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Abstract—It is shown that, depending on the incident wave frequency and the system geometry, the extraor-
dinary transmission of light through a metal film perforated by an array of subwavelength holes can be
described by one of the three mechanisms: the “transparency window” in the metal, excitation of the Fabry–
Perot resonance of a collective mode produced by the hybridization of evanescence modes of the holes and
surface plasmons, and excitation of a plasmon on the rear boundary of the film. The excitation of a plasmon
resonance on the front boundary of the metal film does not make any substantial contribution to the trans-
mission coefficient, although introduces a contribution to the reflection coefficient.
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1. INTRODUCTION

In 1998, Ebbesen and coworkers [1, 2] discovered
experimentally extraordinary light transmission (ELT)
through a metal film perforated by a period array of
subwavelength holes. The transmission of light was
called extraordinary because the frequency depen-
dence of the transmission coefficient normalized to
the area of holes was nonmonotonic and exceeded
unity at some frequencies. This fact attracted attention
to the problem of light transmission through a periodic
array of holes in a metal film [3–5], because the non-
monotonic wavelength dependence of the transmis-
sion coefficient cannot be explained by considering
the transmission of light through subwavelength holes
in an infinitely thin ideally conducting screen [6–8].
Indeed, according to the Bethe theory [6], the trans-
mission coefficient of light through a circular sub-
wavelength hole in an infinitely thin ideally conduct-
ing screen normalized to the hole area is proportional
to (d/λ)4, where d is the hole diameter and λ is the light
wavelength. Assuming that the transmission coeffi-
cient through each hole in the array is independent of
the presence of other holes, the total transmission
coefficient proves to be smaller than unity and mono-

tonically decreases with increasing incident radiation
wavelength.

In the case of a finite-thickness film, the transmission
coefficient is also proportional to (d/λ)4exp(–hImq),
where k is the film thickness, q is the wavevector of a
mode in a hole (see experimental [9, 10] and theoreti-
cal [11] works). The maximum of the transmission
coefficient is observed only if the size of the hole
becomes comparable with the wavelength when the
mode of the hole becomes propagating [12–14]. In
this case, the transmission maximum is related to the
excitation of a Fabry–Perot resonance in a single hole.
For a subwavelength hole, only a monotonic decrease
in the transmission coefficient is observed with
increasing incident radiation wavelength [15].

To explain the ELT through subwavelength holes,
different mechanisms were proposed in the literature
[16–20]. The nature of this effect was qualitatively dis-
cussed in [1], where ELT was explained by excitation
of surface plasmons either on the front or rear bound-
ary of a metal film. This explanation was based on
experimental facts discovered in [1]. First, it was
found that the transmission coefficient maxima were
not observed for germanium films [1]. Because ger-
manium has the positive permittivity in the spectral
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range of measurements,1 a conclusion was made that
plasmon properties of the film material are important.
Second, it was shown experimentally that the wave-
lengths of the transmission coefficient maxima lin-
early depended on the array period. Third, it was
found that the position of the transmission coefficient
maxima depended on the angle of incidence. As the
angle of incidence was changed, the intensity of max-
ima changed; maxima could split into two and shift.
Thus, while one maximum of the transmission coeffi-
cient was observed for normal incidence, the deviation
from the normal incidence caused the splitting of the
maximum into two.

Ebbesen explained all these experimental facts
assuming that the transmission coefficient maxima
appear due to excitation of surface plasmons. The
excitation condition for a surface plasmon resonance
can be written in the form

(1)

where ksp(ω) is the wavevector of a surface plasmon, kτ
is the tangential component of the wavevector of the
incident wave, Gx, y = (2π/Lx, y)ex, y is the reciprocal
array vector, ex, y are unit vectors along corresponding
axes, n and m are integers, and kL(n, m) is a vector sat-
isfying the Laue condition. By neglecting the material
dispersion, |ksp| is inversely proportional to the inci-
dent wavelength, and the wavelengths for which con-
dition (1) is fulfilled are linearly scaled with changing
the array period Lx, y .

For normally incident light kτ = 0, the frequencies
for pairs of numbers (n, m) and (–n, –m) at which
condition (1) is fulfilled coincide, and degeneracy is
observed. For incidence at angles kτ ≠ 0, we have
|kL(n, m)| ≠ |kL(–n, –m)| and this degeneracy is lifted.
As a result, when the angle of incidence deviates from
the normal, the transmission coefficient maxima
associated with excitation of surface plasmons split
into two.

Although these qualitative considerations suggest
the importance of plasmon excitation, quantitative
discrepancies exceed the experimental error [1].
Moreover, how plasmon excitation is related to the
ELT effect remains unclear.

The possible ELT mechanism providing a quanti-
tative agreement in some cases was proposed in [17]
(see also [20, 21]), where it was shown that the trans-
mission coefficient maxima are related to excitation of
the Fabry–Perot resonance of a collective mode prop-
agating simultaneously though all holes. The Fabry–

1 The transmission coefficient was measured in [1] in the spectral
range from 200 nm to 2 μm.

τω = = + +sp( ) ( , ) ,L x yn m n mk k k G G

Perot resonance excitation condition was written in
the form

(2)
where r is the coefficient of reflection of the collective
mode from the inner boundary of the film, q is the
complex wave number of the collective mode in the
holes. An unusual feature of this resonance is that the
eigenmode in subwavelength holes is not a propagat-
ing but an evanescent mode (|exp(2iqh)| ≪ 1). For
condition (2) to be fulfilled, the reflection coefficient
should be much greater than unity, which is possible in
the case of the incidence of an evanescent wave. It was
shown in [17] that the maximum of the reflection
coefficient is observed when condition (1) for surface
plasmon excitation is fulfilled. For this reason, ELT
caused by excitation of Fabry–Perot resonances is
observed at frequencies close to the excitation fre-
quency of surface plasmons.

