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INTRODUCTION

Lasers generate coherent radiation in various opti�
cal systems. Systems for optical data transfer necessi�
tate miniaturization of components, and conventional
lasers are inapplicable in such systems. The problem
can be solved using distributed�feedback (DFB) lasers
in which a photonic crystal with a defect mode [1–4]
serves as a cavity. The development of the technology
of DFB lasers has led to the construction of surface�
emitting lasers with a vertical cavity [5].

A conventional surface�emitting laser with a verti�
cal resonator represents a 1D photonic crystal (Bragg
mirror) with a resonant cavity [5–12]. The generated
radiation in such a device is directed perpendicularly
to the layer surface. The active medium is placed in the
resonant cavity or Bragg mirror.

The single�mode lasing is easily implemented in a
vertical�cavity laser owing to the smallness of the cav�
ity [10, 13].

In the absence of the anisotropy of cavity and
amplifying medium, the modes of the vertical�cavity
surface emitting laser (VCSEL) are degenerate with
respect to polarization. However, the mode competi�
tion leads to the linear polarization of VCSEL with a
random orientation of polarization depending on
technological fluctuations (e.g., minor wedging of
the layers of photonic crystals that is caused by tech�
nological reasons). A desired direction of the VCSEL
polarization can be obtained using anisotropic cavity
[14–16] or pumping by quantum wires or anisotropic

quantum dots [5, 17–19]. The VCSEL polarization is
sensitive to anisotropy and alternative weak effects
(e.g., magnetooptical effect). Such a sensitivity is con�
venient for practical purposes, since it allows the con�
trol of lasing using external static magnetic field.

Lasers with an external magnetic field have a long
history of study. Most results have been obtained for
the Zeeman lasers in which the magnetooptical effect
is observed in the amplifying medium [20, 21]. In the
Faraday laser [22], the amplifying and magnetic media
are spatially separated. A Faraday VCSEL that is
pumped by a quantum well in the presence of the
external magnetic field exhibits a transition to genera�
tion of elliptical polarization [23, 24].

In this work, we study the steady�state lasing of the
VCSEL that contains anisotropic and gyrotropic
(magnetooptical) layers and the active medium with
linear anisotropy. For example, the amplification can be
performed with the aid of two layers of perfectly anisotro�
pic quantum wires that provide x� and у�polarizations,
respectively.

In general, an anisotropic cavity has two modes
with different polarizations and Q factors. In the pres�
ence of pumping at which the first mode is lower and
the second mode is higher than the generation thresh�
old, the magnetooptical interaction may lead to the
total suppression of lasing (i.e., the laser can be
switched off by the magnetic field). Note that such an
effect is not observed in the magnetooptical lasers on
quantum wells [23–25] that are described with the aid
of the San Miguel–Feng–Moloney (SFM) model of
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the active medium [26–29]. In accordance with such
a model, the amplification in the VCSEL is provided
by two systems of carriers in the quantum well that
generate radiation with right� and left�hand circular
polarizations, rather than the linear polarization (as in
the system under study).

1. EQUATION OF THE DYNAMICS 
OF THE FARADAY LASER

We consider a Faraday laser based on a photonic
crystal with a defect that represents magnetooptical
medium (e.g., yttrium–iron garnet). The 1D photonic
crystal contains a system of layers that are perpendic�
ular to the z axis. We assume that the permittivity of
layers is anisotropic and the anisotropy axis is parallel
to the x axis. With allowance for the gyrotropic prop�
erties of the magnetooptical layer, the system in gen�
eral is described using the permittivity tensor

The amplifying medium represents two layers of
quantum wires with mutually perpendicular orienta�
tions parallel to the х and у axes, respectively [30]. The
magnetooptical medium is placed between the layers
of quantum wires in the resonator cavity (Fig. 1).
Thus, we consider surface�emitting Faraday laser (see
Introduction).

For simplicity, we consider the total anisotropy and
assume that the layers of quantum wires interact only
with the x� and у�polarized electromagnetic fields,
respectively [30–34].
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We consider the following dynamic variables:
amplitudes  and  of the х and y components of
electric field, respectively; polarizations σx and σy of
the x� and y�oriented quantum wells, respectively; and
population inversions  of the quantum
wells.

The dynamics of lasing is described using the fol�
lowing system of equations (see Appendix):

(1)

where  and  are relaxation times of the population
inversion and polarization, respectively, and  and 
are Q factors of the eigenmodes in the absence of the
external magnetic field  when the modes have
linear х and у polarizations. For , we also determine
eigenfrequencies  and  of the х� and у�polarized
modes, respectively, that are calculated as detunings
from transition frequency  of amplifying medium.

