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Fractal ion-channel behavior generates fractal firing patterns in neuronal models
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Fractal behavior has been observed in both ion-channel gating and neuronal spiking patterns, but a causal
relationship between the two has not yet been established. Here, we examine the effects of fractal ion-channel
activity in modifications of two classical neuronal models: Fitzhugh-Nag@RtdN) and Hodgkin-Huxley
(HH). For the modified FHN model, the recovery variable was represented as a population of ion channels with
either fractal or Markov gating characteristics. Fractal gating characteristics changed the form of the interspike
interval histogram(ISIH) and also induced fractal behavior in the firing rate. For the HH model, the K
conductance was represented as a collection of ion channels with either quasifractal or Markov gating prop-
erties. Fractal gating induced fractal-rate behavior without changing the ISIH. We conclude that fractal ion-
channel gating activity is sufficient to account for fractal-rate firing beha{/&1063-651X99)11205-4

PACS numbs(s): 87.17.Nn, 87.16.Uv, 87.17.Aa, 02.50.Ey

I. INTRODUCTION memory can take the form of kinetic rate constants that are
not constant but rather arfeactal [14,15, in that the rate
A pervasive and important problem in neuroscience is taconstants are proportional o ¢, wheret is the time the
understand how the structure and function at one level othannel had already spent in a given state @isda constant
organization is manifest in the structure and function af15-18§.
higher and larger levels of organization. For example, at the At the systems level, analysis of spike trains from a vari-
molecular level, the voltage and current across the cell memety of neuronal preparation$9—25 has shown several hall-
brane is controlled by ion channel proteins. At a higher leveimarks of fractal behavior in interspike interval statistics.
of organization, information of relevance is represented inThese effects include a slow decrease of fluctuations of firing
the rate or timing of action potentials. In this paper, we useate about the mean as the rate is computed over longer time
numerical simulations to explore the influence of the kineticgperiods; a periodogram that decreases in a power-law fashion
of ion channels on the statistical properties of the durationsvith frequency; and an Allan factor that increases as a
of times between action potentials. We show that differenpower-law function of the counting timi26]. We illustrate
models of ion channel kinetics produce fundamentally differ-this behavior by including results recorded from a represen-
ent interspike interval statistics. tative auditory-nerve fiber in cat, stimulated by a pure tone at
In classical models of voltage-gated conductances and urthe characteristitmost sensitivefrequency, which was 10.2
derlying ion channel§l-3], it is assumed that the ion chan- kHz for this particular neurofi27]. Statistics obtained from
nels switch between a small number of states with kinetidhis recording are included in the plots of Fitzhugh-Nagumo
rate constants that depend only on the present state of tld Hodgkin-Huxley simulation results that follow.
channel. In this Markov process formulation, the time the What is the origin of the fractal characteristics found in
channel has already spent in that state and the history of tHee timing of action potentials recorded from nerves? While
previous states of the channel are irrelevant. The physica number of different causes have been propd2&i29,
interpretation of this model is that the physical state of thefractal fluctuations in the membrane voltal@®,31 appear
ion channel at one time does not depend on its physical state provide the best explanation. It seems reasonable to ask if
at an earlier time. the fractal kinetics of the ion channels are responsible for the
That such a complex protein, consisting of thousands ofractal fluctuations in the membrane voltage, and therefore
amino acids that are acted upon by an array of fofeeg., for the fractal characteristics of the action potential timing. In
random thermal forces, atomic bonds, and electrostatic anttis paper we determine how the kinetics of ion channels
hydrophobic forces should exhibit memoryless behavior is influence the timing of the action potentials in the classic
counterintuitive, and in fact a large body of experimentalFitzhugh-Nagumo and Hodgkin-Huxley neuronal models.
[4-10Q and computationdl11,12 evidence indicates that at We find that Markov and fractal ion channel kinetics produce
least some ion channels and other proteins exhibit significardifferent statistical properties in the timing of the action po-
memory effects[13]. In the case of ion channels, this tentials. Our results suggest that the fractal properties found
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for the timing of the action potentials may arise from the have fired each time(t) first exceeds 0.8, following at least

fractal kinetics of ion channels. one occurrence of (t)<0.2 since the last firing. One hun-
dred simulations were run for 210° seconds each, with
II. METHODS different random seeds. The results were quite similar among

_ . _ the trials; results from two representative simulations are

A. Markov Fitzhugh-Nagumo simulation shown in the following.
The Fitzhugh-Nagumo equations provide a symbolic

model of neuronal activity, in which all dynamical variables B. Fractal Fitzhugh-Nagumo simulation
of the neuron are reduced to two quantities: the “voltage”
variablev (t), which corresponds to the membrane voltage,
and the “recovery” variablen(t), which corresponds to re-
fractory properties of the neuron. The equations are

For the Markov ion channels employed in the above
simulation, the channel behavior is memoryless, and there-
fore does not depend on past activity. This permits the use of
a single numbenW(t), to describe the states of all the chan-

rdv(t)/dt=v()[v(t)—al[1—v(t)]+s(t)—w(t), nels. Markov behavior also implies exponentially distributed
(1) times between switching evengiven a fixed voltage
dw(t)/dt=0(t)—w(t) lon channels with fractal behavior, in contrast, have

memory. Thus the time each channel has spent in its present

where r anda are parameters of the system, as{t)) is an  State influences its behavior, and the probability density
input signal. For these simulations, we choase0.005 to  function p(7) of the times between switching events no
keep the time scales af(t) andw(t) well separated, and longer follows an exponential form. Rather, the interevent
s(t)=a=1/2 (a constant for simplicity. None of these times often decay as a power-law functift6—17,26,19—
choices qualitatively affects the results we present for this 021,28,29,22-25,32,18For analytical conveniende3], we
the fractal Fitzhugh-Nagumo simulations, nor does thechoose the functional form
choice ofv, below. B

