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Effects of inhomogeneous broadening on reflection spectra of Bragg multiple quantum well
structures with a defect
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The reflection spectrum of a multiple quantum well structure with an inserted defect is considered. The
defect is characterized by the exciton frequencyvd different from that of the host’s wells. Effects of both
homogeneousg and inhomogeneous broadeningsD on a modification of the reflection spectrum caused by the
defect are studied. In the case when the penetration length at the frequencyvd is smaller than the length of the
system, the modification of the spectrum is quite sharp and is noticeable up to very high values ofD.
Moreover, the position of the minimum of the reflection is shifted and this shift leads to a suppression of the
effect of inhomogeneous broadening. This results in a significant drop of the reflection. A method of measuring
g andD from a single reflection spectrum is suggested.
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I. INTRODUCTION

Optical properties of multiple quantum well~MQW!
structures have been attracting a great deal of attention
ing the past decade.1–16The main motivation for this interes
is the potential in these systems for effective control of
light-matter interaction. Quantum wells in MQW structur
are separated from each other by relatively thick barrie
which prevent a direct interaction between excitons locali
in different wells. They however, can be coupled by a rad
tive optical field, and their optical properties, therefore, b
come very sensitive to the arrangement of the structu
Most of the initial research in this area was focused on pr
erties of periodic MQW’s, which consist of identical qua
tum wells separated by identical barriers. The radiative c
pling in this case gives rise to MQW polaritons—coheren
coupled oscillations of the exciton polarization and light.
structures with a small number of wells, the spectrum
these collective excitations consists of a discrete numbe
quasistationary~radiative! modes with a redistributed osci
lator strength: the modes can be classified as superadia
subradiant.2,3,5With an increase of the number of wells in th
structure, the radiative lifetime of the latter decreases,
the lifetime of the former increases. When the number
periods in the structure becomes large enough, the mode
the MQW are more conveniently described in terms of s
tionary polaritons of infinite periodic structures.13 The spec-
trum of polaritons in this case consists of two branches se
rated by a polariton gap, which is normally proportional
the light-exciton coupling constantG0. There exists, how-
ever, a special arrangement of MQW’s where the magnit
of the gap can be significantly increased. If the period of
MQW structure is made equal to the half-wavelength of
exciton radiation, the geometric, Bragg, resonance occur
the same frequency as the exciton resonance. As a resul
band gap between two polariton branches becomes of
order of magnitude ofAG0v0@G0, where v0 is the fre-
quency of the exciton transition. These, so called Bra
MQW structures were quite intensively studied bo
theoretically1,2,8,13 and experimentally.6,9–12 In the case of
0163-1829/2004/69~7!/075308~11!/$22.50 69 0753
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structures with a small number of periods, the reconstruc
of the optical spectra in Bragg MQW’s can be described a
concentration of the oscillator strengths of all oscillators
one superradiant mode, while all other modes become da2

A presence of the large band gap in the spectrum of Br
MQW polaritons invites attempts to introduce a defect into
structure in order to create local polariton states with f
quencies in the band gap. This would affect the rate of sp
taneous emission as well as other optical characteristic
the system. Such an opportunity was first considered in R
14, and was studied in detail in Refs. 15 and 16. It w
shown16 that by introducing different types of defects on
can obtain optical spectra of a variety of shapes, which
be preengineered through the choice of the type of a def
its position in the structure, the number of defects, etc. T
fact makes these systems of interest for optoelectronic ap
cation. However, in order to be able to predict the opti
spectra of realistic structures, any theoretical calculati
must deal with the problem of inhomogeneous broaden
which is always present in these systems due to unavoid
structural disorder present in quantum wells. Calculations
Refs. 15 and 16 included inhomogeneous broadening u
the linear dispersion theory.17,18 The linear dispersion theory
treats inhomogeneous broadening as a simple addition to
mogeneous broadening, ignoring therefore, effects of
motional narrowing, which have been very well studied
periodic multiple quantum wells.19–21By doing so, the linear
dispersion theory grossly overestimates the negative in
ence of inhomogeneous broadening, thereby giving unrea
tically pessimistic predictions. The latter fact was verified
Ref. 22, where effects of the vertical disorder on the defe
induced features of the spectra were considered numeric

More accurately inhomogeneous broadening can be s
ied with the help of the effective medium approximatio
which was introduced in Refs. 23 and 24 on the basis
some qualitative arguments. In this approximation, a rand
susceptibility of a single quantum well is replaced by
value averaged over an ensemble of exciton frequencies,
therefore, one only needs to take into account the horizo
disorder, since on average all wells in the structure are
©2004 The American Physical Society08-1
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sumed identical. This approach was shown to agree well w
experimental results for both cw and time-resolved spectr25

In this paper, we demonstrate explicitly the physical mean
of this approximation and the regions of its applicability.