The ELT theory developed in [17] predicts the
position of only a part of transmission coefficient
maxima [1]. To explain other transmission coefficient
maxima, it is necessary to consider additional mecha-
nisms.

We show in this paper that, to explain all the cases
of ELT through a metal film perforated by a two-
dimensional array of subwavelength holes, three dif-
ferent mechanisms should be taken into account.
First, this is the excitation of a Fabry–Perot resonance
in holes [17], second, the excitation of a plasmon res-
onance on the rear boundary of the metal film, and,
third, the presence of a “transparency window” of the
metal [22]. In addition, we show that excitation of a
plasmon resonance on the front boundary of the metal
film makes no contribution to the transmission coeffi-
cient, although makes a contribution to the reflection
coefficient. We show that the transmission coefficient
maxima related to excitation of the Fabry–Perot reso-
nance in holes decrease with increasing film thickness
slower than the weakest decaying mode of an isolated
hole.

2. FORMULATION OF THE PROBLEM.
THE DESCRIPTION

OF THE SYSTEM UNDER STUDY
To elucidate the ELT mechanisms, consider the

problem of the normal incidence of a plane electro-
magnetic wave with frequency ω on a metal film with
thickness h perforated by an array of cylindrical holes
with a circular cross section with diameter d. We
assume that the holes are located in the sites of a rect-
angular array with boundaries coinciding with axes x
and y. The array periods along axes x and y are the
same, Lx = Ly = L (Fig. 1).

The metal film is surrounded from both sides by
dielectrics with permittivities ε1 and ε2. The wave is
incident from the side of the first dielectric. We denote

=2 exp(2 ) 1,r iqh



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 125  No. 2  2017

EXTRAORDINARY LIGHT TRANSMISSION THROUGH A METAL FILM PERFORATED 177

the permittivity of the metal film by εM.2 The z-axis is
directed perpendicular to the film surface. We will
make the metal film–first dielectric interface coinci-
dent with the z = 0 plane. In this case, the metal film–
second dielectric interface will lie in the z = h plane.

3. PROBLEM OF THE TRANSMISSION 
OF ELECTROMAGNETIC WAVES THROUGH A 

FINITE-THICKNESS METAL FILM 
WITHOUT HOLES

Note that the nonmonotonic frequency depen-
dence of the transmission coefficient is observed even
for light propagating through a continuous metal film.
Consider this problem in more detail for an electro-
magnetic wave with frequency ω incident normally on
the metal film. The transmission coefficient of the
film is described by the expression [23]

(3)

Here, rM1 and rM2 are reflection coefficients of metal–
first dielectric and metal–second dielectric interfaces;
t1M and tM2 are transmission coefficients for metal–
first dielectric and second dielectric–metal interfaces;

kzM =  is the normal component of the

wavevector in metal; kz1 =  and kz2 =  are
normal components of the wavevector in the first and
second dielectrics, k0 = ω/c.

Transmission coefficient (3) has a maximum at the
incident light wavelength λ ≈ 500 nm (Fig. 2a). The
maximum appears because at λ ≈ 500 nm, gold has a
“transparency window” when the imaginary part
ImkzM of the normal component of the wave number
has a minimum (Fig. 3a) resulting in a maximum of
the exponential in the numerator in (3).

The imaginary part ImkzM = k0Im  of the nor-
mal component of the wave number is independent of
the system geometry and is determined exclusively by
the permittivity of gold (Fig. 3b). Drastic changes in
the real and imaginary parts of the gold permittivity at

2 We assume in calculations that the film is made of gold with the
permittivity taken from [22].

ω =
−

1 2

1 2

exp( )
( ) .

1 exp(2 )
M M zM

M M zM

t t ik h
t

r r ik h

ε2
0 Mk

ε2
0 1k ε2

0 2k

εM

the wavelength λ ≈ 500 nm is explained by the fact that
for λ < 500 nm the interband transitions in gold begin
to play an important role.

In the case of the normal incidence of light on a sil-
ver film, the transmission coefficient maximum is
observed at the wavelength λ ≈ 300 nm (Fig. 2b). It
appears by the same reasons (Figs. 3c, 3d).

To consider the ELT problem in a metal film per-
forated by a hole array, it is necessary to determine the
eigenmodes of this film. Consider an infinite space
filled with gold and perforated by a periodic array of
infinitely long circular cylinders. Then, electric and
magnetic fields are periodic with the array period

where n and m are integers and L is the array period.

4. EIGENMODES OF A CIRCULAR 
CYLINDRICAL HOLE IN A CONTINUOUS 

METAL
We begin with expressions for the fields of eigen-

modes and eigenwavevectors of a single hole [24, 25],
which we will use below. In the case of a single hole,

= + +( , ) ( , ),x y x Ln y LmE E

= + +( , ) ( , ),x y x Ln y LmH H

Fig. 1. Schematic view of a film perforated by holes.
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Fig. 2. Wavelength dependences of the transmission coef-
ficient of gold (a) and silver (b) films without holes for nor-
mally incident light.
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the problem is cylindrically symmetric and therefore
electric and magnetic fields can be conveniently writ-
ten in cylindrical coordinates E(r, ϕ, z) and H(r, ϕ, z),
where r is the distance from the hole center and ϕ is the
rotation angle in the xy plane.