To explore the effects of finite-size ion channels on the p(r)=arg(r+ 7o) " @
Fitzhugh-Nagumo model, we recas{t) as the proportion
of channels that are open. For a finite number of chargls
then W(t)=Nw(t) will be open, andN—W(t) will be
closed. This permits the representation of Edp) by a two-
state Markov process

over non-negativer, with 7, and a positive parameters;
without loss of generality we sefy=1. Similar power-law
forms forp(7) yield qualitatively similar results. Setting the
mean dwell times in the two states for this probability den-
sity function equal to those for the Markov case yields

v(1) 1+v foropening
closed = open, (2) a= _ 5)
1—v(t) 2—v forclosing.

Simulation becomes much more complicatadd computa-
tionally intensive than for the Markov case, since for each
channel the remaining times to the next switching event must
dW(t)/dt  v(t)[N=W(t)]—[1—v(t)]W(t) be updated every time the voltage changes. Ten simulations
= N = N were run for 18 seconds each, using different random seeds.
The results were qualitatively similar among the trials; re-
=v(t)—w(t) ®) sults from two representative simulations are shown in the
following. Fractal channels have memory and hence respond
as defined in Eq(1b). Since each channel is interchangeablemore slowly than Markov channels. This greatly reduces the
with the next, and represented by a memoryless process, wwverall firing rate, requiring a much longer simulation time
need only keep track of theumberof channels in the two for the same number of spikes.
states, greatly facilitating the simulation. To ensure that the
transition rates(t) and 1-v(t) are non-negative, we re- C. Markov Hodgkin-Huxley simulation
Strﬁlg(gn;[ﬁlggolg }2 3;;32?;(1@; gtt))lljv%/s At each iteration an The Hodgkin-HuxIey equations describe neurongl activity
exponentially distributed random variahLewith a mean de- phenomenologically as the prod_uct of a set .Of nonhngar con-
pending orW(t) andu (t) is generated, which represents the ductances. The classical equations for an isopotential patch

time to the next channel transition. The rate of changeOf membrane are

wherev(t) and 1-v(t) become the opening and closing
rates, respectively, since

dw(t)/dt

dov (t)/dt derives from Eq(1a); over the timetg the resulting T 3k

increment ofv(t) would be tydv(t)/dt. If this increment C dv/dt=~[gnMh(v = vna)

exceeds a threshold, (=0.02), then the voltage is incre- +gun*(v—v)+g (v—ov)—1],
mented by , , and the time incremented lay, /[ dv (t)/dt];

no channel states change. Otherwise, the voltage is incre- dnvdt=a,(1—m)— B,m, (6)
mented by tidv(t)/dt, and a random channel state is

changed[with the probabilities of the two possible transi- dh/dt=a,(1—h)—Buh,

tions also depending appropriately 84(t) andv(t)]. The
cycle then repeats. We define the Fitzhugh-Nagumo model to dn/dt=a,(1—n)—B,n,
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whereC is membrane capacitance per unit areas mem-  respects, however. Their equations treated the membrane
brane potential;gy, and gx are maximal values of the variables ascontinuousand deterministic the variables
sodium- and potassium-sensitive conductances per un@@n take any of an infinite number of possible values along
area, respectivelym, h, andn are the sodium-conductance a continuum, and display no randomness whatsoever. In
activation function, sodium-conductance inactivation func-our models, we follow the behavior of individual channels,
tion, and potassium-conductance activation functions, rewhich are discrete and stochastic each channel can take
spectively; vna, vk, and v, are the reversal potentials only one of two possible values, and the channels
associated with sodium, potassium, and leakage conduchange state in a random manner. The conductances in
tances, respectivelyg, is the Ohmic leakage conductance the channel-based Hodgkin-Huxley models we employ are
per unit area; antl represents current density from an exter-thus produced by the summed actions of voltage-gated
nal source(e.g., an intracellular electrofe While the  and ion-selective channels, each of which is a stochastic
Hodgkin-Huxley equations are less compact than thgjevice. The voltage- and time-dependent sodium conduc-

Fitzhugh-Nagumo equations, condug:tance'-based 'equatloggnce 6Nam3h) can be represented as the product of the
have the great advantage that the variables in question can €ductance of a sinale open Nahannel tna) and the
measured experimentally under a voltage clamp. In this gie op . N

number of open N& channels per unit area. In our channel-

work, we used the classical values of Hodgkin-Huxley pa- L f th ki | . h
rameters at 6 °G1,34), translated into the modern voltage °2Sed description of the Hodgkin-Huxley equation, Eac

convention. Na* channel is a Markov process with the following rate
Our method differs from that of Ref1] in two important ~ schemd2]:

3an 2an, am
mghy = m;hy = m,hy = msh,
Bm 2Bm 3Bm
anl | Bh anl | Bn anl | Bn anl | Bn
3am 2o am
mghg = m; hg = m,hg = msh. @)
Bm 2Bm 3Bm

In this scheme only the stamm;h; is open. Similarly, the from the expected values at rest. We update this distribution

potassium Conductancal(n‘l) is the product Of»yK and the by drawing the time of next state transition from a joint
mean number of open Kchannels per unit area. Potassium probability density function, and determine the specific tran-
channels have the rate schef2é sition that occurred from a conditional distributip84]. We
then update the value &f by integrating the current-balance
equation and begin the process anew. In this work, we as-
sume yna= k=20 pS and channel densities of 60 (Na
and 18 (K") channelskm?, giving the same maximal con-
Bn 2Bn 36n 4Bn ductances as in the deterministic modig#]. We model a
membrane patch of area 10m?. The number of channels
where the lone open state is stakg For this rate scheme, in the modeled patch (600 Nachannels, 180 K chan-
standard Markov analysis yields the average open and closefélg is small enough for channel noise to generate sponta-

4a, 3a, 2ay ay,
nn = N = N = ng = ng (8

times for the K* channels: neous activity[36,34]. We report detailed statistics on two
runs: one with zero current input, and one with
E[Tol=1/(48,), —4 uAlcm?, yielding different average interspike intervals,

as expected. Simulations were run for 117 027 and 87 905
spike events, respectively.