Note that the polarizations and eigenfrequencies of
modes depend on the magnetooptical interaction (g ≠ 0)
and the laser pumping. Such effects are taken into
account in system of equations (1).
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Fig. 1. Structure of the system. Quantum wires are located in the cavity between photonic crystals, and the active medium is
located between the quantum wires.
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2. STEADY�STATE LASING 
OF THE FARADAY LASER. 

MODE LOCKING AND ARNOLD TONGUE

We consider the regimes of lasing using system of
equation (1) with variable magnetooptical constant g
and Q factors  and . For simplicity, we use identi�
cal pumping parameters of both systems of quantum

wires  and eigenfrequencies of the
cavity modes that are equal to the transition frequency
in the amplifying medium 

The gyrotropy is absent in the absence of magneti�
zation , and the modes with the х and y linear
polarizations are independently excited by the corre�
sponding systems of quantum wells (Fig. 1). Note that
the lasing threshold depends on the Q factor. For con�

venience, we fix pumping intensity  so that the las�
ing takes place when the Q factor exceeds threshold
level Qthr. We also fix the Q factor of one linearly polar�
ized mode (y�polarized mode) at a level that is higher
than the threshold  and consider the depen�
dence of the dynamics on parameter  The mutual
independence of the linear modes leads to the con�
stant amplitude of the generation of the y�polarized
mode and the threshold for the х�polarized mode (the
dashed curves in Fig. 2).

The laser radiation is elliptically polarized when
 since the phase difference between indepen�

dent modes can be arbitrary. In the presence of the
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magnetooptical interaction between the linearly
polarized laser modes, the х� and y�polarized compo�
nents of the electric field are phase�locked. Thus, we
obtain the linear polarization and the polarization
direction is determined by the amplitude ratio of the х�
and y�polarized components. Letter G in Fig. 2a
denotes the corresponding domain of parameters, and
Fig. 2b demonstrates the polarization. Note that the
generation of the linear polarization in the presence of
the magnetooptical interaction that emerges due to
relatively strong anisotropy has been reported for gas
lasers [21].

When the Q factors of the modes in the absence of
the magnetic field are located on both sides of the
threshold  the activation of the mag�
netic field leads to the generation of a relatively small
component with the  polarization. In this case, the
phase difference of the oscillations of the х� and y�polar�
ized components is π. In this case, we obtain the linear
polarization that is almost parallel to the y axis (A in
Fig. 2a).

A transition between the above regimes takes place
in a narrow region in the vicinity of the point 
where the oscillation amplitudes are strictly identical
and the phase difference ranges from π to 0 (Fig. 2a).
Such a scenario corresponds to the transition between
orthogonal linear polarizations via elliptical and circu�
lar polarizations (Fig. 2c). Such a region of relatively
strong interaction in the vicinity of the point of identi�
cal parameters increases with an increase in the mag�
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netooptical constant and is even extended to the sub�
threshold region (Fig. 2b). It is seen that the interac�
tion of the super� and subthreshold modes may lead to
both excitation of the subthreshold mode and the total
suppression of lasing. Figure 3 shows the region of the
strong interaction of the autooscillation systems
known as the Arnold tongue. The right�hand part of
this region corresponds to the generation of the ellip�
tical polarization (circular polarization at 
and the left�hand part corresponds to the suppression
of lasing.

Note that a decrease in the Q factor of the sub�
threshold mode leads to the transition from the regime
in which the laser is switched off to the regime of gen�
eration of the superthreshold mode. For practical
applications, it is of interest that the laser can be
switched off using the activation of the static magnetic
field, which corresponds to the vertical displacement in
Fig. 3. The switching time is considered in Section 5.

3. ANALYTICAL ANALYSIS 
OF THE ARNOLD TONGUE

We search for analytical conditions for the transi�
tion between the lasing regimes (i.e., the boundaries of
the Arnold tongue). For this purpose, we determine