The dispersion equation describing modes of a cyl-
inder with diameter d with the permittivity ε1 and per-
meability μ1 located in a medium with the permittivity
εM and permeability μM [24, 25] has the form

(4)

Here, n is a natural number or zero; Jn and Hn are Bes-
sel and Hankel functions of order n, respectively; 
and  are their derivatives; d is the diameter of the

⎛ ⎞μ μ−⎜ ⎟⎜ ⎟
⎝ ⎠
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hole mode; kM = ; k1 = ;
and qz is the wavevector of the hole mode.

For the nth eigenmode of the hole, all the compo-
nents of electric and magnetic fields are proportional
to the factor

(5)

For any value of n, the infinite countable set of solu-
tions of Eq. (4) exists, which can be numerated with an
additional subscript m [24, 25].

The eigenmodes of the hole are separated into TM
and TE modes. For n = 0, such a separation is obvious.
The solutions of the equation

(6)

are TE modes, while solutions of the equation

(7)

are TM modes. For all other values of n, the rigorous
separation into TE and TM modes is impossible.

ε μ −2 2
0M M zk q ε μ −2 2

1 1 0 zk q

− ω + + θexp( ).zi t iq z in

μ μ− =0 0 11

0 1 0 1

' '( ) ( ) 0
( ) ( )

MM

M M

J k d H k d
k d J k d k d H k d

ε ε− =0 0 11

0 1 0 1

' '( ) ( ) 0
( ) ( )

MM

M M

J k d H k d
k d J k d k d H k d

Fig. 3. Real (solid curves) and imaginary (dashed curves) parts of the normal component of the wavevector in gold (a) and silver
(c) as functions of the wavelength. Real (solid curves) and imaginary (dashed curves) parts of the permittivity of gold (b) and silver
(d) as functions of the wavelength. kn = 2π/400 nm–1.
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Consider the case when ε1, μ1 = 1, μM = 1, and εM
is the gold permittivity. The wave numbers qz of the
mode of a hole with diameter d = 150 nm for the wave-
length λ = 645 nm and different n are presented in
Table 1.

Electric and magnetic fields in modes with n = 0
are independent of the angle and, therefore, such
modes are not excited by a plane electromagnetic wave
normally incident on the hole [26].

The TE mode with n = 1 (TE11) has the smallest
imaginary part Imqz part of the wavevector. In addi-
tion, as shown in [26], a plane wave normally incident
on a cylindrical waveguide with walls made of an ideal
conductor excites only one TE11 mode. Therefore, in
the first approximation we can consider only the TE11

mode.3 The wavelength dependence of Imqz for such a
mode is shown in Fig. 4.

One can see from Fig. 4b that the minimum of Imqz
is observed at λ ≈ 500 nm. As in the case of a film with-
out holes, this minimum is related to the “transpar-
ency window” of gold (Figs. 3b, 3d). As the wave-
length decreases from 800 to 500 nm, the modulus of
the real part of gold permittivity decreases (Fig. 3b),
achieving a maximum near 500 nm. The decrease in
the modulus |ReεM| of the real part of permittivity leads
to the increase in the penetration depth of the field in
metal. As a result, the effective size of the hole
increases leading to the decrease in Imqz. At wave-
lengths above 500 nm, the real part ReεM of the gold
permittivity almost does not change, while the imagi-
nary part ImεM drastically increases (Fig. 3b). The
increase in the imaginary part of permittivity results in
the increase in losses, thereby increasing Imqz.

Thus, the value of Imqz is determined by two fac-
tors. The decrease in the modulus of the real part of
permittivity results in the decrease in Imkz, while the
increase in the imaginary part of permittivity leads to
the increase in Imkz. For gold at λ > 500 nm, the first
factor dominates and for λ < 500 nm, the second fac-
tor dominates. As a result, at λ ≈ 500 nm, when the
influence of these two factors becomes the same, the
minimum of Imqz appears.

Note that both the minimum of the imaginary part
Imkz of the normal component of the wavevector in
gold and the minimum of the imaginary part Imqz of
the wavevector in the hole are observed at wavelengths

3 Modes with n ≠ 1 are excited because the modes of a periodic
system do not coincide with the modes of a single hole. How-
ever, when the distance between holes greatly exceeds the skin
layer thickness, this difference can be neglected.

close to the “transparency window” of gold. However,
their positions do not exactly coincide (Fig. 5). This is
explained by the fact that Imkz depends only on the
metal permittivity, while Imqz is determined from
expression (4) and depends both on the metal permit-
tivity and the permittivity of a material filling the hole,
the hole diameter, the mode number, etc.

Light waves incident on a metal film perforated by
a periodic array of holes can propagate both through
holes and directly through the metal. Therefore, when
the intensities of waves propagated through holes and
metal are close, the transmission coefficient has two
(or more) maxima at wavelength close to the “trans-
parency window” of gold.