The main objective of this paper is to study the effects
the inhomogeneous broadening in Bragg MQW structu
with defects. Here we consider only one structure, name
GaAlAs/GaAs structure with one of the wells replaced by
well with a different exciton frequency. A similar defect wa
considered in Ref. 16, where it was called anV defect; we
retain this terminology in this paper. The consideration
Ref. 16 was focused mostly on the concept of local polari
states arising in infinite Bragg MQW structures, and on
effect of the resonant light tunneling arising due to the
local states in long ideal Bragg MQW’s. In this paper, w
consider defect-induced modification of the optical spectra
more realistic systems. We take into consideration the in
mogeneous broadening and concentrate on structures
the number of periods readily available with current grow
technologies. Keeping in mind the potential of these str
tures for applications, we study under which conditions
defect-induced resonant features of the spectra of real
structures can be observed experimentally. We develo
general understanding of the spectral properties of Br
MQW’s in the presence of defects and disorder required
identifying structures most interesting from the experimen
and application points of view. We also obtain a simplifi
analytical description for the main features of the spec
valid in some limiting cases. This description is comp
mented by a detailed numerical analysis. One of the surp
ing results is that the features associated with the reso
tunneling via the local polariton state survive in the prese
of disorder for much shorter lengths of the structure than w
originally expected.15,16 This makes experimental observ
tion and application of these effects significantly more attr
tive.

We also suggest a method of determining experiment
parameters of homogeneous and inhomogeneous broad
of a defect well in our structures from a single cw reflecti
spectrum. Such an opportunity seems to be quite exci
from the experimental point of view, since currently th
separation of homogeneous and inhomogeneous broade
requires the use of complicated time-resolved spectrosc
techniques. Attempts to develop a method for an indepen
extraction of the parameters of homogeneous and inhom
neous broadenings from spectra of periodic MQW structu
were undertaken in Refs. 23 and 26, but they also requ
either a time resolved spectroscopy or a not very relia
Fourier transformation of the original cw spectra.

II. REFLECTION SPECTRUM OF A MQW STRUCTURE

Within the framework of the linear nonlocal respon
theory, propagation of an electromagnetic wave in a multi
quantum well structure is governed by the Maxwell equ
tions

“3~“3E!5
v2

c2
~e`E14pPext!, ~1!
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wheree` is the background dielectric constant assumed to
the same along the structure,Pext is the excitonic contribu-
tion to the polarization defined by

Pext~z!5E x̃~v,z,z8!E~z8!dz8, ~2!

and the susceptibilityx̃ is

x̃~v,z,z8!5x̃~v!F~z!F~z8!, ~3!

where F(z) is the exciton envelope function andz is the
growth direction. Considering only the 1s heavy-hole exci-
ton states and neglecting the in-plane dispersion of excito
the susceptibility can be written as27–29

x̃~v!5
a

v02v2 ig
, ~4!

where v0 is the exciton resonance frequency,g is the
exciton relaxation rate due to inelastic processesa
5e`vLTaB

3v0
2/4c2, vLT is the exciton longitudinal-

transverse splitting, andaB is the bulk exciton Bohr radius.
The reflection spectrum of MQW structures is effective

described by the transfer-matrix method. For waves incid
in the growth direction of the structure, the transfer mat
describing propagation of light across a single quantum w
in the basis of incident and reflected waves is2

T5
1

t S t22r 2 r

2r t D , ~5!

wherer andt are the reflection and transmission coefficien
of a single quantum well,

r 5
eifih

12 ih
, t5

eif

12 ih
, ~6!

f5kd,k5Ae`v/c is the wave number of the electroma
netic wave,d is the period of the MQW structure~the sum of
widths of the barrier and the quantum well!,

h5
G0x̃

a
5

G0

v02v2 ig
, ~7!

G0 is the effective radiative rate

G05
2pak

e`
F E dzF~z!coskzG2

, ~8!

and we neglect the radiative shift of the exciton resona
frequency.

The parameterg in the exciton susceptibility, Eq.~4!,
introduces the nonradiative homogeneous broadening du
inelastic dephasing of excitons. Inhomogeneous broade
results from fluctuations of the exciton transition frequen
v0 in the plane of a well caused by, for example, imperfe
tions of the interface between the well and the barrier lay
and/or presence of impurities.

We are interested here only in the characteristics of wa
reflected in the specular direction. As it is shown in the A
pendix this component of the scattered field obeys Eq.~1!
8-2
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with the susceptibility averaged with respect to the distrib
tion function of the exciton frequenciesf (v0)

x5E dv0f ~v0!
a

v02v2 ig
. ~9!

The inhomogeneous broadening is characterized, in this
proach, by the variance off (v0). This constitutes the effec
tive media approximation.

The functionx replacesx̃ in Eq. ~7! and determines a
single-well transfer matrix of a broadened well,23 which is
then used to construct the transfer matrix describing
propagation of light through the entire Bragg MQW stru
ture. The structure considered in this paper, a Bragg MQ
with an V defect, consists ofN52m11 quantum well-
barrier layers which are all identical except for one, at
center, where the quantum well has a different frequency
the exciton resonance~Fig. 1!. Such a defect can be produce
either by changing the concentration of Al in the barrie
surrounding the central well,30,31 or the width of the well
itself32 during growth. In principle, both these changes w
also affect the optical width of the defect layers, either b
cause of the change in the background dielectric constan
due to the change of the geometrical thickness of the w
However, in both cases this effect is negligible, and we d
here with the case of a pureV defect.

