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Abstract

We report on a theoretical study of photoluminescence (PL) of the resonant one-dimensional photonic crystals, or the near-Bragg

quantum-well structures. The PL spectral intensity is found by including random sources in the equations for the exciton dielectric

polarization and introducing the discrete Green’s function. The structures without and with the dielectric contrast are considered. The

positions of peaks in the calculated PL spectra are in agreement with the real parts of the exciton–polariton eigenfrequencies. A relation

between the PL and absorption spectra is discussed.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The physics of photonic crystals, i.e. structures with
periodically modulated dielectric function allowing for
Bragg diffraction of light, is a rapidly developing field.
Among one-dimensional (1D) photonic crystals, of parti-
cular interest are the so-called resonant Bragg struc-
tures with the period d satisfying the Bragg condition
d/l(o0) ¼ 0.5 at the exciton resonance frequency o0, see
the book [1] and references therein. Experimentally,
photoluminescence (PL) spectra of the resonant Bragg
and near-Bragg quantum well (QW) structures were
studied in Refs. [2–5]. In this work we propose a theory
of secondary radiation of exciton–polaritons in multiple
QW (MQW) structures, derive equations for the PL
spectral intensity, present the results of numerical calcula-
tion and compare the PL and absorption spectra.
2. PL of a single QW (SQW)

In order to derive a general equation for the spectral
intensity of PL from MQWs we first present that for a
e front matter r 2006 Elsevier B.V. All rights reserved.
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SQW structure. In the simplest kinetic theory, the intensity
Iq of electromagnetic wave emitted by a SQW and
characterized by the wave vector q can be written by using
Fermi’s golden rule:

Iq ¼ _oqwq; wq ¼
2p
_

f qjj
jMqjj
j2d _

c

nb
q� Eqjj

� �
. (1)

Here oq ¼ cq/nb is the wave frequency, nb ¼
ffiffiffiffi
�b
p

, eb is
the dielectric constant of the barrier material assumed to
coincide with the background dielectric constant ea of the
QW (the general case of structures with the dielectric
contrast ea 6¼eb is considered in Section 3), wq is the
probability rate for the photon emission per unit in-plane
area, qJ the in-plane component of q, Ek ¼ _o0 þ

ð_2k2=2MÞ is the two-dimensional (2D) exciton excitation
energy as a function of the 2D wave vector k, o0 and M

are, respectively, the exciton resonance frequency and in-
plane translational effective mass, fk is the distribution
function defined inside the circle kpq0, with q0 being the
light wave vector at the exciton resonance frequency q0 ¼

nbo0=c and Mk is the matrix element of emission of a
photon by an exciton with the wave vector k ¼ qJ. Eqs. (1)
take into account that only excitons with koq0 can decay
radiatively while excitons with k4q0 are dark, they induce
in the adjusting barriers evanescent electromagnetic field
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which exponentially decays as expð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
� q2

0

q
jzjÞ along the

normal z to the interface plane.
Neglecting exciton scattering within the circle kpq0 we

can write

f k ¼ tkGk ;
1

tk
¼ 2ðG0k þ GkÞ , (2)

where G0k and Gk are the exciton radiative and nonradia-
tive damping rates, Gk is the rate of acoustic-phonon-
induced transitions from the exciton states with the wave
vectors k0 lying outside the circle of radiative states into the
radiative state k, namely,

Gk ¼
2p
_

X
k0Q

f k0 jVQj
2½ðNQ þ 1Þdð_oq � Ek0 þ _OQÞdk0 ;kþQjj

þNQdð_oq � Ek0 � _OQÞdk0 ;k�Qjj � . ð3Þ

Here Q and OQ are the acoustic phonon wave vector and
frequency, respectively, NQ is the phonon occupation
number, VQ the matrix element of the exciton–phonon
interaction, and both the phonon emission and absorption
processes are taken into account.

