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Abstract
In order to simplify the theoretical description of spasers, a gain medium is commonly
represented by a two-level system (TLS). A realistic model, however, should have four levels.
By using the Lindblad equations we develop a description of such a system and show that
depending on ratios of the Rabi frequency and the rate of relaxation of the polarization, a
four-level system (FLS) may be reduced to one of two effective TLSs that reproduce the key
properties of a FLS.

Keywords: spaser, plasmon, gain medium, nanoparticle

(Some figures may appear in colour only in the online journal)

1. Introduction

The field of quantum plasmonics, in which the advantages of
plasmonics and quantum electronics are combined, has been
growing explosively in recent years [1–3]. However, Ohmic
losses in metals hinder numerous applications of plasmonic
systems. Various approaches have been suggested to overcome
this problem. Among them are the recent method of the plasmon
injection [4] and a more common approach that utilizes such
active media as quantum dots, dye molecules, and quantum
wells [3, 5–9]. Using active media allows one to not only
compensate losses but even to achieve an amplification of
electric field [8]. It has also led to the quality improvement of
metamaterials of optical range in which an absolute value of the
negative refraction index was increased [9].

In metamaterials, particles of active media couple with
plasmonic particles [5, 6, 9, 10] that results in forming a spaser–
nanoresonator interacting with active media [11–13]. A spaser is
a plasmonic analog of a laser, in which the plasmon oscillations

play the role of the resonator mode, and feedback is imple-
mented by the induced radiation of an inverted active medium
back into the mode.

In spasers, the population inversion of an active medium is
usually described by the Maxwell–Bloch equations for a two-
level system (TLS) [11, 12, 14, 15]. However, active media are
not two-level but more complex systems with many levels or
even bands [16, 17]. The band structure of active media was
considered in a number of papers [5–7, 18–20]. This approach,
however, requires complicated computer calculations. At the
same time, such laser characteristics as the generation threshold,
frequency pulling, and spike operation are usually described
by the simplest two-level model qualitatively correctly. None-
theless, it is well known that such an approach cannot correctly
treat some physical phenomena that are critical for spaser
operation. For example, a TLS cannot be inverted with optical
pumping [14]. To describe pumping in a TLS model, one needs
to introduce phenomenological terms into the equations. A more
adequate, but complex model for describing spasers models the
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gain medium as a three- or four-level system (FLS) [19, 21].
This approach properly reflects the main features of the active
medium, such as coherent pumping and the lasing transition.
However, the resulting system of equations (these usually are the
rate equations or the Maxwell–Bloch equations) can have non-
physical solutions, such as negative populations [22, 23].

Under certain conditions, the behavior of three- and four-
level gain media is similar to TLSs [14]. Though modeling an
active medium by a TLS greatly simplifies calculations, the
results obtained require special analysis and justification.

The dynamics of a spaser with a TLS has been shown to
exhibit Rabi oscillations [12, 15]. These oscillations seem
impossible in a four-level gain medium because achieving
the condition necessary for Rabi oscillations in a TLS
requires matching the plasmon frequency of metal nano-
particle with the working frequency of the gain medium. The
latter should be equal to the pumping frequency. With a
FLS as a gain medium, these frequencies are different and
plasmons do not have sufficient energy to excite the upper
level of the FLS. This raises the question of whether Rabi
oscillations are possible in spasers with realistic active
media.

In this paper, we show that problems with the description
of an FLS arise due to the use of uncontrollable approxima-
tions, such as a phenomenological description of relaxation
processes. We demonstrate that a description of a spaser with
a four-level active medium can be correctly reduced to a
description with an effective TLS by using the Lindblad
equations [24]. This avoids unphysical results such as nega-
tive populations [22, 23]. We show that in a spaser with a
four-level active medium, Rabi oscillations may occur and
provide the conditions for this to happen.