The total transfer matrix through the MQW structure co
sists of the product

M5Th . . . ThTdTh . . . Th , ~10!

whereTh and Td are the transfer matrices through the ho
and defect layers, respectively, described by the reflec
and transmission coefficientsr h,d and th,d . Substitution of
the explicit expressions forTh and Td leads to a compac
expression for the total transfer matrix in the basis of eig
vectors of the host transfer matrixTh

M5S e2LM 2 a1A

2a2A eLM 1
D , ~11!

whereL5Nlh ,

M 65e6(ld2lh)6
2e7lh

sinhlh
sinh2

1

2
~ld2lh!, ~12!

and

FIG. 1. A MQW structure with a defect.
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A5
sinf

sinhlh
~hd2hh!. ~13!

Here we introduceda6 , nonunit components of the
eigenvectors ofTh ,

a65
12e6lhth

r h
, ~14!

andlh,d are the eigenvalues of the host and defect quan
well’s transfer matrices obeying the dispersion law in a p
riodic quantum well superlattice:1–3

coshlh,d5
1

2
Tr Th,d5cosf2hh,dsinf. ~15!

In the case of an ideal system without homogeneous or
homogeneous broadenings, this equation describes the
structure of the electromagnetic spectrum of MQW’s, co
sisting of a number of bands separated by forbidden b
gaps, defined as frequency regions where RelhÞ0. This
real part describes the exponential decrease of the ampli
of an incident wave, and its inverse gives the value of
respective penetration length. In the allowed bands,lh is
purely imaginary, and its imaginary part is the Bloch wa
vector of the respective excitation. There are two types of
excitations here. In the vicinity of the exciton frequencyvh ,
there exist two polariton branches separated by a polar
band gap.13 There are also pure photonic bands with the ba
boundaries at the geometrical resonances,f(v r)5np (n
51,2, . . . ). Thesize of the polariton gap strongly depen
on the relation betweenvh and v r , and reaches the maxi
mum value when they coincide, i.e. whenf(vh)5p ~the
Bragg structure!. For these frequencies, it is convenient
extract the imaginary part fromlh and to present it in the
form

lh5kh1 ip. ~16!

If the coupling parameterG0 is small,kh in the gap can be
approximated by the following expression, which is obtain
by expanding Eq.~15! near the resonance frequency

kh5Apq~22hh2pq!, ~17!

whereq is the detuning from the Bragg resonance

q5
v2vh

vh
. ~18!

Taking into account the form of the susceptibility in an ide
system, we obtain

kh5pAQG
2 2q2, ~19!

where

QG5A2G0

pvh
~20!

determines the boundary of the forbidden gap13 as a point
wherekh vanishes. The frequency, which corresponds to t
8-3
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boundary determines the width of the gap asA2G0vh /p.
This value is significantly greater than the respective wi
in the off-Bragg case, which is proportional toG0!vh . In
the presence of homogeneous and inhomogeneous broa
ings, the notion of the band gap becomes ill defined, beca
kh does not vanish anywhere. At the gap boundary, for
stance, it becomes complex valued

kh~vG!5~11 i !pAgQG

2vh
. ~21!

Nevertheless, ifg!AG0vh, which is the case in realistic
systems, the optical spectra retain most of their proper
specific for the gap region, and this concept provides a us
physical framework for discussing optical properties
MQW structures.

Once the transfer matrixM for the entire MQW structure
is known the reflection and transmission coefficients can
expressed in terms of its elementsmi j as

r MQW5
2m111m122m211m22

a2~m121m22!2a1~m111m21!
,

tMQW5
a22a1

a2~m121m22!2a1~m111m21!
. ~22!

A defect inserted into the structure leads to a modification
the reflection spectrum of the MQW in the vicinity of th
exciton frequencyvd of the defect well. We are interested
the situation whenvd lies within the polariton band gap o
the ideal host structure, because in this case the defect
duces the most prominent changes in the spectra. A typ
form of such a modification in broadened systems is sho
in Fig. 2, and is characterized by the presence of a clo
positioned minimum and maximum. In an ideal system, t
form of reflection would correspond to a Fano-like resona
in the transmission with the latter swinging from zero
unity over a narrow frequency interval.16 In the presence o
absorbtion and inhomogeneous broadening, the reson

FIG. 2. A typical dependence of the reflection coefficient o
MQW structure with an embedded defect well in a neighborhood
the exciton frequency of the defect well. The dotted line shows
reflection for a lossless system, and the solid line corresponds
broadened system~parameters are taken for GaAs/AlGaAs!.
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behavior of the transmission is smeared out, while the re
nance in reflection, as we can see, survives.

In order to analyze the form of the reflection spectra,
represent the reflection coefficient in the form

r MQW5
r 0

12r add
, ~23!

where

r 05
2sinh~L!

a2eL2a1e2L
52

hh

a1 i coth~L!sinhlh
~24!

is the reflection coefficient of a pure MQW structure~with-
out a defect! with the lengthN, a5sinf1hhcosf, andr add
introduces the modification of the reflection caused by
defect

r add5~hd2hh!sinf
sinhlh1 ihhsinhL

hhcoshL2a

3
1

A~a1hhcoshL!2hhsinhL
. ~25!