),x yQ Q=

the steady�state solutions to system (1). Evidently, the

zero solution  
is the steady�state solution. The zero steady�state
solutions are found using the change of time deriva�
tives  for quantities    and , and

 for quantities  and  We consider the zero
frequency detuning  and vary only Q
factors Qx and Qy:
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For the sequential elimination of variables in this
system, we use the following procedure. Quantities

 are obtained from Eqs. (2c) and (2d) and
substituted in Eqs. (2e) and (2f). Then, we find quan�
tities  and substitute the result in Eqs. (2c)
and (2d). The resulting expressions are substituted in
Eqs. (2a) and (2b). Thus, we derive the following sys�
tem of equations for quantities :
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Fig. 3. Generation regimes of the surface�emitting Faraday
laser. Unhatched region corresponds to the generation of
the linearly polarized radiation (x� and y�polarized field
components are phase�matched). The region with hori�
zontal hatching corresponds to the generation of the ellip�
tically polarized radiation with the frequency that is shifted
relative to the transition frequency of the active medium
(the x� and y�polarized components are matched with
respect to amplitude). The region with vertical hatching
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(4c)

(4d)

In the vicinity of the lasing threshold, the field
amplitude is relatively small and the terms

 in Eqs. (4a)–(4d) can be neglected in
comparison with unity. We subtract Eq. (4d) from
Eq. (4b) to obtain

(5)

This equation has two solutions.

(i) The solution  corresponds to
the in�phase oscillations of the х and у field compo�
nents, the laser radiation is linearly polarized, and
Eqs. (4b) and (4d) yield  so that the lasing takes
place at the transition frequency of the amplifying
medium.

(ii) The solution  corresponds to the
oscillations with identical amplitudes and different
phases that can be found using the difference of Eqs. (4c)
and (4a):

(6a)

The generation amplitude can be obtained from the sum

of Eqs. (4a) and (4b). Note that the term  can�
not be neglected, since it is responsible for a decrease in
the population inversion by the field and determines the
generation amplitude. Thus, we obtain

(6b)

where quantity  is introduced

with allowance for detuning  of the generation fre�
quency from the transition frequency in the given case.
To find detuning  we eliminate quantity 
in Eqs. (4b) and (6a). With disregard of quadratic

terms  and  we obtain
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In accordance with Eq. (6a), phase difference
 is not zero and the solution is elliptically

polarized. The circular polarization is obtained for
.

It is seen that the second solution to Eq. (5) exists only
under conditions that follow from Eqs. (6a) and (6b):

(7а)

(7b)

Outside the above domain of parameters (at rela�
tively large parameter  or significant anisotropy

 the above solutions are supplemented
with the solution in which the х� and у�polarized
modes oscillate at different frequencies.

Thus, three steady�state regimes are possible for
the laser under study:

(i) zero solution  and Dx =

(ii) solution with linear polarization at 
(iii) solution with elliptical polarization with

 and  that is transformed into the solu�
tion with circular polarization at .

The third solution exist only under the conditions
 and 

 Below, we demonstrate that the condition

(8)

corresponds to the boundary I of the domains in Fig. 3
(i.e., the condition for switching off by the magnetic
field).

4. LINEAR ANALYSIS OF STABILITY

To determine the parameters of the system that
correspond to the above solutions, we analyze the sta�
bility. For this purpose, we represent the field ampli�

tude as deviation  from the steady state 
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The stability is determined by the eigenvalues of
matrix:

(10)

The solution is stable if the real parts of both eigenval�
ues are negative  This condition is repre�
sented as

(11)

if radicand in formula (10) is negative

 If the radi�

cand is positive, the condition for stability is written as

(12)

A similar analysis of the stability is possible for the
solution with elliptical polarization. However, the
parameters remain unchanged: the domain of stability
for the solution with elliptical polarization coincides
with the domain of existence for solution (7).

We summarize the results of the analytical study of
the lasing regimes. In Fig. 3, boundary I that is deter�
mined by condition

(violation of inequality (12)) corresponds to the viola�
tion of stability of the zero solution at a real eigen�
value. Boundary II can be determined by either zero
amplitude of the steady�state solution (condition

 which corresponds to the

violation of inequality (7b)) or violation of the stability
of the zero solution at a complex eigenvalue (condi�

tion  which corresponds to vio�

lation of inequality (11)). Boundary III is determined
by the transition of quantity  via unity
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violation of inequality (7a)). The boundaries of
domains that result from the analysis of the steady�
state solutions and their stability coincide with the
boundaries obtained in the numerical simulation of
system of equations (1).
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Condition (8) shows that the laser can be switched
off by the magnetic field in spite of an extremely small
magnetooptical constant: we obtain a realistic value of

 at  and .

5. CHARACTERISTIC SWITCHING TIMES 
OF THE LASER GENERATION

The on–off switching of the laser generation is
interesting for practical applications. The characteris�
tic switching times are found from the linear analysis
of the stability of solutions to system (3).