Table 1. Wave numbers of TE eigenmodes of a single hole

n = 0 n = 1 n = 2

qnz ≈ (0.05 + 3.3i)kn qnz ≈ (0.023 + 1.4i)kn qnz ≈ (0.0337 + 2.69i)kn

Fig. 4. Wavelength dependences of Reqz (a) and Imqz (b)
for the TE11 mode (in units kn = 2π/645 nm–1). The hole
diameter is 100 nm (solid curves), 125 nm (dotted curves),
150 nm (dash-and-dot curves). The hole diameter is
100 nm (dashed curves) and the permittivity of the film
material is frequency-independent and equal to the gold
permittivity at λ = 645 nm.
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Note that the field-mode distribution for a single
hole in a metal film differs from the field distribution
in one of the holes for the mode of a hole array shown
in Fig. 1. However, we will consider below only a prac-
tically important case when the hole diameter d =
100–150 nm and L = 400–600 nm. In this case, the
filed tunneling from one hole to the adjacent hole is
e8 ≈ 3000 times weaker than the field on the hole
itself.4 Therefore, we can assume with good accuracy
that modes of a single hole coincide with modes in a
periodic array of holes.

5. LIGHT TRANSMISSION THROUGH
A FINITE-THICKNESS METAL FILM 

PERFORATED BY A PERIODIC HOLE ARRAY

We showed in Section 3 that the transmission coef-
ficient of a metal film without holes for a TM-polar-
ized wave has sharp maxima related to “transparency
windows” of metals. Consider now the problem of
transmission of an electromagnetic wave through a
metal film perforated by a hole array.

5.1. Where Transmission Coefficient
Maxima Come from

For a plane electromagnetic wave normally inci-
dent on a metal film perforated by a periodic array of
holes, the waves reflected from and transmitted
through the film can be expanded into a Fourier series
in plane waves with wavevectors

(8)

4 The minimal distance between hole boundaries in this case is
250 nm, while the skin layer thickness in a gold film is about
30 nm.

π π= +2 2 .nm x yn m
L L

k e e

Here, ez and ey are unit vectors along the x- and y-axes,
n and m are integers. To find the amplitude of such
harmonics, we should determine currents on a speci-
fied boundary.5

A plane electromagnetic wave incident on a metal
film perforated by a periodic hole array excites the
eigenmodes of the film. Earlier we calculated the
eigenmodes of a single hole in a continuous metal.
When the distance between adjacent holes greatly
exceeds the skin-layer thickness, the field from one
hole does not virtually penetrate into adjacent holes
and the eigenmodes of the periodic hole array can be
treated as the combination of eigenmodes of separate
holes. In other words, the field distribution EAH(x, y, z)
in the eigenmodes of the periodic hole array can be
represented as the sum

(9)

where ESH(x, y, z) is the field distribution in the eigen-
mode of a single hole. We took into account in (9) that
the plane wave is incident normally and, as a result,
the phase difference between fields in different holes is
zero.

Except modes obtained by combining the eigen-
modes of separate holes (9), the eigenmodes of the
periodic hole array also include modes analogous to
plane waves in a metal film without holes.

To solve the ELT problem, it is necessary to find
the amplitudes of all these eigenmodes excited by the
normally incident plane wave. To do this, it is neces-
sary to use the continuity conditions for tangential
components of electric and magnetic fields.

If the amplitudes of eigenmodes on the front
boundary of a metal film are , then the eigenmode
amplitudes on the rear boundary of the metal film will
be exp(iqNh), where qN is the wavevector of the Nth
mode of a hole. Hereafter, the subscript “N” denotes
simultaneously toe subscripts (n, m) numerating the
eigenmodes of the hole (see Section 4). It was shown
in the previous section that the eigenmodes of a hole
have different decay increments. When one of the
modes decays much slower than all other modes (the
TE11 mode in our case), we can assume that the ampli-

tude of this mode is exp(iq1h) and the amplitudes of
all other modes can be neglected. This approximation
cannot be applied if the coefficient  for some Kth
mode will greatly exceed the coefficient . We will
show below that this approximation is valid for our
system. Here, we recall that in the case of a single hole,

5 In practice, it is sufficient to know only the amplitudes of plane
wave which are not evanescent.
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Fig. 5. Wavelength dependences of Imkz (solid curve) and
Imqz (dashed curve) in a hole with diameter 100 nm, kn =
2π/645 nm–1. 
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a normally incident plane electromagnetic wave
excites only the TE11 mode (see the previous section).
In the case of a hole array, because of the break of the
cylindrical symmetry, only modes with n ≠ 1 can be
excited, however, their amplitudes will be small for a
large enough distance between holes. This justifies our
approximation.

A mode with the amplitude exp(iqNh) incident
on the rear boundary of a metal film is partially
reflected the coefficient  and partially penetrates
into the dielectric. The reflected wave will be again a
sum of all the eigenmodes of the system with ampli-
tudes exp(iqNh), where M is the number of the
reflected mode. The amplitudes of eigenmodes will
decrease during propagation from the rear boundary
of the metal plane to its front boundary and will be
equal to exp(i(qN + qM)h) on the front bound-
ary. Assuming that the decay decrement of the TE11
mode is the smallest, we can assume again that the
amplitudes of all other modes of the front boundary
are zero. The TE11 mode is partially reflected back

from the front boundary with the coefficient  and
partially penetrated into the dielectric under over the
film. By repeating these considerations for the
reflected wave, we finally obtain the expression for the
amplitude tnm of the wave with the wavevector knm
escaping from the film on its rear boundary

(10)

Here,  is the amplitude of the Nth mode on the
front boundary of the metal film excited by the inci-
dent plane wave with the unit amplitude,  is the
amplitude of a plane wave with the wavevector knm on
the rear boundary of the metal film excited by the inci-
dent N mode with the unit amplitude, and  and 
are reflection coefficients of the N mode from the
front and rear boundaries of the metal film.