This expression allows for making some general conclusi
regarding the effects of the defect and broadenings on
reflection spectrum. First of all, it should be noted that
gardless of the value of the defect frequencyvd , r add van-
ishes at frequenciesv5vh because of the phase facto
sinf'2pq.

Thus, in order to achieve a significant modification of t
spectrum, it is necessary to choosevd as far away fromvh
as possible. In this case, however, we can immediately c
clude that the broadening of the host wells does not sign
cantly affect the defect-induced features of the reflect
spectrum.

Indeed, the broadenings enter into Eq.~25! through the
susceptibilityhh defined by Eq.~9!. Let us rewrite this defi-
nition in the form

hh5E dn f ~n!
G̃

n2q2 i g̃
, ~26!

where we have introducedG̃5G0 /vh , g̃5g/vh , n5(v0
2vh)/vh , and vh is the mean value of the exciton fre
quency. If the functionf (n) falls off with increasingn fast
enough, so that all its moments exist, we can approxim
the integral for the frequenciesq/D̃,q/g̃@1 as

hh'h̃hE dn f ~n!S 11
n

q1 i g̃
1••• D , ~27!

where

h̃h5
G0

vh2v2 ig
~28!
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e
a
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EFFECTS OF INHOMOGENEOUS BROADENING ON . . . PHYSICAL REVIEW B69, 075308 ~2004!
is the susceptibility in the absence of the inhomogene
broadening. Noting that now integration of each term in
parentheses gives an appropriate central moment ofn we
obtain

hh'h̃hS 11
D̃2

q2
1••• D . ~29!

Therefore, the corrections due to the inhomogeneous br
enings become small for frequencies, which are farther a
from the central frequency than the inhomogeneous widthD.
Since the width of the polariton gap in Bragg MQW stru
tures is significantly greater than the typical value of t
inhomogeneous width, we can choose such a position of
defect frequencyvd which is far enough fromvh , and at the
same time remains within the gap frequency region.

Significant diminishing of the effects due to disorder
optical spectra of periodic MQW for frequencies away fro
the resonance exciton frequency was obtained theoretic
in Ref. 23 and observed experimentally in Refs. 33 and
This can also be seen in Fig. 2, where deviations from
spectra of an ideal structure~dashed line! caused by disorde
in the host wells are significant only in the vicinity ofv0.
The modification of the defect-induced features of the sp
tra, which takes place in the vicinity ofvd are caused by
broadenings of the excitons in the defect layer, and this is
only broadening, which has to be taken into consideration
this situation.

III. DEEP AND SHALLOW DEFECTS

While Eq. ~25! is suitable for a general discussion a
numerical calculations, it is too cumbersome for a detai
analytical analysis. For such purposes we consider the re
tion coefficient for two limiting cases when the expressi
for r add can be significantly simplified. The first limit corre
sponds to the situation when the penetration length of
electromagnetic wave at the frequency of the defect is m
smaller than the length of the structure~we call it a deep
defect!, and the second is realized in the opposite case, w
the system is much shorter than the penetration length~shal-
low defect!.

A. Deep defect

Such situation was analyzed in Ref. 16 for the case o
lossless system. To determine the range of validity of th
results in the case of broadened systems we represen
broadening as a sum of the homogeneous and inhom
neous ones as in linear dispersion theory. The estimatio
the effect of the broadenings on the reflection spectr
shows that when

g1D&8pvhAQG
2 2d2

e22Ld3

QG
2

, ~30!

whered5(vd2vh)/vh , the effect of the broadenings ca
be neglected, and the results of Ref. 16 are valid. This
equality, however, becomes broken for long systems, and
broadenings must be taken into account. In this case the
07530
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ponentially small nonresonant terms in Eq.~25! can be ne-
glected and the reflection in the vicinity ofvd can be pre-
sented in the form

r 5r 0

Vd2G0Dd

Vd2G0Dd22ie2Ld2vh

, ~31!

whereDd,h51/hd,h and

r 05
1

11Dh@pq1 ikh~112e22L!#
~32!

is the approximation for the reflection coefficient of th
structure without the defect for frequencies deeply inside
forbidden gap. We keep the term exp(22L) in this expres-
sion in order to preserve the correct dependence of the
flection coefficient of the pure structure on its length. T
frequencyVd ,

Vd5pG0

d

kh
, ~33!

describes the shift of the position of the reflection resona
from the initial defect frequencyvd . This shift is an impor-
tant property of our structure, which takes place in both id
and broadened systems.

Deriving Eq. ~31! we also assumed that the exciton fr
quency of the defect well lies far enough from the frequen
of the host wells, neglected the contribution of the host s
ceptibility hh into the terms proportional tohd2hh , and
dropped a frequency dependence of the nonresonant ter

Equation ~31! shows that when the defect well excito
frequency lies deeply inside the forbidden gap the effect
the defect on the reflection spectrum of the system expon
tially decreases when the length of the MQW structure
creases. This behavior is strikingly different from that of t
respective ideal systems, where resonant tunneling resul
the transmission equal to unity at the resonance regardle
the length of the system. One can see that homogene
broadening severely suppresses this effect, as was anticip
in Ref. 16.