In order to go beyond validity of the kinetic equation
and take into account the effect of finite exciton lifetime on
the PL spectral width we can replace the exact d-function in
Eq. (1) by the smoothed function

D _
c

nb
q� Eqjj

� �
¼

1

_p
G0k þ Gk

½cq=nb � oðqjjÞ�
2 þ ðG0k þ GkÞ

2
,

(4)

where oðkÞ ¼ Ek=_. Then the radiation intensity can be
rewritten as

Iq ¼ _oq

p

_2
jMqjj
j2Gqjj

½cq=nb � oðqjjÞ�
2 þ ðG0qjj þ Gqjj

Þ
2
. (5)

We assume the typical kinetic energy _2k02=2M to exceed
the exciton damping rate. This allows one to retain the
exact d-function for the phonon-induced transition rate Gk

in Eq. (3).
Alternatively, Eq. (5) can be obtained with the help of a

phenomenological approach, in which noncoherent polar-
ization responsible for luminescence is modeled by a
random source term, SkðoÞ, in the equation of motion of
the exciton-related polarization:

½oðkÞ � o� iðG0k þ GkÞ�PkðoÞ ¼ SkðoÞ. (6)

This equation takes into account the interaction between
excitons and the emitted radiation by means of the term
G0k, which represents exciton radiative decay rate. We,
however, neglect here a radiative shift of the exciton
frequency. From Eq. (6) one immediately obtains

hjPkðoÞj2i ¼
hjSkðoÞj2i

½oðkÞ � o�2 þ ðG0k þ GkÞ
2
;

where the angular brackets denote the averaging over
realizations of the random source.
In the following we focus on normally emitted light
ðqjj ¼ 0Þ and fix its particular transverse polarization. This
will allow us to use the scalar amplitudes P0 � Pk¼0 and
S0 � Sk¼0 instead of the vectors Pk and Sk and to present
the electric field of the outgoing light wave in the barrier as
E0e

iqjzj where the coordinate z is referred to the QW center.
The amplitude E0(o) and the exciton polarization P0(o)
are related by [1]

E0ðoÞ ¼
i

x
P0ðoÞ; x ¼

�b
2pq0a

,

where a is the QW thickness assumed to be small as
compared to q0

�1. Then for the intensity of normally
emitted light we obtain

IðoÞ ¼
cnb

2p
hjE0ðoÞj2i ¼

cnb

2px2
hjS0ðoÞj2i

ðo0 � oÞ2 þ ðG0 þ GÞ2
, (7)

where G0 ¼ G0;k¼0 and G ¼ Gk¼0. Comparison between
Eq. (5) and Eq. (7) allows us to relate the spectral density of
the phenomenological source hjS0ðoÞj2i to microscopic
characteristics of the system:

hjS0ðoÞj2i ¼
�b

2_q0a
2
jM0j

2G0 . (8)

3. Exciton–polariton luminescence in finite near-Bragg

MQW structures

Now we can derive the general equation for the intensity
of PL from a structure containing N equidistant QWs
between semi-infinite barrier layers. In the following the
QW width, the width of a barrier separating the nearest
QWs and the period are denoted by a, b and d ¼ a+b,
respectively, and the QWs are labeled by the index
n ¼ 1,y,N. Taking into account that the random sources
Sn in different QWs are uncorrelated we can write the PL
intensity of the normally emitted light as a sum:

IðoÞ ¼
cnb

2p

X
n

hjEðnÞj2i . (9)

Here E(n) is the electric field of the secondary radiation
outgoing from the nth QW, i.e., with the radiation source
in the nth QW, and coming out into one of the semi-infinite
barriers, say, the field at the plane shifted by d/2 from the
center of the leftmost QW. One can show that it is given by

EðnÞ ¼
tn�1

1� rn�1rN�nþ1
þ

rN�ntn

1� rnrN�n

� �
i

x
Sne

iqd=2

o0 � o� iðGþ G0Þ
,

(10)

where rm and tm are the amplitude reflection and
transmission coefficients, respectively, for a substructure
comprized of m QWs and bounded by the planes shifted by
7d/2 from the centers of the leftmost and rightmost QWs.
For the particular case m ¼ 0, i.e., when the bounding
planes do not enclose any QW, rm and tm are equal to 0
and 1, respectively. Using properties of reflection and
transmission coefficients determined by their places in a
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transfer matrix describing propagation of the field through
the structure, this expression for E(n) can be presented in an
alternative form