9
D. Fractal Hodgkin-Huxley simulation

In our stochastic Hodgkin-Huxley algorithm, which has As in the case for the Fitzhugh-Nagumo model, fractal
been described in detail previoudl$5,36,34, we take ad- behavior was imparted to the “recovery” variable, in this
vantage of the memoryless property of Markov processes byase the K conductance. To this end, we replaced the five-
tracking only the number of Naand K" channels in each state nonfractal model shown in E@) with an eleven-state
possible state. We establish an initial distribution of statesate scheme of the form
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ot 1K a1k ay 1K ap/k an
I S R B (10
B* Ik BLIK BEIK Bhlk Ba

where staten}, is the only open state. Although E¢L0)  fering sequences of nerve firings. A stochastic point process
defines a Markov process, the dwell-time distribution in the[38] is a mathematical construction which represents these
closed state will closely follow a power-law distribution of firing events as random points on a line.

the kind in Eq. (4) for times t in the range .} <t Figure 1 shows several representations that are useful in
<k% (ke + %), for k not too large, due to the scaling be- the analysis of point processes. Figui@ ldemonstrates a
havior of this equatioi37]. Each of the stages differs from Sample function of a point process as a series of impulses
the next only by a scaling factok; such self-similarity im- ~ 0ccurring at specified times,. Since these impulses have
parts fractal behavior onto this simulated ion channelVanishing width, they are most rigorously defined as the de-
Single-channel data from K channels in cultured mouse fivative of a well-defined counting procebKt) [Fig. 1(b)],
hippocampal neurons yield=4 [17]; for 11 states, this @ monotomcal_ly increasing function of t_hat augments by
yields a closed-time distribution with smooth power-law be-Unity when a firing event occurs. Accordingly, the point pro-
havior over roughly six decades. Closed-time distributionsc€Ss itself is properly written adN(t), since it is only

for this model, while analytically tractable, prove quite com- Strictly defined within the context of an integral.

plicated. For convenience, we treat instead the case of an The point process is completely described by the set of
infinite chain of closed states, with the left-hand side of Eqfiring event timesft,}, or equivalently by the set of inter-
(10) extending without limit. With the help of renormaliza- €vent intervals{z,}. However, the sequence of counts de-

tion theory we obtain picted in Fig. 1c) also contains much information about the
process. Here the time axis is divided into equally spaced
E[Tol=1/8}, contiguous counting windows of duratidnsec to produce a
11

E[Tc]=1a* — B*). @ POINT PROCESS aN(t)
Setting the respective forms fd&{ To] and E[T¢] in Egs. 1; L 1 L L TIME ¢
(9) and(11) equal yields

*_ COUNTING PROCESS N(t)
IBn - 4Bn ' (b) ,_,—
12
. AlantBn)Bn TIME ¢
an_(a +pB )4—a4.
n n n
SEQUENCE OF COUNTS {Zk}
While this choice ofa; and B} vyields identical average P S A S
dwell times to that of the classicdhonfractal Hodgkin- (c) ‘ ‘ ‘ ‘ ‘ ‘ ‘
Huxley model in the steady state, the existence of long T = TTzr ™ T5TT > TIME ¢

memory in the closed-time distribution leads to changed
properties of the Hodgkin-Huxley system. In particular, the
fractal Hodgkin-Huxley model thus generated exhibited a
significantly lower average firing rate than the Markov
Hodgkin-Huxley system. To facilitate comparison with the
Markov simulations, we adjusted the input current to match
the average interspike intervals obtained in that case; the
resulting values were 40 and 8@A/cm?, respectively, for FIG. 1. Representations of a point proce@. The events are

the runs which matched the two nonfractal Hodgkin-Huxleyrepresented by a sequence of idealized impulses, occurring at times
runs listed earlier in average rate. These simulations were ruf) | and forming a stochastic point procesi(t). For convenience

l count number of events
(some information lost)

(d)

OO—‘N(A)

| l COUNT INDEX k&

NO. OF EVENTS Z, ©

for 103 873 and 100 559 spike events, respectively. of analysis, several alternative representations of the point process
are used(b) The counting procesN(t). At every spike occurrence
E. Data analysis the value ofN(t) augments by unity(c) The sequence of counts

. . . . {Z,}, a discrete-time non-negative integer-valued stochastic pro-
~ The action potentials by which neurons transmit informa-cess is formed from the point process by recording the number of
tion over macroscopic distances are comprised of a series @fikes in successive counting windows of length(d) The se-
brief electrical spikes, the amplitude and energy of which argyuence of count§z,} can be conveniently described in terms of a
widely assumed not to be significant variables. Rather, it igount indexk. Information is lost because the precise times of spike
generally accepted that the times of occurrences of the spikegcurrences within each counting window are eliminated in this
carry the information. Randomness is involved, since enrepresentation. Correlations in the discrete-time sequgfgecan
sembles of identical single-neuron experiments lead to difbe readily interpreted in terms of real time.