It is important to emphasize that we calculated
reflection coefficients  and  and transmission
coefficients  and  taking into account all the
eigenmodes of the metal film perforated by the hole
array. However, we also assume that the amplitudes of
all eigenmodes except the TE11 mode decrease to zero
during propagation from one boundary of the metal
film to the other.

The maxima of transmission coefficient (10) can
be observed in the following cases:

(i) If qN has a local minimum at a certain frequency.
In real systems, the minima of qN appear due to the
presence of “the transparency window” in metals (see
the previous section);

(1)
Nt

(2)
Nr

(1) (2)
N NMt r

(1) (2)
N NMt r

(1)
Nr

=
−

(1) (2)

(1) (2)
exp( ) .

1 exp(2 )
N Nnm N
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N N N

t t iq ht
r r iq h
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Nt
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Nnmt

(1)
Nr (2)

Nr

(1)
Nr (2)

Nr
(1)
Nt (2)

Nt

(ii) if coefficients  or  have maxima in fre-
quency;

(iii) if the dominator of expression (10) vanishes,

(11)

This condition can be represented in the form of two
conditions for the amplitude and phase

(12)

(13)

where j is an integer. One can see from the table that
for the film thickness h = 100 nm, the phase incursion
after the propagation of the n = 1 mode through the
hole is hReqN ≈ 0.023 rad. Thus, for the n = 1 mode,

condition (13) is fulfilled when arg( ) ≈ 2πj.6

Such a mode is the “zero” Fabry–Perot resonance,
when the zero number of wavelengths fits in the hole
length.

To determine frequencies at which the transmis-
sion coefficient maxima related to resonances in holes
are observed, it is necessary to calculate the coeffi-
cients of reflection of the hole mode from the hole–
dielectric interface.

5.2. Calculation of the Coefficient 

Consider a plane wave with the unit amplitude
incident on an infinite-thickness metal film perforated
by a periodic hole array. To find the coefficient , we
will write the continuity conditions for tangential
components of electric and magnetic fields separately
for each Fourier harmonic. It follows from continuity
conditions for the tangential component of the mag-
netic field that

(14)

where H0(x, y) and Hr(x, y) are tangential components
of the incident and reflected magnetic fields and
Ht(x, y) is the tangential component of the magnetic
field penetrated into the film. The latter term can be
expanded in the eigenmodes of the system as

(15)

Here, H(N)(x, y) is the field distribution in the Nth
eigenmode of the system and  are expansion coeffi-
cients.

6 Similarly, for modes with n = 0 and n = 2.
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By expanding H(N)(x, y), H0(x, y) and Hr(x, y) in
Fourier series, we pass from Eq. (14) to the equation

(16)

Here,  and  are Fourier expansion coefficients
for fields Hr(x, y) and H(N)(x, y). By changing the sum-
mation order in the right-hand side of (16) and taking
into account that the equality should be fulfilled for
any values of x and y, we obtain the continuity condi-
tion separately for each Fourier harmonic,

(17)

Similarly, we can obtain the continuity equation for
each Fourier harmonic of the tangential component of
the electric field,

(18)

Using Eqs. (17) and (18), we can find the coeffi-
cients of expansion in the eigenmodes  of the system
for the field propagated through the metal field
boundary. To do this, it is necessary to express the
Fourier harmonics  and  of the electric field in
terms of the Fourier harmonics of the magnetic field,
which allows one to obtain a closed system of equa-
tions for coefficients .

Each Fourier harmonic  of the magnetic field
is perpendicular to the wavevector  and to the cor-
responding Fourier harmonic , while the electric
induction is perpendicular to the wavevector [27],

(19)

where

It follows from Eq. (19) that tangential components of
the electric induction and magnetic field are related by
the expression

(20)

To express the continuity equations for the electric
field in terms of magnetic-field components, we will
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use the equation relating the electric induction with
the electric field:

(21)

where εij are Fourier expansion coefficients of the per-
mittivity. From (21), we express the tangential compo-
nent of the electric field in terms of the tangential
component of the electric induction:

(22)

where  is a tensor inverse to the permittivity tensor

By using Eqs. (20) and (22), we rewrite the continuity
equation of the tangential component of the electric
field (18) in terms of tangential components of the
magnetic field,

(23)

Неre,  are Fourier expansion coefficients for the
Nth mode,  is tangential component of the mag-
netic field in the reflected wave with the wavevector

(8), kz =  is the normal component of the
wavevector in a dielectric, and qN is the wavevector of
the Nth mode.

Equations (17) and (23) form a closed system of
equations for coefficients . Below, we will calculate
coefficients  taking into account a finite number of
Fourier harmonics and a finite number of eigenmodes
of the system. To define the system of equations for
coefficients , we will take into account equal num-
bers of Fourier harmonics and eigenmodes of the sys-
tem.

Note that Eqs. (16)–(23) neglect the excitation of
waves with polarization different from that of the inci-
dent wave. In the case of a plane wave normally inci-
dent on a single hole, waves with such polarization are
not excited because of the cylindrical symmetry of the
problem.