2. Equations for a spaser with a four-level gain
medium

Consider a spaser consisting of a plasmon nanoparticle and a
four-level molecule located nearby. A schematic of energy
levels of the molecule is shown in figure 1. We assume that
the transitions from level 0ñ∣ to level 3ñ∣ and from level 2ñ∣ to

level 1ñ∣ can be described within the dipole approximation. In
the case of dye molecules, the rates of the transitions are

2 10 s32 10
13 1G ~ G ~ ´ - and 2 10 s21

9 1G ~ ´ - [19, 25].
Thus, transitions from 3ñ∣ to 2ñ∣ and from 1ñ∣ to 0ñ∣ are faster
than 0 3ñ  ñ∣ ∣ and 2 1ñ  ñ∣ ∣ transitions by four orders of
magnitude, other transitions are forbidden. The pump is an
external field with frequency ,30w which excites molecules
into the upper state 3 ,ñ∣ the frequency 21w of the transition
2 1ñ  ñ∣ ∣ is the spaser transition. For R800 dye molecules,
the wavelengths corresponding to the frequencies 21w and 30w
are 750 nm and 300 nm [19].

The Hamiltonian of the plasmon mode of the metal
nanoparticle has the form

H a a, 1SP SPw=ˆ ˆ ˆ ( )†

where â† and â are Bose plasmon creation and annihilation
operators, and SPw is the surface plasmon frequency, which is
close to .21w The Hamiltonian of the molecule that we
represent as a generic FLS has the form

H n n n , 2mol 30 3 21 10 2 10 1  w w w w= + + +ˆ ˆ ( ) ˆ ˆ ( )

where n i ii = ñáˆ ∣ ∣ is the operator of the population at the level
iñ∣ of the FLS. The total Hamiltonian of the system is

H H H V . 3SP mol= + +ˆ ˆ ˆ ˆ ( )

The operator V̂ describes the interaction of molecule with the
nanoparticle and the pump field E .pump

˜ It has the form

V d E r E , 4M SP pump= - ⋅ +ˆ ˆ ( ˆ ( ) ˜ ) ( )

where ESP
ˆ is the operator of the electric field of the nano-

particle and r is the coordinate of the FLS. ESP
ˆ and Epump

˜ are
defined by equations

a a

t t

E E r

E E

,

exp i exp i , 5
SP

pump pump 30 30w w
= +
= + -

ˆ ( )( ˆ ˆ)
˜ ( [ ] [ ]) ( )

†

where E r( ) and Epump are amplitudes of the plasmon mode
and the pump field, respectively. Further, we use tilde to
denote expectation values Ã that can be represented as
A A t texp i exp iw w= + -˜ ( [ ] [ ]) or A A texp i ,w=˜ [ ] where A
is a slow varying amplitude and w is a certain frequency. In
equation (4), the operator of the molecular dipole moment is
defined as

d d d , 621 21 21 30 30 30s s s s= + + +ˆ ( ˆ ˆ ) ( ˆ ˆ ) ( )† †

where d21 and d30 are the matrix elements of the dipole
moment for transitions 2 1ñ  ñ∣ ∣ and 0 3 ,ñ  ñ∣ ∣ respectively,
and the operators i jijs = ñáˆ ∣ ∣ are the transition operators from
the state jñ∣ to i .ñ∣ Operators of the population njˆ are associated
with ijŝ through the relation n .j ij ij jjs s s= =ˆ ˆ ˆ ˆ†

The dynamics of the system is described by the Lindblad
equation [24]

t
H L

d

d

i
, , 7


r

r r= - +
ˆ [ ˆ ˆ ] ˆ̂ ˆ ( )

where L̂̂ is a superoperator describing the relaxation of the
FLS and the nanoparticle [26], and r̂ is the density matrix of
the whole ‘plasmon+active medium’ system for which the
Hilbert space is the direct product of Hilbert spaces of the

Figure 1. The schematic of the energy levels of the spaser gain
medium.
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plasmon and the FLS states. To preserve the positiveness of

the density matrix, the operator Lrˆ̂ ˆ must have the form [24]