5974 LOWEN, LIEBOVITCH, AND WHITE PRE 59

sequence of count§Z,}, whereZ,=N[(k+1)T]—N[kT] 3. Periodogram

denotes the number of firing events in tkéh window. As The periodogram is an estimator of the power spectral
illustrated in Fig. 1d), this sequence forms a discrete-time density S(f). Much as for continuous-time processes, the

random process of non-negative integers. In general, inforsq,yer spectral density computed for the neural spike events

mation is lost in forming the sequence of counts, althougheyeals how power is concentrated in various frequency
for a regular point process the amount lost can be madgangs. |n general, the power spectral density varies with fre-
arbitrarily small by reducing the size of the counting Wmdowquency, the sole exception being the homogeneous Poisson

T. An attractive feature of this representation is that it Pr€-process, for whictS(f) = for all frequencied. The homo-

serves the correspondence between the discrete time axis é’éneous Poisson process corresponds to memoryless pro-
the counting procesZ,j and the absolute “real” time axis cegses such as the registration of radioactive decay events,
of the underlying point process. Within the process of counts, 4 provides an important benchmark in point-process
{2}, the element&, andZ,. , refer to the number of counts  theory just as the Gaussian does in the theory of continuous
in windows separated by precisely{ 1)T sec, so that cor-  giachastic processes. Any deviation fromin the value of
relation in the procesfZ,} is readily associated with corre- gy therefore indicates that the point process in question is
lation in the underlying point procestN(t). _ _not homogeneous Poisson in nature. In the caseftdcal

The complete characterization of a stochastic process ifpte, the power spectral density decreases as a power-law
volyes a.d.escnptlon of all poss_lble joint probab|l!t|es of the fynction of frequency over a broad range of frequencies, so
various firing events occurring in the process. Different stay,at S(f)~f~bs for some power-law exponets.

tistics provide complementary views of the process; no \ye employ the periodogram of the sequence of counts
single statistic can describe in general a stochastic proce 9.}, rather than from the point process its¢#1]. This

completely. For example, statistics that describe the relativ,ehod introduces a bias at higher frequencies, since the fine
occurrences of the interspike intervassich as the interspike  time resolution information is lost as a result of the nonzero

interval histogram, see Sec. Il B Lannot distinguish be- jze of the count windows. However, the component of a
tween two point processes containing the same intervals byocess which imparts a fractal quality to its rate principally
in a different order. _ . involves lower frequencies where this bias is negligible, and
The point processes corresponding to neuronal firing palg s the difference between the two methods does not sig-
terns are not true fractals in time, since the associated gefysicantly affect our results. Since employing the sequence of
eralized dimensions are not fractiori@0,31,39. However, o nts permits the use of vastly more efficient fast Fourier

the rate of firing is indeed a fractal, and turns out {0 be {ransform methods, impossible for a periodogram based on
closely related to fractal Brownian motion. Thus neuronaly, point process itself, we employ this technique.

firing behavior is well described by fractal-rate stochastic
point processeg39], for which the Allan factorSec. Il E 3
and the periodogrartSec. Il E 4 exhibit scaling. Such scal- . . .
ing leads naturally to power-law behavi@9], so that scal- Anther measure of correlation over dlffer_ent time scales
ing of these statistics implies that the Fitzhugh-Nagumo ands provided by the Allan factor, a relative variance based on
Hodgkin-Huxley simulations are well modeled by a process? Particular wavelet transforf@2]. The Allan factorA(T) is
with a fractal rate, and therefore indeed have a fractal ratéhe Allan variance of the number of spikes in a specified

4, Allan factor

much as biological neurons do. counting timeT divided by twice the mean number of spikes
in that counting time. The Allan variance is defined in terms

1. ISI histogram of the variability of successive counfd43,44. In terms of

The interspike-intervallSI) histogram is simply the rela- Lheecosritltéencézk} Hlustrated in Fig. 1c), the Allan factor

tive frequency of interspike-interval occurrence in the data

set, ignoring all correlations among the intervals. The ISl )

histogram therefore cannot distinguish between processes A(T)= E[(Zk+1—207] (13)

with a fractal rate and those with a nonfractal rate. The only 2E[Z,]

type of point process which is uniquely specified by the ISI

histogram is the renewal point process family, in which thein general the Allan factor also varies as a function of its

interspike intervals are independent and all drawn from thexrgument, with the sole exception again being the homoge-

same distribution. neous Poisson process, for whidiiT)=1 for all counting
times T. For any point process, the Allan factor assumes a

2. Rate function value of unity for counting time¥ less than half the smallest

Perhaps the simplest measure of neuronal activity is th terspike interval. The Allan factor of a process with a frac-

estimate of the rate: the number of spikes registered per unt'fII rate mcrezses das a povx;er—lawt_fun(;_non of th? c%)_untmg
time [40]. In terms of the numbers of courifg introduced in Ime over a broad range of counting times, so tA4T)

L~ . . ~TPa for some power-law exponebt,, where 6<b,=<3.
Sec. Il E, the rate estimatg, of the kth window of duration The Allan factor and the power spectral density are re-

T is given beI:Zk/T. For a process with a fractal rate, the |ated by the integral equation
rate estimates exhibit fluctuations whose magnitiedg., the
standard deviationdecreases more slowly, as the counting 5
time used to compute the rate increases, than would be ex- A(T)=
pected for processes with nonfractal rates. T

jj S(f)sint(wft)f~2df. (14
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TABLE |. Statistics for Markov- and fractal-channel Fitzhugh-Nagumo simulations with different input
currents, and for the auditory-nerve recording.