Upon the normal incidence of a plane wave on a
film perforated by a periodic array circular holes,
polarization is preserved if the polarization of the inci-
dent wave is directed along one of the vectors of this
array. In the general case, polarizations of the
reflected and transmitted waves can differ from that of
the incident wave. Polarization changes because the
eigenmodes of the system differ from the modes of a
single hole and do not have the cylindrical symmetry.
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In this work, we consider the case when the dis-
tance between holes greatly exceeds the skin-layer
thickness and fields in different holes weakly affect
each other. As a result, polarizations of the reflected
and transmitted waves weakly differ (or do not differ at
all) from polarization of the incident wave.

5.3. Calculation of Coefficients , , and 

The reflected field of the Nth mode incident on the
hole in metal–dielectric interface is a sum of all the
modes of the system with coefficients rNM. To find
coefficients rNM (we are interested first of all in the
coefficient rN = rNN), we write the continuity condition
for each Fourier harmonic on the boundary of tangen-
tial components of electric and magnetic fields for the
TM mode,

(24)

(25)

where kz =  is the normal component of
the wavevector in the dielectric, qN is the wavevector of

the Nth mode,  are Fourier expansion coefficients

for the Mth mode, and  is the wave amplitude in the
dielectric with the tangential component of the
wavevector (8).

By solving the system of equations (24), (25), we
obtain the values of coefficients rNM from which the

required coefficients  (or ) are equal to rNN. The

coefficient  is also found from system (24), (25) and

is equal to .

6. DETERMINATION OF THE WAVELENGTHS 
OF TRANSMISSION COEFFICIENT MAXIMA 
IN THE CASE OF A SMALL-DIAMETER HOLE

6.1. Limit of Infinitesimal-Diameter Holes

Knowing the wave numbers qN of the eigenmodes

of the system and coefficients , , , and , we
can find the wave amplitude tnm with the wavevector
knm on the rear boundary of the metal film (10). How-
ever, systems of equations (17), (23), and (24), (25) are
infinite systems of linear equations and do not admit
an analytic solution.
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To obtain analytic expressions for coefficients ,
, , and , we consider the limit of an infinites-

imal-diameter hole (k0d → 0). In this case, the wave
numbers of all modes become identical7 and the
matrix  becomes diagonal with diagonal elements
equal to , which allows us to pass from systems of
equations (17), (23) and (24), (25) to two systems of
equations

(26)

(27)

and

(28)

(29)

Here, q is the wave number of hole modes in the case
when the hole diameter tends to zero,  is the mag-
netic field amplitude in the reflected wave for the N
mode,

(30)

and  is the magnetic field amplitude in the
reflected wave,

(31)

where SnmM is a matrix with the nmMth element equal

to . It follows from Eqs. (30) and (31) that

(32)

(33)
It follows from the system of equations (26), (27) that
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In turn, it follows from the system of equations (28),
(29) that

(35)

7 Indeed, in the limit k0d → 0 for n ≠ 0, we obtain

(k0d)/Jn(k0d) → n/k0d and (k0d)/Hn(k0d) → –n/k0d. As a
result, dispersion equation (4) no longer depends on the mode
number n.
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Here, εM and ε1, 2 are permittivities of the metal and
dielectric, the subscript “1” corresponds to reflection
from the front boundary of the film and the subscript
“2” to reflection from the rear boundary.

As a result, we obtain

(36)

(37)

Coefficients  and rNM have maxima when the reso-
nance condition

(38)
is fulfilled.

However, the coefficient  is nonzero only for n =
m = 0, when  = ω/c and therefore resonance con-
dition (38) is never fulfilled for . Coefficients rNM
are nonzero for arbitrary n and m and resonance con-
dition (38) can be fulfilled.

For all modes with n ≠ 0, the wavevector q tends to
k0  for k0d ≠ 0. Therefore, condition (38) is ful-
filled when the modulus of the tangential component
of the wavevector knm (38) is

(39)

Note that for |εM| ≫ ε1, 2, the relation

(40)

takes place, where ksp is the real part of the wave num-
ber of a surface plasmon on the metal–dielectric
boundary. In other words, the maximum of the reflec-
tion coefficient rNM is observed when the tangential
component of the wavevector of the incident wave is
equal to the wavevector of a surface plasmon.

     Thus, reflection coefficients  and  (i.e.,
rNN) have maxima when condition (39) is fulfilled. In
the case of subwavelength holes, eigenmodes are eva-
nescent and therefore exp(–2hImqN) → 0 with
increasing the film thickness. In this case, Fabry–
Perot resonances in holes can be observed only when
| | ≫ 1 (see the amplitude Fabry–Perot resonance
condition (12)). Therefore, the position of the trans-
mission coefficient maxima in thick films is deter-
mined by condition (39), which for |εM| ≫ ε1, 2 is close
to the excitation condition of a surface plasmon on the
metal–dielectric interface.

Transmission coefficient maxima (10) can be
related not only to Fabry–Perot resonances in a hole,
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but also to the maxima of  (the excitation coeffi-
cient of a plane wave with the tangential component of
the wavevector knm by the Nth mode on the rear
boundary of the metal film). When the hole diameter
k0d → 0, the coefficient  is determined from the sys-
tem of equations (28), (29),

(41)

Thus, the positions of  maxima coincides with that
of kNM maxima.

      The transmission coefficient tnm of a metal film

perforated by a hole array is proportional to  (see
Eq. (10)), therefore, independent of the film thick-
ness, the position of transmission coefficient maxima
is determined by condition (38). For |εM| ≫ ε1, 2, this is
the excitation condition for a surface plasmon on the
metal–dielectric boundary.