EðnÞ ¼ �
tN

tN�n

1þ rN�ne
iqd

� � i
x

Sne
�iqd=2

o0 � o� iG
, (11)

where tN is the transmission coefficient for the entire
structure, and the resonant denominator describing ex-
citons dressed by the radiative field (term Sn= o0 � o�½

iðGþ G0Þ�) is replaced by the resonant term corresponding
to initial purely mechanical excitons ðSn= o0 � o� iG½ �Þ.
Eq. (11) emphasizes the distinct role of two factors
determining the luminescent properties of the structures
under consideration: transmission coefficient through the
structure tN reflects the role of the normal photonic modes
of the MQW structrure, while initial exciton susceptibility
determines the efficiency of the initial excitation of the
excitons by the noncoherent source.

In structures without the dielectric contrast one can use a
simpler approach based on a set of coupled linear
equations

ðo0 � o� iGÞPn0 þ
X

n00

Ln0n00Pn00 ¼ Sn dn0n,

Ln0n00 ¼ �iG0e
iqdjn0�n00 j, ð12Þ

for the dielectric polarizations Pn0 (n
0 ¼ 1, 2,y,N) with the

random source located in the nth QW. Similar to Eq. (8)
one has for the mean square

hjSnðoÞj2i ¼
�b

2_q0a
2
jM0j

2G0ðo; nÞ, (13)

with G0(o; n) given by Eq. (3) where f k0 should be replaced
by the 2D-exciton distribution function f

ðnÞ

k0
in the nth QW.

In order to analyze the role of frequency dependence of the
generation rate G0(o; n) we consider a sum of two
dimensionless integrals,

JðoÞ ¼ b
Z 1

Eþ

dEe�bE ½NðE þ _o0 � _oÞ þ 1�

þ b
Z E�

0

dEe�bENð_o� E � _o0Þ,

related to the terms in Eq. (3) due to acoustic-phonon
emission and absorption, respectively. The integral J(o)
can be used for the analysis of G0(o; n) assuming the matrix
element of exciton-phonon scattering, VQ, to be indepen-
dent of the phonon wave vector. However one has to bear
in mind that this matrix element vanishes at small Q and
the occupation number NðE þ _o0 � _oÞ diverges as E

tends to _ðo� o0Þ. These two complications can approxi-
mately be avoided by introducing in the above integrals the
limits Eþ ¼ maxf0; _ðo� o0Þ þ dg and E� ¼ maxf0; _ðo�
o0Þ � dg, where d is a fixed positive energy. The integration
results in

JðoÞ ¼
e�b_ðo�o0Þj1 for o� o0 � d;

j2 for o0 � o� d;

(
(14)

where j1, j2 are slowly varying functions of o.
For simplicity, in the following we present the PL spectra

calculated neglecting the frequency dependence of the
generation rate G0(o; n). One should bear in mind that this
dependence can be taken into account by multiplying the
spectra by a factor (Eq. (14)) or by a more complicated
approximation of the o-dependent function defined
according to Eq. (3). Simultaneously, a frequency depen-
dence of G has to be taken into consideration according to

2GðoÞ ¼
2p
_

X
k0Q

jVQj
2½NQdð_o� Ek0 þ _OQÞdk0 ;Qjj

þ ðNQ þ 1Þdð_o� Ek0 � _OQÞdk0 ;�Qjj � .

The electric field E(n) can be related to the source Sn by
the discrete Green’s function Gn0n of the system as follows

EðnÞ ¼
ðo0 � o� iGÞG1n � d1n

xG0
Sn .