Markov Fractal Auditory
Run 1 Run 2 Run 1 Run 2 Neuron
Duration (seg 219999 220000 86554700 80626300 1799.18
Number of spikes 294827 294884 166801 213696 127500
Mean interspike intervalseq 0.746198 0.746056 518.91 377.294 0.0141112

In particular, for processes with fractal rates for which themodel, although slightly narrower. The excess of interspike
power-law behavior of the Allan factor extends to arbitrarily intervals near the smallest intervals shown in this neuron
large frequencies, and for which<th,< 3, we have the the- often occurs in auditory-nerve recordingtb).

oretical resultb,=Dbg. In practice, the finite length of any

data set will introduce significant bias and variance into es- 2. Rate function
timates ofbs, and some variance into estimateshof, so Fractal ion channels in Fitzhugh-Nagumo simulations
that exact agreement will not be obtain9)]. yield firing rate estimates which exhibit fluctuations over
long time scales, several times the 5000 sec windows used to
. RESULTS construct the rate estimates in this examke Fig. 3. Such
fluctuations appear not to be artifacts of nonstationarities,
A. Fitzhugh-Nagumo since no apparent trends can be observed in the (@éter

Rate estimates of the raw simulation results for thethe first 25% of the intervals have been removed, as specified

fractal-channel Fitzhugh-Nagumo modebt shown exhib- ~ above. The auditory-nerve recording exhibits similar, al-
ited apparent nonstationarity at the beginning. This is likelythough somewhat smaller, fluctuations. The Markov-channel
due to memory of the initial condition stored in the states ofsimulations, in contrast, exhibit almost undetectable fluctua-
the channels, although equilibrium distributions were emdions as is typical for nonfractal point processes averaged
ployed in the initialization of the simulatiorisuggesting that over 5000 intervals.

this system typically does not remain near equilibriuffo

ensure stationarity, the first 25% of the spikes were dis- 3. Allan factor

carded. The Markov-channel Fitzhugh-Nagumo simulations  simulations employing Markov ion channels yield Allan
showed no such nonstationarity, and therefore no spikegctor plots which decrease to small values for larger count-

were discarded from these simulations. ing times, indicating that the firing is a comparably regular
The mean interspike intervals of the fractal-channel

Fitzhugh-Nagumo simulations differed significantly from
each other, and differed greatly from those of the Markov- I
channel Fitzhugh-Nagumo simulations, as shown in Table I. © 1E
To facilitate comparisons among the different simulations & ;
and the representative neural recording, all data sets were§ -
normalized by dividing the interspike intervals by their re- & 0.1
spective means before subsequent data analysis. The result® i
ing normalized results have their average interspike intervals &
all set to the same valuginity), but all other characteristics
of the spike trains remain unchanged by the normalization
procedure. In particular, this procedure is irrelevant to the
presence or absence of fractal behavior.

0.01 |

IST HISTOG

0.001

NORMALIZED ISI 7

1. ISI histogram

. . FIG. 2. Doubly logarithmic plots of the interspike-interésl
For the discrete-channel Fitzhugh-Nagumo models, th%'sto ramA(l; );ngrmlal' ;dpnters ke 'rllter arl)lforlF't ;f r:
Markov- and fractal-channel simulations exhibit substan-">odrampr7) v 1zed | pike Interva, tzhug

tially different interspike-interval distributions from each Nagumo simulations and the auditory-nerve recording. Solid lines
y P indicate histograms constructed from fractal-channel simulations

other and from the representative neural recording, eVeflabeled “F1” and “F2” for runs 1 and 2 respectively dotted

when normalized t?y the',r respective medsee Fig. 2 The éurves derive from Markov-channel simulatioiabeled “M1”
Markov-channel simulations generate much narrower and,q «ym2” for runs 1 and 2, respectivelyand the dashed curve is

more repeatable distributions than their fractal-channel courgom the auditory-nerve datédabeled “D”). As with the mean
terparts. Evidently, fractal ion-channel behavior in  ajnterspike intervals, the forms of the ISI histogram plots for the
Fitzhugh-Nagumo model leads to long-term fluctuationsfractal-channel simulations differ from each other, and differ
which do not average out over the course of an interspikgyreatly from those of the Markov-channel simulations. The
interval, and which lead to a broadening of the interval dis-Markov-channel simulations yield ISI histogram plots in close
tribution. The neural recording yields an ISI histogram re-agreement with each other. The ISI histogram of the neural record-
sembling that of the fractal-channel Fitzhugh-Nagumoing resembles that of the fractal-channel Fitzhugh-Nagumo model.
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FIG. 3. Doubly linear plots of estimates of the normalized rate FIG. 5. Doubly logarithmic plots of the periodograﬁ?(f), an

An vs window number_1, for Fitzhugh-Nagumo simulations an_d the_ estimate of the power spectral density, vs frequeéyr Fitzhugh-
auditory-nerve recording. Rates are calculated over a counting Winyagumo simulations and the auditory-nerve recording. Solid lines

dow of 5000 normalized time units. Solid lines indicate rate func-jngicate periodograms constructed from fractal-channel simulations
tions constructed from fractal-channel simulatidtebeled “F1"  (japeled “F1” and “F2” for runs 1 and 2, respectively dotted

and “F2" for runs 1 and 2, respectivelydotted curves derive from  ¢,es derive from Markov-channel simulatiofisbeled “M1”
Markov-channel simulationdabeled “M1" and “M2” forruns 1 anq “M2” for runs 1 and 2, respectivelyand the dashed curve is
and 2, respectively and the dashed curve is from the auditory- from the auditory-nerve databeled “D”). Markov-channel simu-
nerve datglabeled “D"). All rate functions have unity mearby |ations yield periodograms which remain at small values, indicating
construction but are vertically displaced for display purposes; the 5 firing pattern which is quite regular. Periodograms of fractal-
vertical extent of the plot corresponds to a rate difference of sixchannel simulations and of the auditory neuron data, on the other
The rate functions for the fractal-channel simulations and auditoryanqd. exhibit a power-law decrease with frequency, indicative of
nerve recording exhibit significant fluctuationgper three curves  fractal firing behavior. Estimated slopes are 0.63 and 0.64 for runs

the Markov-channeli simuIaFions, in contrast, appear almost pery gnq 2, respectively, for the fractal-channel simulations, and 0.54
fectly flat at these window sizgfower two curves for the auditory-nerve recording.