If the shift Vd of the resonance frequency fromvd is
large enough, so thatv r is well separated fromvd , the ef-
fects of the inhomogeneous broadening can be neglecte
this case, we can derive a simple approximate expression
the reflection coefficient in the vicinity ofv r . The condition
Vd@D can, in principle, be fulfilled becausekh(vd) de-
creases when the frequency goes to the edge of the stop
wherekh is determined by Eq.~21! and for GaAs/AlGaAs
MQW structures with vh51.49 eV, G0567 meV, g
512.6meV, and D5290 meV we obtain Re@Vd(vh
1vG)#/D'6.3.

In this case, in the vicinity of the resonance frequency
can approximate the susceptibilityhd by

hd5
G0

vd2v2 ig
~34!
8-5
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and obtain that the resonance has a form of the Lorentz-
dip on the dependence of the reflection spectrum positio
at q5Vd with the depthH and the widthW defined by
expressions

H5ur 0u2
11geL/vhd2

~11geL/2vhd2!2
, ~35!

W5g1e2Ld2vh . ~36!

It should be noted, however, that while formally this appro
mation is valid even whenvd is close to the edge of th
forbidden gap, the deep defect approximation requires
L@1. For GaAs/AlGaAs structures this means thatN
.1/Re(kh);2000. The structures of this length are beyo
current technological capabilities, so this case prese
mostly theoretical interest.

In the opposite situation, when the frequency shift is sm
(Vd,D), i.e., whenvd is not too close to the edge of th
gap, the inhomogeneous broadening becomes important
in order to estimate its contribution we use a Gaussian
tribution of the exciton resonance frequencies in Eq.~9!:

hd5
G0

DAp
E

2`

`

dv0

e2(v02vd)2/D2

v02v2 ig
. ~37!

Using the functionw(m)5e2m2
erfc(2 im), the integral can

be written as

h5 iG0w~m!Ap/D, ~38!

wherem5(v2vd1 ig)/D. The smallm expansion35

w~m!'112im/Ap

allows us to obtain

Dd5
2

G0p
~vd2v2 i g̃ !, ~39!

whereg̃ is the effective broadening,

g̃5g1
Ap

2
D. ~40!

One can see that in this case the inhomogeneous and h
geneous broadening combine to form a single broaden
parameterg̃, as it is assumed in the linear dispersion theo
The resonance on the reflection curve also has, in this ca
Lorentz-type dip centered at

q5
pG0d

2vhAvG
2 2d2

, ~41!

with the depth and the width, respectively, equal to

H5ur 0u2
2pe2Ld2vh

g̃
, W5g̃1pe2Ld2vh . ~42!
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Because of the inhomogeneous broadening contribution,
effective parameterg̃ becomes so large thatpe2Ld2

!g̃/vh , and the defect-induced reflection resonance
comes rather weak compared to the case considered p
ously.

B. Shallow defect

From the experimental point of view, a more attracti
situation arises when the length of the structure is sma
than the penetration length. This situation, which can
called the case of a shallow defect, can be described wi
the same approximations as used in the preceding sec
with an obvious exception of the treatment of terms prop
tional toeL. Here we can expand the exponential function
terms of the powers ofL. Finally we arrive at the following
expression, which describes the defect-induced modifica
of the reflection spectra:

r 5
i Ḡ

vh2v1 i ~g1Ḡ !

Vs2G0Dd

iG02G0Dd
, ~43!

where Ḡ is the radiative width of the pure Bragg MQW
structure, which isN-fold enhanced because of the formatio
of a superradiant mode4

Ḡ5
G0N

12 ipqN
. ~44!

This expression coincides with the results of Ref. 4 with t
exception of the term proportional toqN, which was ne-
glected in the previous papers. We keep this term to be a
to consider the case when the detuning from the resona
point vh is not very small.36

The distinctive feature of the shallow defect is that t
reflection resonance does not have a Lorentz-like sha
which is typical for the deep defect when the resonant t
neling is suppressed. Instead, we have a reflection spec
with a minimum atv2 and a maximum atv1 . This is a
surprising result, because the Fano-like behavior associ
with the resonant tunneling is restored even though
length of the system is too short for effective tunneling
take place. It is convenient to describe the positions of th
frequencies relative to the modified defect frequency,

ṽd5vd2Vs , ~45!

whereVs is defined as

Vs5
vd2vh

N
. ~46!

The positions of the extrema are shifted fromṽd : v2 to-
ward the center of the gap, andv1 in the opposite direction.
As a result,v2 is well separated fromvd , while v1 always
lies in the close vicinity of the defect frequency.

