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superoscillations enable deep subwavelength focusing of 
electromagnetic fields without the use of evanescent waves 
[10–12] (for review see Ref. [13]). More recently, supero-
scillations have been studied in the time domain. Particu-
larly, it has been shown that a quantum two-level emitter 
can be excited by a superoscillating electric field whose 
spectral components lie below the transition frequency of 
the emitter [14]. In another study, it has been found that 
a superoscillating electromagnetic signal can propagate 
through absorbing media over length scales far exceeding 
the absorption length [15].

Here, we explore a method of the nonlinear synthesis 
of a superoscillating signal from a low-frequency single 
harmonic input. We employ the technique of the harmonic 
synthesis [16] and explicitly construct the transformation 
function f(z) that transforms a low-frequency harmonic z(t) 
into a superoscillating function y(t) = f(z(t)).

Let us formulate the problem more rigorously. At the 
input of an inertialess nonlinear system, we have a har-
monic oscillation z(t) = cosω0t. The output function y(t) 
is expected to show a superoscillating behavior. The prob-
lem is to find a nonlinear transformation function f(z) that 
relates values of the input and output signals at the cur-
rent time t. We are interested in the case when the output 
superoscillating function is represented as a superposition 
of N harmonic oscillations whose frequencies are multi-
ple of ω0. An example of such a superoscillating function 

is presented in Ref. [10]: y(t) =
5∑

n=0

An cos nω0t, A0 = 1, 

A1 = 13295000, A2 = −30802818, A3 = 26581909, 
A4 = −10836909, A5 = 1762818, ω0 = 1. This func-
tion is plotted in Fig. 1, where the fastest harmonic 
cos(5t) is also shown for comparison. It is clearly seen 
that in the time interval −0.1 < t < 0.1, the superoscil-
lating function y(t) is well approximated by the function 

Abstract We demonstrate that a superoscillating in time 
signal may be obtained as a nonlinear response to a sin-
gle low-frequency harmonic input. Using the realization 
of a superoscillating function proposed by Huang et al. (J 
Opt A Pure Appl Opt 9:S285, 2007), which is a mixture 
of five different harmonics, as an example, we synthesize 
the response function of such a nonlinear transformer and 
investigate its robustness with respect to the frequency and 
amplitude variations of the input signal.

Superoscillations are a counterintuitive mathematical 
effect, in which a band-limited function f(t) (the function 
whose Fourier transform satisfies the condition f̂ (ω) = 0 
for all frequencies |ω| > ωmax) may oscillate with a fre-
quency much greater than ωmax. After the discovery of such 
functions by Berry [1], mathematical properties of supero-
scillating functions have been studied in detail [2–7], and 
various mathematical approaches to their construction have 
been suggested [8, 9]. The concept of superoscillations has 
proven to be extremely fruitful in nanophotonics, where 
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fapp(t) = (cos 43t + 1)/2 that oscillates nearly nine times 
faster than the cutoff component.

We seek for the desired transformation function in the 
form of a polynomial:

Then, the equality y(t) = f (z(t)) can be recast in the 
form

Having the set of values An that yields the superoscillat-
ing feature of y(t), we can establish general expressions for 
coefficients an that constitute the transformation. Below, we 
show explicit expressions for the case of N = 6 harmonic 
components of the output signal, which can be found in 
Ref. [16]. It is convenient to write expressions for the odd 
and even coefficients separately:

These formulas can be generalized for a greater number 
of components using rules developed in Refs. [16, 17].

Equations (3a) and (3b) together with Eq. (1) determine 
the desired transformation function f(z) of the nondelay 

(1)f (z) = a0 + a1z + · · · + aNz
N
.

(2)
N∑

n=0

an cos
n ω0t =

N∑

n=0

An cos nω0t.