Note, however, that condition (38) is fulfilled only
for waves with the tangential component of the
wavevector kres > (ω/c)ε1, 2. Therefore, such waves
exponentially decrease with increasing distance from
the metal film surface and do not contribute to the
transmitted radiation intensity.

As a result, in the limit of an infinitesimal hole
diameter k0kd → 0, the intensity maxima of transmit-
ted radiation can be related only to Fabry–Perot reso-
nances in holes in the metal film. We will show below
that, when a finite diameter of the hole is taken into
account, the intensity maxima of transmitted radia-
tion can be related not only to Fabry–Perot reso-
nances but also to the maxima of . Such maxima
can be interpreted as excitation of Bloch surface plas-
mons on the rear boundary of the metal film. At the
same time, coefficients  have no maxima even in the
case of finite-diameter holes. Because of this, exci-
tation of Bloch surface plasmons on the front bound-
ary of the metal film do not give rise to transmission
coefficient maxima. Their influence can be mani-
fested in the appearance of the reflection coefficient
maxima.

6.2. The Case of Finite-Diameter Holes
We considered above the limiting case of a small-

diameter hole (k0d → 0). In the general case, coef-

ficients rNM,  are found from the system of equa-
tions (24), (25). This system of equations is infinite
and therefore its solution can be found only approxi-
mately. To find the solution, we pass on to the finite
system of equations
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(43)

In Eqs. (42), (43), unlike (24), (25), summation over
M is performed for a finite number of modes. The
number Mmax of considered modes determines the
accuracy of solving the system of equations (24), (25).
The contribution from all other modes is taken into
account in the form of the term

(44)

in Eq. (42) and the term –q  in Eq. (43), where q =
k0 . Here, we took into account that the eigen-
wavevector of the mode qM tends to q with increasing
the mode number. Therefore, we can reduce the
infinite number of modes with numbers M > Mmax to
one effective mode with the wavevector q.

The system of equations (42), (43) allows us to find
coefficients rNM,  with any preliminarily specified
accuracy. However, it is difficult for analytic consider-
ation. To find analytic expressions for positions of the
maxima of coefficients rNM and , we will assume
that

at the maximum of rNM. As a result, we obtain the sys-
tem of equations

(45)

(46)

We are interested in the mode reflection coefficients
,  of “the hole in metal–dielectric interface,”

which coincide with coefficients rNN. Therefore, we
will consider only the case of N = M. In this case,
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By solving Eqs. (47), (48), we can no longer assume
that the tensor  ≈ , where  is the unit matrix.
Indeed, in this case,

(49)

and

−

=

⎛ ⎞
ε − − =⎜ ⎟

⎜ ⎟ ε⎝ ⎠
∑

max
1 ( ) ( ) ref

1,20

ˆ .
M

N M tz
N nm M NM nm nm nm

M

k
q h q r h qh h

∞

= +

= ∑
max

ref ( )

1

M
nm NM nm

M M

h r h

ref
nmh

εM

(2)
Nt

(2)
Nt

≈∑
( ) ( )

' ,M M
NM nm NM nm

M

r h r h

≈∑
( ) ( )

' '
M M

M NM nm M NM nm

M

q r h q r h

+ =( ) ( ) ,N M t
nm NM nm nmh r h h

−ε − =
ε

1 ( ) ( )

1,2

ˆ ( ) .N M tz
N nm M NM nm nm

k
q h q r h h

(1)
Nr (2)

Nr

+ =( )(1 ) ,N t
NN nm nmr h h

−ε − =
ε

1 ( )

1,2

ˆ (1 ) .N tz
nm N NN nm

k
h q r h

−ε 1ˆ −ε 1 ˆ
M I Î
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where εH is the permittivity in the hole. Therefore, it

seems that, when L2 ≫ d2, we can assume that  ≈
 and  ≈ 0. However, as a rule, |εM| ≫ ε1, 2 and

coefficients  and , , … prove to be of the same
order of magnitude. For example, in the case of a gold
metal film perforated by a periodic array of holes with
diameter d = 100–150 nm and period L = 400–
600 nm,

(51)

and

(52)
Therefore, for d ≈ 150 nm and L ≈ 400 nm, we have
| | ≈ | | ≈ | |. Therefore, in Eqs. (47), (48), along
with , it is necessary to take into account coeffi-
cients , , ….8

For each pair of values of n and m, the effective per-
mittivity can be introduced as

(53)

By using the effective permittivity, the reflection coef-
ficient can be written in the form
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The coefficient rNN has a maximum under the reso-
nance condition

(55)

Condition (55) is fulfilled when the tangential compo-
nent of the wavevector knm is

(56)

In other words, the maxima of the reflection coeffi-
cient rNN are observed under the condition

(57)

8 When d < 100 nm and L > 600 nm, | | ≫ | | and we can

assume approximately that  ≈ , where  is the unit
matrix.
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It follows from Eq. (57) that the positions of max-
ima of the transmission coefficient  coincide with
those of the reflection coefficient rNN. Unlike the case
of an infinitesimal hole diameter, the positions of
maxima of  are independent of n and m and are
determined by the position of the maximum of rNN. In
particular, the transmission coefficient maximum is
observed for a wave with the zero tangential compo-
nent of the wavevector. Such a wave propagates with-
out decay with distance from the rear boundary of the
metal film and transfers energy away from the film.

Thus, in the case of finite-thickness holes, the
intensity maxima of transmitted radiation can be
related both to excitation of Fabry–Perot resonances
in holes and excitation of Bloch plasmon modes on the
rear boundary of the metal film.