The external magnetic field is needed for the sup�
pression of lasing. When the magnetooptical constant

satisfies the condition ,

the characteristics time of the switching on of the laser
generation does not depend on the magnetic field:

(14)

When the magnetooptical constant decreases to
the minimum level at which the lasing can be switched
off, the switching time tends to a finite value. At real
parameters of the system, the switching time can be on

the order of  s.
The characteristic time of the switching on of the

laser generation is determined in the absence of the
external magnetic field. It is equal to the maximum of
the two times

(15)

which is also on the order of  s.
The estimated switching times are normally greater

than the characteristic time of variation in the magne�
tooptical constant upon on–off switching of the laser
generation in the presence of the current modulation
of the optical signal [5]. Therefore, the proposed mag�
netically�controlled laser is a relatively fast device that
can be integrated in optical schemes.

CONCLUSIONS

We have analyzed a magnetically�controlled surface�
emitting laser with a vertical cavity (the VCSEL Faraday
laser). Depending on the external magnetic field, three
working regimes are possible for the laser: the absence of
lasing for both linear polarizations, steady�state lasing
with elliptical polarization at a frequency that is shifted
from the cavity frequency, and the steady�state lasing
with the linear polarization at a frequency that is equal to
the cavity frequency. A variation in the magnetic field
leads to the transitions between the regimes.

We have considered the magnetically�controlled
surface�emitting laser with vertical cavity as a magnet�
ically switched source of coherent radiation in optical
systems and determined the on–off switching time.

5~ 10 ,g −

, ~ 100x yQ ( ) , ~ 0.01x y x yQ Q Q−

(0)
0 24 2

2
x y

x y

Q Q
g

Q Q
T Dω +

−

π > π

( )(0)
0 20

21
4

.x y

x y x y

Q Q

Q Q QT QD
τ =

ω +ω −π

1010−

0
(0)

0 2

,
12

x

x

t
T

Q

QD
+

πω

ω

−

=
0

(0)
0 2

,
12

y

y

t
T

Q

QD
−

πω

ω

−

=

1010−



JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS Vol. 60  No. 1  2015

MAGNETICALLY CONTROLLED VERTICALLY EMITTING LASER 93

The estimated times are on the order of 10–10 s. There�
fore, the proposed magnetically�controlled laser is a
relatively compact and fast device that can be inte�
grated in optical schemes.

APPENDIX

Intracavity field  satisfies the equation

(A.1)

Here, polarization of the active medium results from
the averaging of dipole moments of active particles

over a small volume: 

Anisotropy and gyrotropy are considered as pertur�
bations: quantity  is represented as a sum of isotro�

pic component   is the unity matrix) and
additional component  Then expression (A1) is
represented as

(A.2)

Assuming the smallness of quantity , we find the
zero approximation in which the cavity is isotropic.
Then, the coordinate representation of expression (A1)
is written as

(A.3)

The right�hand sides of the above equations

describe polarization of the active medium  Using
transition frequency in the active medium  we rep�

resent the time dependence of polarization  as oscil�
lations at carrier frequency  with slowly (relative to
the carrier frequency) varying amplitude. Let eigenfre�
quency of unperturbed cavity  be close to frequency

. In the absence of pumping  the distribution
of field  in this mode satisfies the equation

(A.4)

We use the single�mode approximation owing to the
closeness of frequencies  and . In this approxima�
tion, the solution is represented as a product of coor�
dinate� and time�dependent functions, so that the
solution to system (A3) is represented as

(A.5)

where W  is the normalization fac�

tor,  and  are unit vectors, and  are slowly
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varying amplitudes of the x and y field components.

Thus, we disregard the terms containing 
Note that expression (A5) is the zero approximation of
Eq. (A1) with respect to anisotropy and gyrotropy.

In the derivation of the equations for , we
simultaneously take into account the perturbation of
the first order with respect to anisotropic–gyrotropic
term  For this purpose, we introduce unknown
functions  and 

(A.6)

To simplify the analysis, we derive the equations for
 in two stages. First, we derive these equations

using the field distribution in the zero approximation
(expression (A5)). Then, we demonstrate that first�
order corrections  and  to the field dis�
tribution give rise to additional terms that are propor�
tional to the product of small parameter of perturba�
tion theory  and small parameter of the single�mode
approximation  We neglect the terms
proportional to  owing to the smallness of .
Thus, expression (A6) is reduced to expression (A5).