L

a a a a a a

2
2

2 , 8

k l
k l

kl
kl kl kl kl kl kl

a

, 0

3

år s rs rs s s s r

g r r r

=
G

- -

+ - -

=
¹

ˆ̂ ˆ ( ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ )

( ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ) ( )

† † †

† † †

where ag is the plasmon field relaxation rate, and klG is the
relaxation rate of the population for the transition from the
state kñ∣ to the state l .ñ∣ The transition 3 0ñ  ñ∣ ∣ competes with
the transition 3 2 .ñ  ñ∣ ∣ At the same time, 30G is of the order
of10 s9 1- which is much smaller than 32G 2 10 .13~ ´( ) Terms
proportional to 30G can, therefore, be neglected.

To obtain equations for expectation values, we multiply
equation (7) by some operator Â which does not explicitly
depend on time. Then, we calculate a trace for the both part of
the equation:

t
A A H AL

d
tr

i
tr , tr . 9

d 
r r r= - +( ˆ ˆ ) ( ˆ [ ˆ ˆ ]) ( ˆ ˆ̂ ˆ ) ( )

To calculate A Htr , r( ˆ [ ˆ ˆ]) and ALtr r( ˆ ˆ̂ ˆ ) it is convenient to use
the trace invariance with respect to cyclic permutations:

A H A Htr , tr , . 10r r=( ˆ [ ˆ ˆ ]) ([ ˆ ˆ ] ˆ ) ( )

Analogously, we obtain

AL A A

a A a A a a

tr
2

tr , ,

tr , , . 11

k l
k l

kl
kl kl kl kl

a

, 0

3

år s s s s r

g r

=
G

-

+ -

=
¹

( ˆ ˆ̂ ˆ ) {(ˆ [ ˆ ˆ ] [ ˆ ˆ ] ˆ ) ˆ}

{( ˆ [ ˆ ˆ] [ ˆ ˆ ] ˆ) ˆ} ( )

† †

† †

Replacing the operator Â with the operators ,ijŝ n ,iˆ or â and
using definitions of the respective operators and the com-
mutation relations,

a, , 12ij kl kj il il kjs s d s d s= -[ ˆ ˆ ] ˆ ˆ ( )

b, , 12ij kl lj ik ik ljs s d s d s= -[ ˆ ˆ ] ˆ ˆ ( )†

n n c, , 12ij ij i js s = -[ ˆ ˆ ] ˆ ˆ ( )†

a a d, 1, 12=[ ˆ ˆ ] ( )†

a a n e, , 0, 12ij is = =[ ˆ ˆ ] [ ˆ ˆ ] ( )

we obtain equations for the respective averages.
To obtain relationships between the rates of longitudinal

and transverse relaxations, in equation (11), we substitute the
operator ijŝ for Â to obtain

L

n

tr
2

tr

2
tr 2

2
, 13

ij
k l
k l

kl
kj kl il il kl kj

lj ik kl ik lj kl

k l
k l

kl
kj ki ll il lj

lj il

l
ij il l

il jl
ij

, 0

3

, 0

3

0

3

å

å

å

s r d s s d s s

d s s d s s r

d d s d s

d s r

d s

=
G

-

- +

=
G

-

-

= G -
G + G

=
¹

=
¹

=

⎛
⎝⎜

⎞
⎠⎟

( ˆ ˆ̂ ˆ ) ([ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ] ˆ )

([ ˆ ˆ

ˆ ] ˆ )

˜ ( )

† †

where trij ijs s r=˜ ( ˆ ˆ ) and n ntr .i ir= ( ˆ ˆ ) In equations for the
polarization ijs̃ i j ,¹( ) the relaxation is described by the
second term in the right-hand side of equation (15):

Ltr
2

, 14ij ij ij
l

jl il
ij

0

3

ås r g s s= - = -
G + G

=

( ˆ ˆ̂ ˆ ) ˜ ˜ ( )

where 2ij l jl il0

3åg = G + G= ( )/ is the decay rate of the
polarization .ijs̃ Equation (14) connects the rates of relaxations
of the polarization and the population. In particular, we have