The Green’s function satisfies the equation set

ðo0 � o� iGÞGn0n þ
X

n00

Ln0n00Gn00n ¼ dn0n, (15)

and can be presented in the form

Gn0n ¼ P
ðnÞ
þ eiKdn0 þ PðnÞ� e�iKdn0

þ
P0 for n0 ¼ n;

PeiKdjn0�nj for n0an:

(

Here K is the wave vector of an exciton polariton in an
infinite QW structure, it satisfies the dispersion equation [1]

cos Kd ¼ cos qd þ
G0

o� o0 þ iG
sin qd. (16)

P0, P determine the Green’s function for an infinite QW
structure and are given by

P ¼
iG0 sin qd

ðo0 � o� iGÞ2 sin Kd
,

P0 ¼ Pþ
1

o0 � o� iG
,

P
ðnÞ
� result from the internal reflection of exciton polaritons

from the outermost barriers,

P
ðnÞ
� ¼ rP

eiF� þ reiKdð2N�n�2Þ

1� r2e2iKdðN�1Þ
,

where

r ¼ �
1� e�iðq�KÞd

1� e�iðqþKÞd
,

Fþ ¼ Kdðn� 2Þ; F� ¼ Kdð2N � nÞ.
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Fig. 2. Effect of the dielectric contrast on the PL spectral shape from the

near-Bragg MQW structure with 100 wells and the cap layer of thickness

b0 ¼ d�(a/2). Curves 1–3 are calculated for the QW background refractive

index given by na/nb ¼ 0.9; 1 and 1.1, respectively. Other parameters

coincide with those indicated in the caption to Fig. 1.
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For structures with the dielectric contrast one can use the
equations [6]

rm ¼
r1 sinðmKdÞ

sinðmKdÞ � t1 sin½ðm� 1ÞKd�
,

tm ¼
t1 sinðKdÞ

sinðmKdÞ � t1 sin½ðm� 1ÞKd�
. ð17Þ

Here K is a function of o satisfying the dispersion
equation for exciton polaritons in an infinite MQW
structure, reflection and transmission coefficients from a
single QW, r1 and t1, can be found in Ref. [6]. For the
structure containing N QWs, a semi-infinite back barrier and
a front barrier of the thickness b0 between the first-QW left
interface and vacuum, the expression for E(n) is multiplied
by the factor t=ð1� eifrrN Þ, where t ¼ 2nb=ðnb þ 1Þ, r ¼
ðnb � 1Þ=ðnb þ 1Þ and f ¼ 2½b0 � ðb=2Þ�onb=c.

Fig. 1 illustrates the PL spectra calculated for a MQW
structure without the dielectric contrast. The structure
parameters are indicated in the caption. For simplicity, we
set hjSnðoÞj2i ¼ 1. The arrows indicate positions of real
parts of eigenfrequencies for four exciton–polariton modes
in the N-QW structure. The labels j ¼ N�2, N�3 and N�4
correspond to three polaritons with Re {o} satisfying
Eq. (16) with Kj ¼ ðpj=NdÞ. Fig. 2 shows the effect of the
dielectric contrast mismatch on the PL spectral shape.
Effects of the detuning from the Bragg condition and the
increasing number of QWs are demonstrated in Figs. 3 and
4, respectively.
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4. Relation between absorption and PL spectra

We define the absorbance A in an N-QW structure with
semi-infinite left- and rightmost barriers as 1� jrN j

2 � jtN j
2.

Using the representation of rN, tN in the form of Eqs. (15)
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Fig. 1. Calculated PL spectra for a near-Bragg MQW structure (1) with

semi-infinite barriers and (2) with one semi-infinite barrier and a finite cap

layer of thickness b0 ¼ d � ða=2Þ. The structure parameters chosen are as

follows: the number of QWs N ¼ 100, d/l(o0) ¼ 0.495, _o0 ¼ 1.5 eV,

na ¼ nb ¼
ffiffiffiffiffi
13
p

, _G0 ¼ 27meV, and G ¼ G0. Arrows indicate real parts of

four exciton–polariton eigenfrequencies.
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Fig. 3. Variation of the PL spectra with the period of the MQW structure

containing 100 wells. Curves 1–3 are calculated for d/l(o0) ¼ 0.495, 0.5,

and 0.505, respectively, and the cap layer of the thickness b0 ¼ d�(a/2).

