the Allan factor, so the
exponent values are in reasonable agreement for the num
of spikes available@39#.

5. Fitzhugh-Nagumo summary

Modifying the Fitzhugh-Nagumo equations to includ
Markov ~random! channels indeed introduces randomness

n-
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-

r-

n

-
1
-

FIG. 5. Doubly logarithmic plots of the periodogramŜ ( f ), an
estimate of the power spectral density, vs frequencyf, for Fitzhugh-
Nagumo simulations and the auditory-nerve recording. Solid li
indicate periodograms constructed from fractal-channel simulat
~labeled ‘‘F1’’ and ‘‘F2’’ for runs 1 and 2, respectively!; dotted
curves derive from Markov-channel simulations~labeled ‘‘M1’’
and ‘‘M2’’ for runs 1 and 2, respectively!; and the dashed curve i
from the auditory-nerve data~labeled ‘‘D’’ !. Markov-channel simu-
lations yield periodograms which remain at small values, indicat
a firing pattern which is quite regular. Periodograms of fract
channel simulations and of the auditory neuron data, on the o
hand, exhibit a power-law decrease with frequency, indicative
fractal firing behavior. Estimated slopes are 0.63 and 0.64 for r
1 and 2, respectively, for the fractal-channel simulations, and 0
for the auditory-nerve recording.
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TABLE II. Statistics for Markov- and fractal-channel Hodgkin-Huxley simulations with different in
currents, and for the auditory-nerve recording. As intended, both simulations labeled ‘‘Run 1’’ have
interspike intervals in rough agreement, as do those labeled ‘‘Run 2.’’

Markov Fractal Auditory
Run 1 Run 2 Run 1 Run 2 Neuron

Input current (mA/cm2) 24 0 40 80
Duration ~sec! 14502.8 2999.97 12280.8 2999.99 1799.18
Number of spikes 87905 117027 103873 100559 127500
Mean interspike interval~sec! 0.164983 0.0256348 0.118229 0.0298331 0.014111
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the subsequent firing pattern. Being Markov, the chann
have only short-term memory, so that the sequence of fi
events behaves as a renewal point process. Employing c
nels which have fractal open- and closed-time distributio
however, leads to dramatically different behavior. T
memory thus introduced in the channel states increases
average interspike interval, since a much longer time is
quired for the state to change and permit a firing event. T
channel memory also leads to a broader interspike-inte
distribution ~even after normalization!, since the channe
states will not average out during the course of a single
terval. Finally, the resulting firing process has a fractal ra
as evidenced by both second-order statistical measures
ployed ~Allan factor and periodogram!. Thus, for the
Fitzhugh-Nagumo model with individual ion channels, fra
tal channel behavior indeed generates fractal firing behav
Such behavior also resembles natural fractal activity occ
ring in the representative biological neuron shown, althou
the simulations exhibit a stronger fractal component than
of the biological data. Perhaps some nonfractal compon
such as Markov behavior, would prove useful in generat
results in close agreement with the biological data.

B. Hodgkin-Huxley

The mean interspike intervals of both the Markov- a
fractal-channel Hodgkin-Huxley simulations varied with t
input current, as expected~see Table II!. To facilitate com-
parisons among the different simulations, all were norm
ized by dividing the interspike intervals by their respecti
mean before subsequent data analysis, as was done fo
Fitzhugh-Nagumo simulations.

1. ISI histogram

In contrast to the results for the Fitzhugh-Nagumo mod
for the discrete-channel Hodgkin-Huxley models t
Markov- and fractal-channel simulations exhibit interspik
interval distributions which resemble each other and tha
the auditory neuron; both the means and the overall sha
are similar~see Fig. 6; auditory-nerve data are replotted fro
Fig. 2 for comparison!. For the more negative input current
the results of the Markov- and fractal-channel simulatio
follow essentially the same form. Run 2, with a higher ra
does show some broadening of the interval distribution
the fractal-channel case. This likely stems from long-te
fluctuations which do not average out over the course o
interspike interval, as also observed in the Fitzhugh-Nagu
ls
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models. For the Hodgkin-Huxley model, then, the addition
fractal ion-channel behavior also changes the interval dis
bution, but not substantially. As previously mentione
auditory-nerve recordings often exhibit an excess of int
spike intervals near the smallest intervals@45#.

2. Rate function

As with the Fitzhugh-Nagumo model, fractal ion channe
in Hodgkin-Huxley simulations yield firing rate estimate
which exhibit fluctuations over long time scales, seve
times the 2500 sec windows used to construct the rate
mates in this example~see Fig. 7!. Again, such fluctuations
appear not to be artifacts of nonstationarities, since no ap
ent trends can be observed in the data. These rate estim
also resemble that of the auditory-nerve recording, replo
from Fig. 3. The Markov-channel simulations, in contra
exhibit much smaller fluctuations as is typical for nonfrac
point processes averaged over 2500 intervals. In addit
simulations that are run at lower currents~run 1! show some-
what larger fluctuations than those at higher currents~run 2!,
as expected.