221 21 10g = G + G( )/ and 2.30 32g = G /
By using equation (11) we can find the relaxation term

corresponding to the population n :i iis=

n L n ntr . 15i
l

li l il i
0

3

år = G - G
=

( ˆ ˆ̂ ˆ ) ( )

Similarly, the relaxation term for the operator a,ˆ equation (11),
has the form

aL atr , 16ar g= -( ˆ ˆ̂ ˆ ) ˜ ( )

where a atr .r=˜ ( ˆ ˆ)
Using equations (10) and (11) we obtain the equations for

a,˜ ,21s̃ ,30s̃ and n .i We are interested in the regime with a large
number of plasmons. In this regime, quantum fluctuations and
correlations can be neglected. Therefore, averages of products
of two operators can be split into products of averages of each
of the operators. This is possible either in the case of devel-
oped spasing or if a large initial number of plasmons is
excited by pulse pumping [27].

Then, to simplify our equations, we use the rotating wave
approximation. This approximation can be used when the
molecular transition frequency 21w is close to the plasmon
resonance frequency .SPw In the framework of this approx-
imation, we can express a,˜ ,21s̃ and 30s̃ through slow ampli-
tudes a,˜ ,21s and ,30s as a a texp i ,w=˜ [ ] texp i21 21s s w=˜ [ ]
and texp i ,30 30 30s s w=˜ [ ] where w is the generation fre-
quency. Neglecting the fast-oscillating terms with frequencies

2 ,21w 2 ,30w ,30w w +( ) we obtain the Maxwell–Bloch
equations for the FLS for c-numbers

a a ai i , 17a21 21 1s d g= - W + - ( ) ( )
aD bi i , 1721 21 21 21s d g s= W + - ( ) ( )

D a a D n n n
c

2i 2 ,
17

21 21 21 21 1 32 3 10 1* *s s= W - - G + + G + G ( ) ( )
( )

n a a D n n di , 171 21 21 21 21 1 10 1* *s s= - W - + G + - G ( ) ( ) ( )

n n ei , 173 30 30 30 32 3*s s= W - - G ( ) ( )

n n fi , 1730 30 3 0 30 30s g s= W - - ( ) ( )

n n D n n g1, 170 1 1 3+ + + + =( ) ( )

where d E r21 21 W = - ⋅ ( )/ and d E30 30 pump W = - ⋅ / are
the coupling constants of the FLS with the fields of the
nanoparticle and pumping, respectively, D n n2 1= - is the
population inversion, variables 1 SPd w w= - and

21d w w= - are the detunings of the lasing frequency w from
the frequency of the plasmon mode SPw and the frequency of
the working transition ,21w respectively. Below, we consider
small detuning so that both 1d and d are much smaller than .21g

3
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In equations (17), the condition for the normalization of the
density matrix, n n n n 1,0 1 2 3+ + + = is taken into account.

3. Reduction of the FLS to a two-level

In the case when transitions 1 0ñ  ñ∣ ∣ and 3 2ñ  ñ∣ ∣ occur
faster than all other processes in a molecule, the system of
equations for the four-level gain medium (17) can be reduced
to an effective TLS [14, 15]

a a ai i , 18a21 21 1s d g= - W + - ( ) ( )

aD bi i , 1821 21 21 21s d g s= W + - ( ) ( )

D a a W D W

c

2i ,

18
21 21 21 21 pump pump 21* *s s= W - - G + ¢ + ¢ G ( ) ( ) ( )

( )

where Wpump¢ describes incoherent pumping. Though such an
approach is widely used, it is based on a phenomenological
description of relaxation, which may lead to unpredictable
results [22, 23]. We rederive the TLS approach by using on
the Lindblad equation (9).