process(see Fig. 4. This is consistent with the narrow ISI
histogram shown in Fig. 2 and the absence of any fractal-rate
behavior. Introducing fractal ion channels, on the other hand,
results in Allan factor plots which increase as power-law
functions of the counting timéstraight lines on a doubly
logarithmic ploj, with an estimated slope of 0.69.005
[39]. The auditory-nerve recording also exhibits a power-law
form, with an estimated slope of 0.71, but with a smaller
magnitude at larger counting times consistent with the
smaller fluctuations in the rate function shown in Fig. 3. This
is a hallmark of fractal-rate firing activity.

102

ALLAN FACTOR A(T)

10°
4. Periodogram

The periodogram yields results in substantial accord with
those of the Allan factor(see Fig. 5 For the Markov-
102 L L L L channel simulations, the resulting periodograms remain be-

10° 107 low unity for smaller frequencies, again consistent with an

COUNTING TIME T (sec) orderly sequence of firings. For the fractal-channel simula-
N . tions, the periodograms decrease as power-law functions of
FIG. 4. Doubly logarithmic plots of estimates of the Allan factor frequency, with estimated slopes of 0.63 and 0.64 for runs 1

the audiory nerve fecording. Sold ines nicate esumated Alarf'd 2: fESpectively; the auditory-nerve recording yields an
factors constructed from fractal-channel simulatifiabeled “F1” estimated slope of 0.589]. This measure also reveals frac-

and “F2” for runs 1 and 2, respectivelydotted curves derive from te.ll aftlt\.”ty Of. Somewgat_trﬁ(:llzgcedsstregg;h Ff:ompalred o the
Markov-channel simulationdabeled “M1” and “M2” for runs 1 simulations, In accord wi IgS. 5 and 4. Fower-law expo-

and 2, respectively and the dashed curve is from the auditory- nents Computed from the periodogram exhibit bias and often
nerve datglabeled “D"). Markov-channel simulations yield plots more variance than _those from the Allan factor, so these
which decrease well below unity, indicating a firing pattern which €XPonent values are in reasonable agreement for the number
is quite regular. Allan factor plots of fractal-channel simulations Of Spikes availabl¢39].

exhibit a power-law increase with counting time, indicative of frac-
tal firing behavior. Estimated slopes are 0.68 and 0.69 for runs 1
and 2, respectively. The auditory-nerve recording yields similar be- Modifying the Fitzhugh-Nagumo equations to include
havior, with an estimated slope of 0.71. Markov (random channels indeed introduces randomness to

5. Fitzhugh-Nagumo summary
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TABLE Il. Statistics for Markov- and fractal-channel Hodgkin-Huxley simulations with different input
currents, and for the auditory-nerve recording. As intended, both simulations labeled “Run 1" have mean
interspike intervals in rough agreement, as do those labeled “Run 2.”

Markov Fractal Auditory
Run 1 Run 2 Run 1 Run 2 Neuron
Input current uA/cm?) -4 0 40 80
Duration(seq 14502.8 2999.97 12280.8 2999.99 1799.18
Number of spikes 87905 117027 103873 100559 127500
Mean interspike intervalseg 0.164983 0.0256348 0.118229 0.0298331 0.0141112

the subsequent firing pattern. Being Markov, the channelsnodels. For the Hodgkin-Huxley model, then, the addition of
have only short-term memory, so that the sequence of firingractal ion-channel behavior also changes the interval distri-
events behaves as a renewal point process. Employing chabdtion, but not substantially. As previously mentioned,

nels which have fractal open- and closed-time distributionsauditory-nerve recordings often exhibit an excess of inter-
however, leads to dramatically different behavior. Thespike intervals near the smallest intervgd$s.

memory thus introduced in the channel states increases the

average interspike interval, since a much longer time is re- 2. Rate function

quired for the state to change and permit a firing event. The , ) ,

channel memory also leads to a broader interspike-interval AS With the Fitzhugh-Nagumo model, fractal ion channels
distribution (even after normalization since the channel M Hodgkin-Huxley simulations yield firing rate estimates

states will not average out during the course of a single inyvhich exhibit fluctuations over long time scales, several

terval. Finally, the resulting firing process has a fractal ratelimes the 2500 sec windows used to construct the rate esti-
\ates in this examplésee Fig. 7. Again, such fluctuations

as evidenced by both second-order statistical measures et " 4 e .
ployed (Allan factor and periodogram Thus, for the aPpPear not to be artifacts of nonstationarities, since no appar-

Fitzhugh-Nagumo model with individual ion channels frac- €Nt trends can be observed in the data. These rate estimates
tal channel behavior indeed generates fractal firing behaviofSC resemble that of the auditory-nerve recording, replotted

Such behavior also resembles natural fractal activity occur/©M Fig. 3. The Markov-channel simulations, in contrast,

ring in the representative biological neuron shown, althougtfXniPit much smaller fluctuations as is typical for nonfractal
the simulations exhibit a stronger fractal component than thaCint processes averaged over 2500 intervals. In addition,
of the biological data. Perhaps some nonfractal componengimulations that are run at lower curreftsn 1) show some-
such as Markov behavior, would prove useful in generatingVnat larger fluctuations than those at higher currénts 2),

results in close agreement with the biological data. as expected.