FIG. 6. Semilogarithmic plots of the interspike-interval~ISI!

histogram p̂ (t) vs normalized interspike intervalt, for Hodgkin-
Huxley simulations and the auditory-nerve recording. Solid lin
indicate histograms constructed from fractal-channel simulati
~labeled ‘‘F1’’ and ‘‘F2’’ for runs 1 and 2, respectively!; dotted
curves derive from Markov-channel simulations~labeled ‘‘M1’’
and ‘‘M2’’ for runs 1 and 2, respectively!; and the dashed curve i
from the auditory-nerve data~labeled ‘‘D’’ !. All five plots agree in
overall shape and mean. For run 1, the results of the Markov-
fractal-channel simulations follow essentially the same form, wh
the Markov-channel simulation yields a slightly more peaked his
gram than the fractal-channel version for run 2.
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3. Allan factor

Simulations employing Markov ion channels yield Alla
factor plots which decrease for larger counting times, in
cating that the firing is a comparably regular process~see
Fig. 8!. Introducing fractal ion channels, on the other han
results in Allan factor plots which increase as power-l
function of the counting time~straight lines on a doubly
logarithmic plot!, with estimated slopes of 0.82 and 0.68 f
runs 1 and 2, respectively@39#. These curves resemble th
Allan factor of the auditory-nerve recording, replotted fro
Fig. 4, which has an estimated slope of 0.73. Thus
Hodgkin-Huxley simulations with fractal channels exhib
fractal-rate firing activity as do the corresponding Fitzhug
Nagumo simulations.

4. Periodogram

As with the Fitzhugh-Nagumo simulations, the pe
odogram~see Fig. 9! yields results in substantial accord wi
those of the Allan factor. For the Markov-channel simu
tions, the resulting periodograms remain below unity
smaller frequencies, again consistent with an orderly
quence of firings. For the fractal-channel simulations,
periodograms decrease as power-law functions of freque
with estimated slopes of 0.47 and 0.49 for runs 1 and
respectively; the auditory-nerve recording yields an e
mated slope of 0.54@39#. As with the Fitzhugh-Nagumo
simulations, these values differ from those obtained from

FIG. 7. Doubly linear plots of estimates of the normalized r

l n̂ vs window numbern, for Hodgkin-Huxley simulations and the
auditory-nerve recording. Rates are calculated over a counting
dow of 2500 normalized time units. Solid lines indicate rate fun
tions constructed from fractal-channel simulations~labeled ‘‘F1’’
and ‘‘F2’’ for runs 1 and 2, respectively!; dotted curves derive from
Markov-channel simulations~labeled ‘‘M1’’ and ‘‘M2’’ for runs 1
and 2, respectively!; and the dashed curve is from the auditor
nerve data~labeled ‘‘D’’ !. All rate functions have unity means~by
construction! but are vertically displaced for display purposes; t
vertical extent of the plot corresponds to a rate difference of
The rate functions for the fractal-channel simulations and audi
nerve recording exhibit significant fluctuations~upper three curves!;
the Markov-channel simulations, in contrast, appear much more
at these window sizes~lower two curves!. For both types of chan-
nels, run 1 exhibits somewhat more fluctuations than run 2.
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FIG. 8. Doubly logarithmic plots of estimates of the Allan fact

Â (T) vs counting timeT, for Hodgkin-Huxley simulations and
the auditory-nerve recording. Solid lines indicate estimated Al
factors constructed from fractal-channel simulations~labeled ‘‘F1’’
and ‘‘F2’’ for runs 1 and 2, respectively!; dotted curves derive from
Markov-channel simulations~labeled ‘‘M1’’ and ‘‘M2’’ for runs 1
and 2, respectively!; and the dashed curve is from the auditor
nerve data~labeled ‘‘D’’ !. Markov-channel simulations yield plot
which decrease below unity, indicating a firing pattern which
fairly regular. Allan factor plots of fractal-channel simulations, o
the other hand, exhibit a power-law increase with counting tim
indicative of fractal firing behavior. Estimated slopes are 0.82 a
0.68 for runs 1 and 2, respectively. The auditory-nerve record
yields similar behavior, with an estimated slope of 0.71.

FIG. 9. Doubly logarithmic plots of the periodogramŜ ( f ), an
estimate of the power spectral density, vs frequencyf, for Hodgkin-
Huxley simulations and the auditory-nerve recording. Solid lin
indicate periodograms constructed from fractal-channel simulat
~labeled ‘‘F1’’ and ‘‘F2’’ for runs 1 and 2, respectively!; dotted
curves derive from Markov-channel simulations~labeled ‘‘M1’’
and ‘‘M2’’ for runs 1 and 2, respectively!; and the dashed curve i
from the auditory-nerve data~labeled ‘‘D’’ !. Markov-channel simu-
lations yield periodograms which remain at small values, indicat
a firing pattern which is quite regular. Periodograms of fract
channel simulations, on the other hand, exhibit a power-law
crease with frequency, indicative of fractal firing behavior. Es
mated slopes are 0.47 and 0.49 for runs 1 and 2, respectively
the fractal-channel simulations, and 0.54 for the auditory-nerve
cording.
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Allan factor, likely due to the inferior performance o
periodogram-based exponent estimates@39#.