For short systems,Vs can become larger thanD; for ex-
ample, in GaAs/AlGaAs MQW structures, the conditionVs
@D is fulfilled when N&N0510. In this case, an approxi
mate analytical description of the spectrum is possible ag
8-6
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However, since the maximum and the minimum of the sp
tra lie at significantly different distances fromvd , the de-
scription of these two spectral regions would require diff
ent approximations. The maximum of the reflectivity tak
place close to the defect frequency, and therefore the in
mogeneous broadening near the maximum has to be t
into account. At the same time,v22vd@D, and the inho-
mogeneous broadening in this frequency region can be
glected. Thus, we can approximateDd by Eq. ~34! in the
vicinity of v2 and by Eq.~39! nearv1 . Using these ap-
proximations we find that the minimum and the maximum
the reflection coefficient are at the frequencies

v25vd2Vs2
g2

Vs
, ~47!

and

v15vd1
1

p
~Ṽs2Vs!1

G0g̃

ṼsVs

~Ṽs1Vs! ~48!

respectively, whereṼs5AVs
214g̃2 and g̃ is the effective

broadening defined by Eq.~40!. The values of the reflection
at these points are

Rmin5
uḠu2g2N4

~vd2vh!4~N21!2
,

Rmax5
uḠu2~Ṽs1Vs!

2

~v12vh!2~2G01pg̃!2
. ~49!

The exact and approximate forms of the reflectivity a
compared in Fig. 3. One can see that these approximat
give a satisfactory description of the reflectivity in the vicin
ties of the extrema for short systems.

FIG. 3. Reflection coefficient near the exciton frequency of
shallow defect~solid line! for N57. The dashed lines depict ap
proximation using different expressions for the defect quantum w
susceptibility at the vicinities of the extrema: near the minimum
inhomogeneous broadening is neglected, while in the vicinity of
maximum it is accounted for as a renormalization of homogene
broadening@Eq. ~40!#. For reference, the reflection coefficient of
pure MQW structure without a defect is shown~dotted line!.
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The minimal value of the reflection is determined only
the small parameter of the homogeneous broadeningg and
can therefore become very small. This fact reflects the s
pression of the inhomogeneous broadening in this situat
When the length of the system increases,Rmin grows asN4,
however, whenN.N0, the inhomogeneous broadenin
starts coming into play:g must be replaced with a large
effective broadening containing a contribution fromD. This
also leads to a significant increase inRmin . This behavior is
illustrated in Fig. 4, where a comparison of the reflecti
coefficients for two MQW structures with different lengths
provided.

The maximum value of the reflection coefficient in th
approximation depends very weakly on the number of we
in the system, and is of the order of the magnitude of
reflection from a single standing defect well in the exa
resonance. This result means that for a small numbe
wells,v1 lies in the spectral region, where the host system
already almost transparent, and the presence of the hos
only a small effect on the reflection properties of the syst
with the defect. At the same time, we would like to emph
size again that the minimum of the reflection is the result
the radiative coupling between the wells even in this case
short systems.

C. Characterization of the reflection spectra in the case
of intermediate lengths

In the previous sections we examined special situati
when the defect can be considered as either deep or sha
Here we consider systems with intermediate lengths, wheN
is larger thanN0, but is still smaller or of the order of mag
nitude of the penetration length. From the practical point
view, this case is of the greatest interest, since this interva
lengths is still easily accessible experimentally, and at
same time, it is expected that for such structures the def
induced modifications of the spectrum become most pro
nent. Unfortunately, neither approximation used in the pre

e

ll
e
e
s

FIG. 4. Dependence of the reflection coefficient on the f
quency in the neighborhood of the exciton frequency of the de
well for different lengths of the MQW structure~solid line N53,
dashed lineN55). The great difference of minimal reflections re
sults from the shift of the resonance frequencyVs , Eq. ~46!.
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ous sections can be applied here, and we have to resort
numerical treatment. Nevertheless, the qualitative und
standing gained as a result of the previous analytical con
erations, serves as a useful guide in analyzing and interp
ing the numerical data.

As it was pointed out in the preceding section, whenN
becomes larger thanN0, the position of the minimum of the
reflection,v2 moves closer tovd , and the inhomogeneou
broadening starts contributing toRmin . This effect can phe-
nomenologically be described as the emergence of an e
tive broadening parameterge f f(g,D,N), which is not a
simple combination ofg and D, but depends uponN. This
parameter is limited from below byg, when the inhomoge-
neous broadening is suppressed, and from above byg̃, when
the contribution fromD is largest. Because the minimum
value of the reflection is always achieved at a point shif
with respect tovd , generallyge f f is always smaller thang̃,
and the homogeneous broadening makes a contribution
comparable to that of the inhomogeneous broadeningdespite
the fact thatg!D. At the same time, the position ofv1 ,
which determines the width of the spectral interval affec
by the defect, depends upong̃'D.

We illustrate this conclusion quantitatively by defining t
width of the resonanceW(g,D,N)5v12v2 as a distance
between the extrema of the reflection spectrum, and its d
H(g,D,N)5Rmax2Rmin as the difference between the va
ues of the reflection at these points. In order to see how th
quantities depend upon parametersg andD, we chose sev-
eral different values ofW and H, and plot constant leve
lines, W(g,D,N)5Wi ,H(g,D,N)5Hi . These lines repre
sent values ofg andD for which W andH remain constant
~Fig. 5!.