10
B. Hodgkin-Huxley %

The mean interspike intervals of both the Markov- and ; i
fractal-channel Hodgkin-Huxley simulations varied with the 5 107" [t/ ;
input current, as expectedee Table )i. To facilitate com- &
parisons among the different simulations, all were normal-&
ized by dividing the interspike intervals by their respective &  1¢-2
mean before subsequent data analysis, as was done for tfs3
Fitzhugh-Nagumo simulations.

1. ISI histogram

In contrast to the results for the Fitzhugh-Nagumo model, NORMALIZED ISI 7
for the discrete-channel degkln-Huxley_ m(?dels .the FIG. 6. Semilogarithmic plots of the interspike-interv@sl)
Markov- and fractal-channel simulations exhibit |ntersp|ke-ﬂ

. T . istogram/p\(r) vs normalized interspike interval for Hodgkin-
interval distributions which resemble each other and that o uxley simulations and the auditory-nerve recording. Solid lines

the a.udlltory neu_ron; both.the means and the overall Shap?ﬁdicate histograms constructed from fractal-channel simulations
are similar(see Fig. 6; auditory-nerve data are replotted from(|abe|ed “F1" and “F2” for runs 1 and 2, respectivelydotted

Fig. 2 for comparison For the more negative input currents, cyrves derive from Markov-channel simulatiofiabeled “M1”

the results of the Markov- and fractal-channel simulationsang “m2” for runs 1 and 2, respectivelyand the dashed curve is
follow essentially the same form. Run 2, with a higher rate from the auditory-nerve datdabeled “D”). Al five plots agree in
does show some broadening of the interval distribution folverall shape and mean. For run 1, the results of the Markov- and
the fractal-channel case. This likely stems from long-termfractal-channel simulations follow essentially the same form, while
fluctuations which do not average out over the course of athe Markov-channel simulation yields a slightly more peaked histo-
interspike interval, as also observed in the Fitzhugh-Nagumgram than the fractal-channel version for run 2.
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FIG. 7. Doubly linear plots of estimates of the normalized rate  FIG. 8. Doubly logarithmic plots of estimates of the Allan factor

X; vs window numbein, for Hodgkin-Huxley simulations and the /AT(T) vs counting timeT, for Hodgkin-Huxley simulations and
auditory-nerve recording. Rates are calculated over a counting wirthe auditory-nerve recording. Solid lines indicate estimated Allan
dow of 2500 normalized time units. Solid lines indicate rate func-factors constructed from fractal-channel simulatiiabeled “F1”
tions constructed from fractal-channel simulatidiebeled “F1” and “F2” for runs 1 and 2, respectivelydotted curves derive from
and “F2” for runs 1 and 2, respectivelydotted curves derive from Markov-channel simulationdabeled “M1” and “M2” for runs 1
Markov-channel simulationdabeled “M1” and “M2” for runs 1 and 2, respective)y and the dashed curve is from the auditory-
and 2, respectively and the dashed curve is from the auditory- nerve datalabeled “D). Markov-channel simulations yield plots
nerve datglabeled “D”). All rate functions have unity meariby which decrease below unity, indicating a firing pattern which is
construction but are vertically displaced for display purposes; the fairly regular. Allan factor plots of fractal-channel simulations, on
vertical extent of the plot corresponds to a rate difference of sixthe other hand, exhibit a power-law increase with counting time,
The rate functions for the fractal-channel simulations and auditoryindicative of fractal firing behavior. Estimated slopes are 0.82 and
nerve recording exhibit significant fluctuatiofgper three curvgs  0.68 for runs 1 and 2, respectively. The auditory-nerve recording
the Markov-channel simulations, in contrast, appear much more flagields similar behavior, with an estimated slope of 0.71.

at these window sizeower two curves For both types of chan-

nels, run 1 exhibits somewhat more fluctuations than run 2.

3. Allan factor

Simulations employing Markov ion channels yield Allan . 102
factor plots which decrease for larger counting times, indi- &
cating that the firing is a comparably regular procésse 5 .
Fig. 8. Introducing fractal ion channels, on the other hand,; 10
results in Allan factor plots which increase as power-law <
function of the counting timgstraight lines on a doubly % o
logarithmic plo}, with estimated slopes of 0.82 and 0.68 for & 10
runs 1 and 2, respectively89]. These curves resemble the £
Allan factor of the auditory-nerve recording, replotted from % 10-1
Fig. 4, which has an estimated slope of 0.73. Thus the
Hodgkin-Huxley simulations with fractal channels exhibit L0 10'_3 10'_1

fractal-rate firing activity as do the corresponding Fitzhugh-

Nagumo simulations. FREQUENCY f (Hz)

FIG. 9. Doubly logarithmic plots of the periodograT‘g(f), an
estimate of the power spectral density, vs frequeinéyr Hodgkin-
4. Periodogram Huxley simulations and the auditory-nerve recording. Solid lines
indicate periodograms constructed from fractal-channel simulations