To obtain the equation for time amplitudes, we
multiply both sides of Eq. (A2) by quantity  and
subtract Eq. (A4) multiplied by , from the resulting
expression. Then, we integrate both sides of the equa�

tion with respect to z. Quantity  given by formula (A5)

is substituted as  in the resulting equation. Thus, we
obtain the following expression:

(A.7)

where  and

 

In this equation, we disregard the quantity propor�
tional to  (i.e., the product of the small parame�
ters of the perturbation theory and single�mode
approximation or, more precisely, the approximation
of slowly varying amplitudes). The small parameters
are independent, and one of them can be significantly
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greater than another. However, the greater parameter
is more significant and we correctly disregard the qua�
dratic terms. 

The integral in expression (A7) with the integrand
in brackets is reduced to the surface integral (to the
values of function at the boundaries of the cavity in the
1D system under study) and provides the contribution
to the Q factor that is related to the escape of radiation
through the cavity walls [35]. Thus, we obtain

(A.8)

and a similar expression

(A.9)

Here, we introduce the notation for the expression in
the right�hand sides

(A.10)

and frequency detuning 
 Real part of anisotropy  leads to the

shift of the frequencies of the two cavity modes from
the transition frequency. Imaginary part  con�
tributes to loss  and the loss related to the
escape of the field from the cavity. Different losses for
the x and y components can be due to the wedging of
the layers. Note the importance of even small anisot�
ropy that is on the order of the magnetooptical factor

 for materials similar to YIG.
At the second stage of the derivation of the equa�

tions for field amplitude, we demonstrate that the zero
approximation (expression (A5)) is sufficient for the
first approximation of the perturbation theory with
respect to the solution of time equation (A1). For this
purpose, we take into account the corrections to the
field in the first approximation of the perturbation the�
ory (expression (A6)).

We consider the above procedure involving
Eqs. (A2) and (A4) that has led to Eq. (A7). At this stage,

we substitute quantity  given by expression (A6) for

quantity . When terms  and  are taken

into account, quantity  is

added to the first term in the integrand and quantity

is added to the second term in the integrand. Thus, we
obtain

Both frequency detuning  and field varia�
tion  are small quantities. We neglect the product
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of small quantities in comparison with the terms pro�
portional to a single small quantity. Thus, we substan�
tiate the application of expression (A5) for the field in
the derivation of the first�order equations for the field
amplitude.

To derive the equation for polarization, we employ
the equation of [36, 37] for the general dynamics of
polarization

(A.11)

Here,  is the population inversion of the active
medium that is averaged over a small volume (similarly
to the polarization),  is the polarization relaxation

time, and  is the off�diagonal vector matrix element
of the dipole moment. To obtain the equation for the
polarization amplitudes given by expression (A10), we

multiply both sides of Eq. (A11) by quantity 
and integrate with respect to z. The resulting expres�
sion is written as

We expand the field in terms of modes (2) in the
right�hand side with allowance for new variables

(A.12)

(subscripts α and β are x or y) to obtain the equation

(A.13)

and a similar expression

(A.14)

The equations for population inversion are derived
from the equations of [36, 37]:

(A.15)

To obtain the expressions for quantities  given by
formula (A12), we multiply both sides of Eq. (A15) by

quantity  and integrate with
respect to z. Thus, we have

(A.16)

The right�hand side of this expression is transformed
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 (γ is x or y and the sum�
mation over repeated subscripts is assumed):

(A.17)

Thus, the population inversion is described using three
variables   and  (by definition, we have

Then, we consider the pumping by two layers of
quantum wires. In the first layer  the wires are
oriented along the х axis. In the second layer ( ),
the wires are oriented along the у axis. Evidently, the х�
and у�polarized modes are independently pumped in
such a system. The polarization is concentrated in the

two layers  so that the integral
vanishes in expression (A10):

(A.18)

A similar dependence is typical of quantity  so that
the population inversion is determined by two quan�
tities

(A.19)

since the third quantity is  due to the fact that

product  is zero at any point in
space. Thus, Eq. (A17) is transformed into

(A.20)

Here, we use interaction coefficients

 that have dimension
of energy. Note that subscript γ in expression (A17) is
x or y but the term with  vanishes in the equation
for , since it is proportional to  and

 at .

We assume that  is a unit of energy
and polarization. Then, we introduce the notation

 and  and employ dimension�
less time  to represent Eqs. (A8), (A9), (A13),
(A14), and (A20)
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Using quantities  and  as

the field and polarization amplitudes, respectively, and
simplifying the notation (  and ), we
derive system of equations (1).
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