To simplify equations (17), we consider the case of a
weak pump field which satisfies the inequality .30 32W G
This regime is usually realized in experiments for most of
lasers. The intensity of pumping at which 30 32W ~ G is about
a 4MW cm−2. At such a pump rate, at the transition
0 3 ,ñ  ñ∣ ∣ the Rabi oscillations may occur and, therefore, an
FLS cannot be reduced to a TLS. Therefore, we only consider
the regime .30 32W G

If ,30 32W G then 30s and n3 adiabatically adjust to the
instantaneous values of other variables. Therefore, their time
derivatives can be neglected:

n n a
i

, 1930
30

30
3 0s

g
=

W
-( ) ( )

n n b1
2

. 190
30 32

30
2 3

g
= +

G
W

⎛
⎝⎜

⎞
⎠⎟ ( )

The condition 30 32W G is necessary for the reduction of an
FLS to an effective TLS. If the condition 30 32W G is not
fulfilled, n3 and 30s cannot be excluded from equation (17).
Thus, this condition is necessary for the reduction of an FLS
to an effective TLS. As we show below, depending on the
relationship between the coupling constant of the field with
the working transition, a ,21W ∣ ∣ and the rate of depletion of
the lower level of this transition, ,10G we need to consider
separately the cases of strong, a2 ,21 10W G∣ ∣ and weak,

a2 ,21 10W G∣ ∣ couplings.
For the weak coupling, the population n1 adjusts to the

instantaneous values of the other variables in the same way as

30s and n :3

n
a a D

c
i

. 191
21 21 21 21

10 21

* *s s
=

- W - + G
G - G

( ) ( )

At the wavelength of 650 nm for a silver nanosphere,
10 s21

11 1W < - [15], which is smaller than .10G Substituting

equations (18a) and (18c) into equation (17с), one obtains the
equation for the population inversion of the effective TLS:

D a a D Di , 2021 21 21 21 0* *a s s b= W - - G - ( ) ( ) ( )

where

a

1
1

1 2
,

21

21

10 21

32

10 21 30 32 30
2

a
g

= +
G

G - G
+

G
G - G + G W( )

( )

b

1
1

1 2
,

21

21

10 21

32

21

10 21

10 21 30 32 30
2

b
g

= +
G

G - G
+

G
G

G + G
G - G + G W( )

( )

and D0 is the steady state population inversion which is equal
to

D c
1

2 1 2
. 210

21

32

30 32 30
2b g

=
G

G
+ G W( )

( )

Because ,21 10G G ,30 32W G and ,30 21W ~ G the quantities
a and b are close to unity. Note, that in contrast to the
standard model of a TLS (8), D0 is always non-negative (see
equation (21c) and [12]). Also, in the weak-coupling regime,
the coefficient 1a » is two times smaller than the value
given by the James–Cummings model for standard single-
mode equations [14].

After adiabatic elimination of n ,1 n ,3 and 30s (see
equations (19a)–(19c)), only three equations remain:

a a ai i , 22a21 21 1s d g= - W + - ( ) ( )

aD bi i , 2221 21 21 21s d g s= W + - ( ) ( )

D a a D D ci . 2221 21 21 21 0* *a s s b= W - - G - ( ) ( ) ( )

In the weak coupling limit, equations (22) can be simplified
further. Since we consider the case a2 21 10W G∣ ∣ and

2,21 10 21g = G + G( )/ the relaxation process is more rapid
than oscillations in equation (22b) a .21 21g W( ∣ ∣) There-
fore, similar to time derivatives of n ,1 n ,3 and ,30s the
time derivative of the polarization 21s can be neglected to
give

D
a

i

i
. 2321

21

21
s

g d
=

W
-

( )

Substituting equation (23) into equations (22a) and (22c),
one obtains the following system of two equations
describing the dynamics of a spaser with an effective TLS:

D D a D D a2 , 2421
2

21

21
2 2

2
21 0a

g
g d

b= -
W

+
- G - ∣ ∣ ( ) ( )

a
Da

a b
i

i . 24a
21
2

21
1

g d
d g=

W
-

+ - ( ) ( )

The weak coupling, a2 ,21 10W G∣ ∣ imposes restrictions on
the distance between the dye molecule and the nanoparticle.
The critical value of the distance rcr at which the transition
from the weak to the strong coupling limit occurs is deter-
mined by the formula a .21 21gW =∣ ∣ By the definition of the
coupling constant, a d E ,21 W = ⋅∣ ∣ / where rE d ,NP