The locus of constant widths is the set of nearly strai
lines running almost parallel to the axis representing the
mogeneous broadening. Slight deviation from the straig
line behavior is seen only for nonrealistically high values
g. Such a behavior confirms our assertion that the width
the resonance is determined by an effective paramete
which g andD enter additively. As we see, this is true ev
for systems which cannot, strictly speaking, be described

FIG. 5. Intersections of lines of constant height~dashed lines!
and width~solid lines! of the resonance allow determination of th
values of the homogeneous and inhomogeneous broadenings.
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approximations leading to Eq.~48!. Since usuallyg!D, the
latter makes the largest contribution to this effective para
eter, and determines the value ofW. The shape of the lines o
constant height demonstrates almost equal contribut
from g andD, which means that the effect due to the inh
mogeneous broadening is significantly reduced as far as
feature of the spectrum is concerned. This is also consis
with an approximate analysis presented in the preceding
tion of the paper.

The remarkable feature of Fig. 5 is that the lines of t
constant width and the constant high cross each other
rather acute angle and at a single value ofg andD for each
of the values ofW and H. This means that one can extra
bothg andD from a single reflection spectrum of the MQW
structure. This is a rather intriguing opportunity from th
experimental point of view, since presently, the only way
independently measure parameters of homogeneous an
homogeneous broadenings is to use complicated ti
resolved techniques.

It is clear, however, that the shape of the lines of const
W and H depends upon the choice of the distribution fun
tion used for calculation of the average susceptibility of t
defect well. It is important, therefore, to check how the r
sults depend upon the choice of the distribution function
the exciton frequencies. As an extreme example, one
consider the Cauchy distribution

f ~v0!5
D

~v02v̄ !21D2
. ~50!

In this case, all the effects due to the inhomogeneous bro
ening can be described by a simple renormalization,g→g
1D, and the level lines in Fig. 5 would have the form
parallel lines. This distribution though, hardly has any e
perimental significance, while the Gaussian function ha
certain theoretical justification.37 However, the symmetrica
character of the normal distribution is in obvious contrad
tion with a natural asymmetry of the exciton binding ene
gies, which can be arbitrarily small but are bounded fro
above. It was suggested in Ref. 25 to take this asymm
into account by introducing two different variances in t
Gaussian distribution:D2 for frequencies below some~most
probable! frequencyvc , andD1 for the frequencies above
it. Accordingly, the distribution function can be written as

f ~v0!5
2

Ap~D11D2!
H e2(v02vc)2/D2, v0,vc

e2(v02vc)2/D1, v0.vc .
~51!

It was shown that this choice gives a satisfactory descrip
of time-resolved spectra of MQW’s.25 The distribution func-
tion, Eq. ~51!, can be parametrized either byD6 andvc or,
more traditionally, by the mean valuev̄, the second momen
D, and the parameter of asymmetryn defined as

v̄5vc1
D12D2

Ap
, n5

D1

D2
,

8-8
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D25
D1

3 1D2
3

D11D2
2

2

p
~D12D2!2. ~52!

We use the corrected distribution function, Eq.~51!, with
the fixed mean frequency and the variance, but different
ues of the asymmetry parameter, in order to see how se
tive the defect-induced features of the reflection spectrum
to the shape of the distribution function. To this end, we p
the lines of constant height and width for different values
the asymmetry parametern (1<n<2). The results are pre
sented in Fig. 6.

An interesting result revealed by these graphs is that w
the change of the asymmetry, the points at whichW and H
level lines cross move parallel to the axis ofg, while the
respective values ofD remain quite stable. This shift can b
explained by noticing that with change of the parameter
asymmetry the total width of the distribution remains t
same while the effective value of the inhomogeneous bro
ening at the point of the reflection changes. This indica
that the value ofD, which can be obtained by comparin
experimental reflection spectra with the theory presente
this paper, is not sensitive to the choice of the distribut
function of the exciton frequencies. The value of the para
eter of the homogeneous broadening is more sensitive
varies by approximately 10% when the parameter of
asymmetry changes by a factor of 2. However, the estim
for g can be improved by studying the temperature dep
dence of the reflection spectra.

IV. CONCLUSION

In the present paper we studied the reflection spectra
Bragg multiple quantum well system with a defect: the qu
tum well at the center of the structure was replaced by a w
with a different exciton resonance frequency. In an ideal
finite system such a defect gives rise to a local state wit
frequency within the polariton stop band of the host str
ture, which reveals itself in the form of reflection and tran
mission resonances.16 The main focus of this paper was o
the effects due to the inhomogeneous broadening, which

FIG. 6. Intersections for different values of the parameter
asymmetry. Dashed and solids lines are lines of constant heigh
width, respectively.
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taken into account within the framework of the effective m
dium approximation.23 Since in Ref. 23 this approach wa
introduced on the basis of qualitative arguments only, in
Appendix we presented a rigorous derivation of this appro
mation and clarified its physical status.