5. Hodgkin-Huxley summary

As with the Fitzhugh-Nagumo simulations, modifying th
Hodgkin-Huxley equations to include channels with frac
behavior in time changes the long-term properties of the
sulting simulated spike trains. A fractal rate again results
evidenced by both second-order statistical measures
ployed ~Allan factor and periodogram!. In contrast to the
Fitzhugh-Nagumo model, however, the normalized int
spike interval histograms do not differ significantly fro
their Markov-channel counterparts, with the average in
spike intervals set to the same values by adjusting the in
current. Just as for the Fitzhugh-Nagumo model, for
Hodgkin-Huxley model fractal channel behavior indeed g
erates fractal firing behavior. In addition, the results m
closely resemble those of neuronal data.

IV. DISCUSSION

In this paper we have studied the effects of impart
fractal behavior to the ion channels using two different me
ods: a direct modification of the dwell time distribution fo
the Fitzhugh-Nagumo model, and a self-similar quasifrac
chain of states for the Hodgkin-Huxley model. In both cas
the result is the same: fractal ion channel behavior lead
fractal firing behavior. This causal relationship is emph
sized by the fact that removal of fractal correlations in i
channel statistics obliterates fractal firing patterns. It is i
portant to note that this effect does not depend on whe
the fractal behavior in ion channels arises from intrin
properties of the ion channels themselves, or by ot
mechanisms.

A. The relationship between ion channel and spiking
characteristics proves difficult to quantify

Although we provide strong evidence here that fractal
quasifractal dwell times for voltage-gated ion channels
generate fractal spiking patterns, two factors make it v
difficult, if not impossible, to make quantitative inferenc
about the characteristics of ion channels~fractal or other-
wise! from spike train data, and vice versa. First, both t
Fitzhugh-Nagumo and Hodgkin-Huxley models gener
spikes that are stereotypical in form. Detailed informati
about the state of the model over time scales much sho
than the time between spikes is inevitably lost in the proc
of spike generation. This loss of information renders prec
estimation of the parameters of the ion channels from
spike train alone impossible. Other forms of fractal ion cha
nels, or even other models, therefore might be able to g
erate a sequence of spikes with a fractal rate. Second, w
the fractal Fitzhugh-Nagumo and Hodgkin-Huxley mod
employed in this paper have well-defined fractal expone
in the steady state, channel parameters change with m
brane voltage. During the time between one spike and
next the membrane voltage assumes a wide range of va
which in turn generates a time-varying power-law expon
for the ion channels. The effects of voltage-dependent
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channel properties have been characterized for simple c
@46–48#, but not for the case we study here, which includ
power-law exponents and the additional complexity th
channel states perturb the input voltage signal. The resul
interaction produces a spike train that has a fractal rate,
the associated power-law exponentb will depend on the de-
tails of the ion channel behavior as a function of voltage,
time since the channel last changed state, and the detai
how ion channel state affects voltage.

B. Modeling fractal ion channels proves challenging

The modeling method taken here, which depends
closed-time probability density functions that decay as pow
laws, presents difficulties. Theoretical difficulties arise fro
the fact that a true power-law probability density functio
would have a divergent integral. We solved this problem
employing an explicit cutoff@ t0 in Eq. ~4!# for the fractal
Fitzhugh-Nagumo simulations, and a self-similar Mark
chain for the fractal Hodgkin-Huxley simulations. Althoug
the two methodologies differ, over the designed range
time scales they yield similar smooth fractal behavior.

Practical difficulties in running simulations arise from th
basic nature of fractal ion channels, which necessarily
plies that a significant fraction of the channels must rem
unchanged in their conductance state over long time sca
Nevertheless, for the model to successfully fire, a signific
number of ion channels must indeed change state, so tha
simulation voltage~or fast variable! can reach threshold
These two requirements — that significant numbers of ch
nels not change state~to preserve memory!, and that signifi-
cant numbers do change~to enable firing! — place severe
constraints on our ability to simulate spike trains of adequ
length in a reasonable amount of time. For example, in
treatment of the Hodgkin-Huxley model, in order to ha
‘‘settling’’ times of practical duration, we were forced t
limit the number of states of our modified K1 channel to 11
— a number that was small enough to perturb upward
steady-state probability of opening.~Recall that our pseudo
fractal formulation only matched the steady-state probabi
of opening in the limit of an infinite number of states.! This
perturbation, in turn, reduced the spontaneous firing rate
the model, making it more time-consuming to collect t
large number of interspike intervals needed for our analys
This issue would be even more problematic with frac
modifications of typical mammalian K1 channels, which are
more likely to be closed at rest than Hodgkin-Huxley cha
nels @49# and thus more perturbed by the finite-state frac
channel approximation. This difficulty could perhaps
overcome by including two populations of K1 channels in
the model: a low-threshold population with fractal charact
istics to give long-term memory, and high-threshold popu
tion with Markov characteristics to repolarize action pote
tials.
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