(3a)

a0 = 2
0(A0 − A2 + A4),

a2 = 2
1(A2 − 4A4),

a4 = 2
3(A4),

(3b)

a1 = 2
0(A1 − 3A3 + 5A5),

a3 = 2
2(A3 − 5A5),

a5 = 2
4(A5).

system. The resulting transformation for the given superos-
cillating function takes the form:

Nonlinear characteristic of this transformation yielding 
superoscillating output is shown in Fig. 2. For the range of 
the input signal values −1 ≤ z ≤ 1, the output signal lies 
in the seven orders of magnitude broader range. However, 
such extreme amplification may be eliminated by scaling 
down the transformation by the factor of 107 [see Eq. (4)]. 
This decreases the superoscillations amplitude but leaves 
the shape of the superoscillating function unchanged. One 
of the features of the nonlinear transformation visible from 
Fig. 2 is that f (0) �= 0, i.e., the current form of the transfor-
mation requires the nonzero response of the system to zero 
input. Obviously, this is an unphysical property of the sys-
tem. To fix this, one can subtract the constant a0 from the 
nonlinear transformation f(z). Obviously, the shifted output 
y(t)− a0 is still superoscillating, but the resulting system 
with the transformation F(z) = f (z)− a0 does not generate 
any signal at zero input.

Now let us briefly discuss how robust the obtained 
transformation is against a variation of the input signal. 
Firstly, we note that transformation (4) is frequency scal-
able, i.e., if the input signal is given by zα(t) = cosαω0t, 
then one would obtain the output in the form yα(t) = y(αt), 
so that the superoscillating behavior of the output signal is 
preserved.

Figure 3 shows the output generated by the transfor-
mation f(z) for different amplitudes z0 of the input signal 
z(t) = z0 cosω0t. Due to its nonlinear character, transfor-
mation (4) distorts the signal when its amplitude differs 
from the reference value z0 = 1 for which the initial trans-
formation is designed by Eqs. (1–4). For the 1 % increase 
in the input amplitude, the output is still superoscillat-
ing, while the distance between the neighboring minima 

(4)
f (z) = 10

7(1.9965910− 5.7636637z + 2.5089636z2

+ 7.1071276z3 − 8.6695272z4 + 2.8205088z5)

Fig. 1  Superoscillating function y(t) containing spectral components 
ωn = n (solid line) and the fastest component with frequency ω5 = 5 
(black dashed line). The red dashed line shows the approximation of 
y(t) near t = 0

Fig. 2  Input–output characteristic of nonlinear transformation (4)
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increases (orange and red curves). The phenomenon is 
more sensitive; however, to a decrease in the input ampli-
tude, its 1 % variation drastically changes the shape of 
the output function and kills superoscillations (the green 
curve). Overall, the current form of the nonlinear transfor-
mation is tolerant to ~0.5 % variation of the input signal 
amplitude.

The most straightforward way to implement the sug-
gested nonlinear superoscillation synthesis is by using elec-
tronic components operating at radio frequencies. In the 
proposed system, the output signal y at the moment of time 
t is related to the input signal z(t) at the same time. This 
implies that a physical system that performs the transforma-
tion f(z) must be inertialess. There is a wide class of inertia-
less electronic components operating at radio frequencies 
that shows a nonlinear response [18]. The form of Eqs. (1) 
and (2) suggests that a system with the required transfor-
mation function can be realized with the use of frequency 
multipliers each of which transforms the input signal into a 
higher harmonic of the frequency nω0, n = 2, . . . ,N . Elec-
tronic circuits performing such multiplication were suc-
cessfully demonstrated in configurations involving varac-
tors [19] and nonlinear capacitors [20].

To conclude, we have demonstrated the synthesis of a 
superoscillating function from a single-frequency input 
signal in a generic nonlinear inertialess system. We have 

derived an expression for the system transformation func-
tion that performs such a synthesis. We have also dis-
cussed robustness of the superoscillation synthesis against 
variations of the input signal and potential experimental 
implementation of the proposed technique using nonlin-
ear electronic components. This approach provides novel 
opportunities for controlling the signal transformation and 
frequency conversion in nonlinear systems. Furthermore, 
generated superoscillating signals may be used for prob-
ing other resonant systems with a frequency-dependent 
response.
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Fig. 3  Effect of variations of the input signal amplitude on the shape 
of the output signal y(t). The black thick curve shows the output sig-
nal for the perfectly matched input amplitude z0 = 1 also shown in 
Fig. 1. Numbers at the curves indicate the values of the input signal 
amplitude
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