Other parameters coincide with those indicated in the caption to Fig. 1.
and (18) in Ref. [7] we derive the following expression for
the absorbance:

AðoÞ ¼ 1�
1

2

Y
j

ðo� ojÞ
2
þ ðGj � GÞ2

ðo� ojÞ
2
þ ðGj þ GÞ2

, (18)

where oj � iðGj þ GÞ are the eigenfrequencies of exciton
polaritons in the N-QW structure (j ¼ 1, 2,y,N). In the
limit of small nonradiative damping the exact Eq. (18)
reduces to

AðoÞ ¼
X

j

2GGj

ðo� ojÞ
2
þ G2

j

. (19)
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Fig. 4. Variation of the PL spectra with the well number N in the MQW

structure. Solid curves are calculated for N ¼ 10 (curve 1), 30 (2), 50 (3),

and 100 (4). The calculation is performed for the structure with

d/l(o0) ¼ 0.5, na/nb ¼ 1.1, b0 ¼ d�(a/2), and other parameters are

indicated in the caption of Fig. 1. The dotted curve shows a trajectory

of the PL maximum in the IPL�o plane with increasing QW number.
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In real systems the damping rate G usually exceeds G0.
However, Eq. (19) can be useful for testing the numerical
computation of A(o). If the MQW structure is bounded
from one side, say, from the left, by vacuum the
absorbance is defined by

AðoÞ ¼ 1� RðoÞ � TðoÞ; RðoÞ ¼ jrvacN ðoÞj
2,

TðoÞ ¼ nbjt
vac
N ðoÞj

2, ð20Þ

where rvacN ðoÞ and tvacN ðoÞ are the amplitude reflection and
transmission coefficients from the N-QW structure under
normal incidence of light from vacuum.

It is instructive to relate the PL and absorbance spectra
for planar structures similarly as is done for absorption and
emission spectra of 3D crystals [8]. Let us consider a planar
multi-layered system of the thickness D neighboring
vacuum on the left and semi-infinite homogeneous medium
with the refraction index nb on the right. For photons in
vacuum and the homogeneous medium we use the bases
expðiqrÞ=

ffiffiffiffiffiffiffiffiffi
V 1;2

p
where V1 and V2 are two arbitrary

normalizing volumes and q is the photon wave vector. At
thermal equilibrium the flux of normally incident photons
of frequency o ¼ cq upon the multi-layered system from
vacuum is given by

_ocNð_oÞ½1� RðoÞ�
dqxdqydqz

ð2pÞ3

¼ _oNð_oÞ½1� RðoÞ�do
dqxdqy

ð2pÞ3
,

where c is the light velocity in vacuum, N(_o) the photon
occupation number ½expðb_oÞ � 1��1 � expð�b_oÞ,
b ¼ ðkBTÞ�1, kB is the Boltzmann’s constant, T the absolute
temperature, R(o) the reflectance, and the differentials dqx,
dqy, dqz are small compared to the average wave vector, qJz,
of the packet. The flux of photons transmitted from the
right-hand medium into vacuum via the multi-layered system
equals

_o
c

nb
Nð_oÞT 0ðoÞ

dqxdqydqz

ð2pÞ3

¼ _oNð_oÞT 0ðoÞdo
dqxdqy

ð2pÞ3
,

where T0(o) is the transmittance, i.e., the fraction of photon
flux that passes through the system from the right to the left,
and the photon dispersion o ¼ cq=nb in the medium of the
refractive index nb is taken into account. The PL spectral
intensity, I0(o), emitted by the multi-layered system into
vacuum in the state of equilibrium is defined as

I0ðoÞdo
dqxdqy

ð2pÞ3
.