3~ /

4
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dNP is the nanoparticle dipole moment which is proportional
to a ,∣ ∣ r is the distance between the nanoparticle and the dye
molecule. Using the definition of the coupling constant, we
can obtain the equation for rcr

r
d d

. 25cr
NP

21

1 3

g
=

⎛
⎝⎜

⎞
⎠⎟ ( )
/

A dipole moment of a dye molecule varies in the range from
10D to 100D, a dipole moment of the nanoparticle is about
200D, and the polarization decay rate 21g is of the order of
1013–1014 c−1 [19, 28–33]. Therefore, rcr is about 4 or 20 nm.
The electric field strength at such distances is of the order of
107–108 Vm−1. Though these values are too small for the
dielectric breakdown in the CW regime, at such values of
the intensity a destruction of a gain medium is possible.
However, if pumping is done by a pulse with small duration
and intensity, such a destruction can be prevented.

Now, let us consider a strong coupling, a2 .21 21gW ∣ ∣ In
this case, the time derivatives of 21s and n1 in equation (17)
cannot be neglected. However, we can equate to zero time
derivatives of n3 and 30s assuming that their deviations from
stationary values are negligible at any time. This approx-
imation is correct if the populations of the upper levels of
a molecule are small, n n n, , 1.1 2 3  As a consequence,
substituting n0 from equation (17g) into equation (17f) and

30s into equation (17e) we obtain

i
2

0, 2630
32

30s- W -
G

» ( )

n n
4

. 273
30
2

32
32 3=

W
G

- G ( )

Keeping in mind that the deviation of n3 from the steady value is
zero, one obtains, that n 2 .3

st
30 32

2= W G( ) Finally, we arrive at

a a ai i , 28a21 21 1s d g= - W + - ( ) ( )
aD bi i , 2821 21 21 21s d g s= W + - ( ) ( )

D a a D

n W c

2i 2

2 , 28
21 21 21 10 21

10 21 pump

* *s s= W - - G + G
+ G - G +

 ( ) ( )
( ) ( )

whereW 4pump 30
2

32= W G is the effective pump rate for the level
2ñ∣ and n n n n D22 1 1= + = + is the total population at the
working transition, which is described by the equation

n W n D d2. 28pump 10= - G - ( ) ( )

Thus, in the strong coupling limit, we reduce spaser equations
for a four-level active medium to an active medium modeled by
an effective TLS, equations (28).

Since the normalization condition n n 12 1+ = for the
effective TLS is not satisfied because n n n n1 ,2 1 0 3+ = - -
the following differences between systems of equations (17) and
(28) arise: (i) the latter system contains the additional equation
for n n n1 2= + (equation (28d)), (ii) in equation (28c), a new
term n210 21G - G( ) appears due to the relaxation process from
the level 1ñ∣ to the level 0 ,ñ∣ and (iii) D0 is non-negative because
of slow relaxation process from 2ñ∣ to 1 .ñ∣ In the next section, we
consider the changes in a spaser with a four-level gain medium
due to these differences.

4. Comparison of the dynamic of a TLS and an
effective TLS in spasers

In [13], oscillations of the number of plasmons in a TLS
spaser during the transition to a steady state were predicted.
These oscillations were identified as Rabi oscillations caused
by the exchange of quanta between the plasmon mode and the
gain medium [14]. Existence of Rabi oscillations in a TLS
is well known [15], but in a spaser with a four-level gain
medium whose operating frequency coincides with the
transition frequency between two excited states, such an
exchange of quanta seems impossible due to the rapid
relaxation of the lower level of the spaser transition.