7. COMPARISON OF ANALYTIC RESULTS 
WITH NUMERICAL CALCULATIONS

7.1. Transmission Coefficient Spectrum
To test the theory constructed, we compare trans-

mission coefficients of a metal film perforated by a
hole array obtained from the system equations (47),

(2)
Nt

(2)
Nt

(48) with the results of numerical simulation using the
Comsol Multiphysics 5.2 software (Fig. 6).

One can see from Fig. 6 that the theory qualita-
tively correctly describes all the maxima of the trans-
mission coefficient. Moreover, it well enough predicts
the position and intensity of the maxima and minima
of the transmission coefficient (Fig. 6). The discrep-
ancy between analytic results and numerical calcula-
tions is explained by the single-mode approximation
used in calculations (see Section 4.1).

7.2. Dependence of the Transmission Coefficient
on the Film Thickness

We showed in the previous section that maxim of the
transmission coefficient can be related to Fabry–Perot
resonances in holes, Bloch plasmon modes on the rear
boundary of the metal film and “transmission win-
dows” of metals. The intensities of transmission max-
ima related to Fabry–Perot resonances and Bloch plas-
mon modes differently depend on the film thickness.

The maxima of the transmission coefficient related to
Bloch plasmon modes are proportional to exp(–hImqN),
where qN is the wavevector of the most slowly decaying
eigenmode of the hole. In our case, this the TE11

Fig. 6. Wavelength dependences of the transmission coefficient. Solid curves correspond to numerical calculations, dotted curves
to analytic calculations. The film thickness is 100 nm, the hole diameter is 150 nm, the array period is WL = 400 (a), 450 (b),
500 (c), and 550 nm (d). 
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mode. In turn, the maxima of the transmission coeffi-
cient related to Fabry–Perot resonances in holes are
proportional to

(58)

where γ(h) is the decay decrement of the transmission
coefficient. It follows from Eq. (58) that

(59)

Near the Fabry–Perot resonance,

and, as a result, γ(h) < ImqN.
Thus, transmission coefficient maxima related to

Fabry–Perot resonance in holes decrease with
increasing the film thickness slower than the ampli-

− = −γ
− 1 (2)

exp( Im ) exp( ( ) ),
|1 exp(2 )|

N

N N N

h q h h
r r iq h

γ = + − 1 (2)1( ) Im ln(|1 exp(2 )|).N N N Nh q r r iq h
h

− �
1 (2)|1 exp(2 )| 1N N Nr r iq h

tude of the most slowly decreasing eigenmode of the
hole (γ(h) < ImqN).

Numerical simulations of the transmission coeffi-
cient of a gold film perforated by an array of holes con-
firm that the transmission coefficient maximum
related to Fabry–Perot resonances in holes (for λ ≈
650 nm) decreases much slower than all other maxima
(Fig. 7a). Moreover, this maximum decreases with
increasing the film thickness slower than the ampli-
tude of the most slowly decreasing eigenmode qN of
the hole (Fig. 7b).

Different dependences of the amplitudes of trans-
mission coefficient maxima related to Fabry–Perot
resonances or Bloch plasmon modes on the rear
boundary of the metal film on the film thickness allow
us to simply determine the mechanism of the maxi-
mum appearance.

8. CONCLUSIONS
The appearance of transmission coefficient max-

ima is explained be three different mechanisms. Each
mechanism dominates in a certain region of parame-
ters.

First, transmission coefficient maxima appear in
“the transparency window” of real metals (gold, silver,
etc.), i.e., at frequencies where the absorption mini-
mum is observed. The amplitude of the electromag-
netic wave on the rear boundary of a metal film is
equal to the sum of amplitudes of electromagnetic
waves transmitted through holes in the metal film and
the amplitudes of electromagnetic waves transmitted
through the metal. When the amplitudes of waves
transmitted through holes and metal are close, the
transmission coefficient has two (or more) maxima at
wavelengths close to the “transparency window” of
the metal.

Second, transmission coefficient maxima can
appear due to excitation of Fabry–Perot resonance in
holes in the metal film described in [17].

Third, transmission coefficient maxima can appear
due to excitation of Bloch surface plasmon modes on
the rear boundary of the metal film.

It was shown in our paper that excitation of plas-
mon modes on the front boundary of the metal film
does not produce transmission coefficient maxima.

It was also shown that in the “thick” film limit (the
film thickness h > 100 nm), transmission coefficient
maxima related to excitation of Fabry–Perot reso-
nances in holes are observed at frequencies for which
the excitation condition for surface resonances on the
front and rear boundaries of the metal film is fulfilled.

We also showed that the amplitudes of the trans-
mission coefficient maxima related to excitation of
Fabry–Perot resonances in holes decrease with
increasing the film thickness slower than the most
slowly decaying mode of the hole.

Fig. 7. (Color online) (a) Wavelength dependences of the
transmission coefficient. The hole diameter is 150 nm, the
array period is L = 600 nm, the film thickness is 80 nm
(blue solid curve), 100 nm (green solid curve), and 120 nm
(red dash-and-dot curve). (b) Dependences of the trans-
mission coefficient on the film thickness at the maximum
at about 650 nm. The hole diameter is 150 nm, the array
period is L = 600 nm. The green curve is the decay decre-
ment of the most slowly decaying eigenmode of the hole.
The red and black curves show the real decay decrement
for film thicknesses 100 and 180 nm.
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