As with the Fitzhugh-Nagumo simulations, the peri- (labeled “F1” and “F2” for runs 1 and 2, respectively dotted

odogram(see Fig. J yields results in substantial accorq il curves derive from Markov-channel simulatiofiabeled “M1”
t_hose of the A”"’_m factqr. For the Markqv-channel s',mUIa'and “M2” for runs 1 and 2, respectivelyand the dashed curve is
tions, the reSUIt'r_‘g penodograms rema'n below unity forfrom the auditory-nerve daigabeled “D”"). Markov-channel simu-
smaller frequencies, again consistent with an orderly Sepions yield periodograms which remain at small values, indicating
quence of firings. For the fractal-channel simulations, the, firing pattern which is quite regular. Periodograms of fractal-
periodograms decrease as power-law functions of frequencihannel simulations, on the other hand, exhibit a power-law de-
with estimated slopes of 0.47 and 0.49 for runs 1 and 2¢rease with frequency, indicative of fractal firing behavior. Esti-
respectively; the auditory-nerve recording yields an estimated slopes are 0.47 and 0.49 for runs 1 and 2, respectively, for
mated slope of 0.5439]. As with the Fitzhugh-Nagumo the fractal-channel simulations, and 0.54 for the auditory-nerve re-
simulations, these values differ from those obtained from theording.
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Allan factor, likely due to the inferior performance of channel properties have been characterized for simple cases

periodogram-based exponent estimd&s. [46—48, but not for the case we study here, which includes
power-law exponents and the additional complexity that
5. Hodgkin-Huxley summary channel states perturb the input voltage signal. The resulting

. : i . . g interaction produces a spike train that has a fractal rate, but
As with the Fitzhugh-Nagumo simulations, modifying the the associated power-law exponénwill depend on the de-

Hodgkin-Huxley equations to include channels with fraCtaltails of the ion channel behavior as a function of voltage, the

behavior in time changes the long-term properties of the re. . :
sulting simulated spike trains. A fractal rate again results, a ime since the channel last changed state, and the details of

evidenced by both second-order statistical measures em>W 10N channel state affects voltage.

ployed (Allan factor and periodogram In contrast to the
Fitzhugh-Nagumo model, however, the normalized inter-
spike interval histograms do not differ significantly from
their Markov-channel counterparts, with the average inter- The modeling method taken here, which depends on
spike intervals set to the same values by adjusting the inpw@losed-time probability density functions that decay as power
current. Just as for the Fitzhugh-Nagumo model, for theaws, presents difficulties. Theoretical difficulties arise from
Hodgkin-Huxley model fractal channel behavior indeed gen+the fact that a true power-law probability density function
erates fractal firing behavior. In addition, the results morewould have a divergent integral. We solved this problem by
closely resemble those of neuronal data. employing an explicit cutofft, in Eq. (4)] for the fractal
Fitzhugh-Nagumo simulations, and a self-similar Markov
chain for the fractal Hodgkin-Huxley simulations. Although
the two methodologies differ, over the designed range of
time scales they yield similar smooth fractal behavior.

In this paper we have studied the effects of imparting Practical difficulties in running simulations arise from the
fractal behavior to the ion channels using two different meth-basic nature of fractal ion channels, which necessarily im-
ods: a direct modification of the dwell time distribution for plies that a significant fraction of the channels must remain
the Fitzhugh-Nagumo model, and a self-similar quasifractalnchanged in their conductance state over long time scales.
chain of states for the Hodgkin-Huxley model. In both casesNevertheless, for the model to successfully fire, a significant
the result is the same: fractal ion channel behavior leads taumber of ion channels must indeed change state, so that the
fractal firing behavior. This causal relationship is empha-simulation voltage(or fast variable¢ can reach threshold.
sized by the fact that removal of fractal correlations in ionThese two requirements — that significant numbers of chan-
channel statistics obliterates fractal firing patterns. It is im-nels not change statéo preserve memojyand that signifi-
portant to note that this effect does not depend on whetharant numbers do changé& enable firingg — place severe
the fractal behavior in ion channels arises from intrinsicconstraints on our ability to simulate spike trains of adequate
properties of the ion channels themselves, or by othelength in a reasonable amount of time. For example, in our
mechanisms. treatment of the Hodgkin-Huxley model, in order to have
“settling” times of practical duration, we were forced to
limit the number of states of our modified"Kchannel to 11
— a number that was small enough to perturb upward the
steady-state probability of openin@Recall that our pseudo-

Although we provide strong evidence here that fractal offractal formulation only matched the steady-state probability
quasifractal dwell times for voltage-gated ion channels camf opening in the limit of an infinite number of stateFhis
generate fractal spiking patterns, two factors make it verperturbation, in turn, reduced the spontaneous firing rate of
difficult, if not impOSSible, to make quantitative inferenceSthe modeL making it more time_consuming to collect the
about the characteristics of ion channéfactal or other-  |arge number of interspike intervals needed for our analyses.
wise) from spike train data, and vice versa. First, both theThjs issue would be even more problematic with fractal
Fitzhugh-Nagumo and Hodgkin-Huxley models generatanogifications of typical mammalian Kchannels, which are
spikes that are stereotypical in form. Detailed informationmgre likely to be closed at rest than Hodgkin-Huxley chan-
about the state of the model over time scales much shortgfe|s[49] and thus more perturbed by the finite-state fractal
than the time between spikes is inevitably lost in the procesghannel approximation. This difficulty could perhaps be
of Spike generation. This loss of information renders preCiSQ)Vercome by induding two popu|ations of*Kchanne|s in
estimation of the parameters of the ion channels from thene model: a low-threshold population with fractal character-
spike train alone impossible. Other forms of fractal ion chan4stics to give long-term memory, and high-threshold popula-

nels, or even other models, therefore might be able to genion with Markov characteristics to repolarize action poten-
erate a sequence of spikes with a fractal rate. Second, whilgys.

the fractal Fitzhugh-Nagumo and Hodgkin-Huxley models

employed in this paper have well-defined fractal exponents

in the steady state, channe_l parameters change_ with mem- ACKNOWLEDGMENTS
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B. Modeling fractal ion channels proves challenging

IV. DISCUSSION

A. The relationship between ion channel and spiking
characteristics proves difficult to quantify
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