Since in equilibrium the photon flux should be zero we
obtain

_oNð_oÞ½1� RðoÞ � T 0ðoÞ� ¼ I0ðoÞ . (21)

Due to the time inversion symmetry T0(o) must coincide
with the system transmittance from the left to the right.
Therefore, Eq. (21) can be rewritten in the form

I0ðoÞ ¼ _oNð_oÞAð_oÞ, (22)

relating the absorbance A(o) with the emission spectral
intensity I0(o) in accordance with Kirchhoff’s law of thermal
radiation. If the PL arises due to the indirect phonon-assisted
emission of 2D excitons and the energy distribution of
nonequilibrium excitons is characterized by the phonon
temperature T, i.e. if f k ¼ exp½bðm� EkÞ�, where m is the
exciton chemical potential, one can write instead of Eq. (22)

IðoÞ ¼ ebm_oNð_oÞAð_oÞ, (23)

where I(o) is the spectral intensity of spontaneous emission
of photoexcited multi-layered system. In equilibrium m ¼ 0
and Eq. (23) reduces to Eq. (22). If the frequency interval
under consideration is narrow as compared with the thermal
energy kBT one can set IðoÞ / Að_oÞ.
Note that an equation relating the PL spectrum with the

absorption spectrum multiplied by a Boltzmann factor was
obtained in Ref. [9] for exciton–polaritons in a quantum
microcavity by introducing the polariton density of states
and considering the PL as a direct transmission of cavity
polaritons into vacuum. However, this kind of derivation
presents difficulties for exciton–polaritons in finite close-to-
Bragg MQWs, that are open systems characterized by short
polariton radiative lifetimes, in which case the definition of
the polariton density of states is problematic [10]. On the
other hand, Eq. (22) derived here by using the requirement
of zero for the photon flux at thermal equilibrium
presupposes no additional assumptions and does not
require a definition of polariton density of states. More-
over, Eq. (23) is derived for indirect exciton emission under
the single assumption of Boltzmann distribution of
photoexcited excitons outside the radiative circle.
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The general relation between absorption and emission
can be explicitly derived for MQW structure under a
simplifying assumption of thin QWs. In this case using
definition of absorbance given by Eq. (20) one can derive
an expression for A(o) in the following form:

AðoÞ ¼
2G0G

ðo� o0Þ
2
þ G2

XN

n¼1

Enj j
2, (24)

where |En|
2 is the magnitude of the field at the center of nth

QW calculated with scattering boundary conditions. This
field, therefore, is different from the field entering Eq. (9)
for the emission intensity. In order to relate this expression
to the luminescence spectra we have to rewrite it in terms of
the reflection and transmission coefficients. It can be shown
that if the field behind the right boundary of the structure is
tN, then one has at the right boundary of nth QW

En ¼
tN

tN�n

e�iqd=2 þ rN�ne
iqd=2

� �
.

Substituting this expression into Eq. (24) and comparing
the results with Eq. (11) we finally find the following
relationship between absorption and emission spectra

IðoÞ ¼
cnb

2px2
hjSnj

2i

2G0G
AðoÞ, (25)

where hjSnj
2i is assumed to be independent of n. For a

structure with a cap layer of finite thickness, light emission
into vacuum and absorption under incidence from vacuum,
the relation coefficient in Eq. (25) is multiplied by the
refractive index nb. The calculation of the emission spectra
for frequency-independent hjSnj

2i, or G0(o; n), and the
absorbance spectra for frequency-independent G comple-
tely confirms this relation.

5. Conclusion

In conclusion, we have developed a theory of PL for
multiple QWs and established relation between their PL
and absorbance spectra. The PL spectral shape is quite
sensitive to the geometrical parameters of the structure,
namely, the period d, the number of QWs and the cap-layer
thickness, as well as the ratio of the exciton radiative and
nonradiative damping rates. A quantitative comparison
with experiment [4,5] needs a thorough fitting of these
parameters and, probably, allowance for inhomogeneous
broadening.
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