We consider two limiting cases in which defect-induc
features of the spectrum can be described analytically. In
case, the length of the system is much larger than the p
etration length of the radiation in the infinite periodic stru
ture l c ~deep defect!. The modification of the reflection in
this case is described by a Lorentz-like minimum, who
depth exponentially decreases with increasing length of
MQW structure, Eq.~42!. For long enough structures th
presence of the defect in the structure becomes unnotice
A much more interesting situation arises in the opposite c
of systems much shorter thanl c ~shallow defect!. In this
case, the reflection spectrum exhibits a sharp minimum
lowed by a maximum. This shape of the spectrum resem
a Fano-like resonance observed in long lossless systems
position of the maximum of the reflection is close to t
exciton frequency in the defect wellvd , where the short hos
structure is almost transparent, and therefore the prope
of the spectrum near this point are similar to those of
isolated quantum well. At the same time, the minimum
shifted fromvd by Vs52(vd2vh)/N and due to this shift
an influence of the inhomogeneous broadeningD on the
spectrum near this point is strongly suppressed. WhenVs
@D the value of the reflection at the minimumRmin is de-
termined solely by the small homogeneous broadening,
this results in extremely small values ofRmin , Eq. ~49!.

The structure of the spectrum with two extrema pers
also in the case of an intermediate relation betweenl c andN.
This situation, however, is more complicated and can only
analyzed numerically. Nevertheless, due to the shift of
minimum reflection frequency one can conclude that
minimum value of the reflection, despite the fact thatg
!D, is determined by some effective combination of t
homogeneous and inhomogeneous broadenings, while
distance between the extrema is affected mostly by inho
geneous broadening. This circumstance allowed us sugg
ing a simple method of extracting bothg andD of the defect
well from the reflection spectrum of the structure.
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APPENDIX: THE HORIZONTAL DISORDER
AND AVERAGE SUSCEPTIBILITY

A wave incident at a normalz direction on a quantum wel
can be described by a scalar form of Maxwell’s equations
one of the polarizations parallel to the plane of a quant
well:

f
nd
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2¹2E~r,z!5
v2

c2
@e`E~r,z!14pP~r,z!#, ~A1!

whereP(r,z) is the polarization due to quantum well exc
tons. The latter is determined by an expression similar to
~2! with the exciton frequency being a random function
the in-plane coordinater

P~r,z!5E dz8x~r,v!F~z!F~z8!E~r,z8!, ~A2!

where the susceptibility is

x~r,v!5
a

v~r!2v2 ig
. ~A3!

In order to simplify our calculations we make an assumpt
that F(z) can be approximated by ad function,

F~z!5F0d~z!. ~A4!

This approximation is sufficient for our particular goals he
but the results obtained will remain valid for more rigoro
treatment of the excitonic wave functions as well. After t
Fourier transformation with respect to the in-plane coor
nates, Eq.~A1! can be presented in the form

2S kq
21

d2

dz2D E~q,z!

52F0
2d~z!

v2

c2 E d2q8x~q2q8,v!E~q8,z!, ~A5!

wherekq
25k22q2 andk5vAe`/c.

Let us represent the susceptibility as a sum of its aver
value and a fluctuating part

x~q,v!5^x~v!&2pd~q!1x̃~q,v!, ~A6!

where^x(v)& can be written in the form

^x~v!&5E dv0f ~v0!
a

v02v2 ig
. ~A7!

The structure of the Maxwell equation dictates that the
flection and transmission coefficients have ad-functional
singularity in the specular direction,38 q50. Thus the wave
at

y,
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at the left-hand side of the quantum wellE2 and at the
right-hand sideE1 can be presented in the following form

E2~q,z!52pE0~eikz1r 0e2 ikz!d~q!1E0r ~q!e2 ikqz,

E1~q,z!52pE0t0eikzd~q!1E0t~q!eikqz. ~A8!

After the substitution of Eqs.~A7! and~A8! into Eq.~A5!
we obtain an integral equation for the reflection and tra
mission coefficientsr (q) and t(q). Assuming that the ran-
dom process representing the fluctuating part ofx does not
contain constant or almost periodic realizations, we concl
that x̃(q,v) does not haved-like singularities in almost all
realizations. In this case, the terms proportional tod(q) in
Eq. ~A5!, this equation must cancel each other independe
of other terms. This leads to a system of equations forr 0 and
t0 with the solutions

r 05
ih

12 ih
, t05

1

12 ih
, ~A9!

where

h5E dv0f ~v0!
G0

v02v2 ig
, ~A10!

with G0 defined by Eq.~8! with the envelope wave function
given by Eq.~A4!.

These expressions coincide with those of the effect
medium approach~EMA!, Eq ~6!, with an accuracy up to the
phase factor, which does not appear here because of
d-functional approximation for the excitonic wave functio

This derivation shows that the scattered wave consist
the random and deterministic~singular! components. The lat-
ter determines the energy flux through a detector for m
surements at the specular direction with a small angular
erture and, thus, is directly measurable. The import
feature of the deterministic component is that it obeys
Maxwell equations with averaged susceptibility. In oth
words, EMA describes only the specular component of
scattered field, but it describes this component exactly in
limit of the infinite sample. From experimental point of vie
the accuracy of EMA is limited by the finite angular resol
tion of the detector: the better the resolution the more ac
rately EMA describes the experimental results.
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