The Rabi oscillations in a spaser should be distinguished
from the relaxation oscillations. The relaxation oscillations
may be observed at the initial stages of lasing, Their existence
requires CW pumping, whereas the Rabi oscillations in spaser
may be observed at initial pulse pumping. The frequency of
relaxation oscillations is proportional to the geometric mean
between the decay rate of the field and the longitudinal decay
rate [14]. Thus, the relaxation oscillations does not directly
connected to the level structure of the system and could be
observed both in two-level and four-level schemes. In contrast
to the relaxation oscillations, the Rabi oscillations arise
at subthreshold pump intensities [15]. In spaser the Rabi
oscillations arise due to non-radiative resonance energy
interchange by excitations between plasmonic particle and
atom [20].

In the case of the weak coupling, a2 ,R 21 10W = W G∣ ∣ a
spaser is described by equation (24). For such a value of the
Rabi frequency, the molecular polarization simply adjusts to
the plasmon field (see equation (23)) and, therefore, Rabi
oscillations do not occur. To demonstrate the absence of the
Rabi oscillations, we assume that the surface plasmon ampl-
itude a is a constant and consider the behavior of an effective
TLS in a given field. Then, the dynamics of the population
inversion is described by equation (24a). The solution of this
equation has the form

D D D a t

D

t 0 exp

,

29

st
21
2

21

21
2 2

2
21

st

a
g

g d
b= - -

W
+

+ G

+

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥( ) ( ( ) ) ∣ ∣

( )

where

D a Dst 21 21
2

21 21
2 2 1 2

21
1

0b a g g d b= G W + + G- -[ ( ) ∣ ∣ ]

is the stationary value of the population inversion in an
external field. Equation (29) describes a monotonic transition
to a steady state in a given field.

If the coupling is strong, a2 ,21 10W G∣ ∣ a spaser with a
four-level gain medium is described by equation (28). To
consider Rabi oscillations for the system of equations for
the effective TLS, we assume for simplicity that in
equations (18a), (18b) and (29), 0.1d d= = Then, the value
of the polarization 21s is purely imaginary provided that the
strength of the field a is real. At the initial moment, D has a
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steady value corresponding to the intensity of the pump in the
absence of the field at the frequency .21w The pump rate is
assumed to be lower than that required for lasing. If the pump
intensity is zero, then the gain medium cannot interact with
the plasmon mode. Figure 2 obtained as a numerical solution
of the system of equations (18) and (28) shows the dynamics
of the transition to a steady state of spasers with four-level
and two-level gain media. The initial value a 0( ) is chosen
such that a2 0 .21 10W G∣ ( )∣ As shown in figure 2, the
population inversion D of the four-level spaser oscillates. The
oscillations are damped in the time interval of the order of

.10
1G- Rabi oscillations of the four-level spaser are damped

slightly faster than that of the TLS spaser because the total
population of the spaser transition levels, n n ,1 2+ decreases
due to the transition from level 1ñ∣ to 0 .ñ∣ Rabi oscillations
occur because their period is larger than the rate of the
transition 1 0 .ñ  ñ∣ ∣ This is possible due to the high intensity
of the field acting on the gain medium. In other words, the
first level cannot clear up completely during the period of
Rabi oscillations.

Thus, unlike to the conventional TLS, in a spaser built on
a four-level active medium, to observe the Rabi oscillations,
an arbitrarily small pump power is required. Thereby, the
phenomenon of Rabi oscillations predicted within the fra-
mework of the TLS model is not an artifact but it is preserved
in a more detailed description of an active medium.

5. Conclusion

We have described a realistic spaser with a four-level gain
medium by using the Lindblad equations. This approach
assures that the populations of gain medium levels are always
positive. In the framework of this approach, the four-level
gain medium can be reduced to an effective two-level

medium for experimentally feasible pump rates. We show that
the effective TLS is described by two different systems of
equations which depend on the ratio of the Rabi frequency
and the decay rate of the polarization. We also show that a
spaser composed of a plasmonic nanoparticle and the effec-
tive TLS gain medium behaves in fashion similar to that of a
spaser composed of the same plasmonic nanoparticle and a
four-level gain medium. In particular, in the strong coupling
regime, the Rabi oscillations predicted by the TLS model are
possible in an FLS as well.
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