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1. INTRODUCTION

In connection with the rapid progress of plasmon�
ics in recent years [1–5], much interest has been
attracted to the problem of the influence of interaction
between two�level atoms and plasmonic structures on
their optical properties. For example, one can men�
tion the dipole nanolaser [6, 7], spaser [8, 9], nanos�
cale light emitters [10, 11], and active metamaterials
[12–19]. The starting point for these studies was the
paper by Purcell et al. [20], after which the investiga�
tion of the effect of the environment on the spontane�
ous emission of an atom commenced (see [21] and ref�
erences therein). In particular, the influence of nano�
structures on the resonance fluorescence spectrum of
atoms in the context of Purcell’s approach was consid�
ered in [22, 23].

The resonance fluorescence spectrum (Mollow
triplet) was measured for the first time in [24, 25] and
was calculated theoretically in [26, 27]. This triplet is
described by two parameters: the linewidth and atom–
field coupling constant (Rabi frequency). The effect of
a plasmonic nanoparticle on the resonance fluores�
cence spectrum of a two�level atom was first analyzed
in [23], where both the modification of the atom radi�
ation field caused by the presence of the nanoparticle
and the change in the local field in the vicinity of the
nanoparticle caused by the particle’s reemission (i.e.,
the renormalization of the Rabi frequency) were taken
into account.

In this approach, however, the phases of both atom
and nanoparticle dipole moment oscillations are dis�
regarded. The resulting interference may lead to a

non�Lorentzian shape of the spectrum. The fluores�
cence spectrum can have a so�called Fano resonance
shape (on the Fano resonance, see [28]). It should also
be noted that, in the case of a small nanoparticle
(≤20 nm), only a minor fraction of the external�field
energy is reemitted, the major fraction being spent on
Joule losses in the metal [29] (the characteristic nano�
particle nonradiative decay time is τa ~ 10–14 s [30]). For
this reason, the number of plasmons (energy quanta of
the nanoparticle near field [31]) excited in the nano�
particle becomes small or comparable to unity. In this
case, quantum fluctuations of the near field of the
nanoparticle should be taken into account.

Here, we consistently take into account the effect
of quantum fluctuations and correlations on the
dynamics of the nanoparticle and the two�level atom
in the approximation of small plasmon number. We
demonstrate that, as the atom gets close to the nano�
particle, the shape of the Mollow triplet becomes
asymmetric owing to the Fano resonance. When the
atom and nanoparticle are still nearer to each other,
the side maxima disappear, so that the triplet degener�
ates into a single Lorentzian.

2. DYNAMICS OF AN ATOM IN THE FIELD 
OF AN EXTERNAL ELECTROMAGNETIC 

WAVE: RESONANCE FLUORESCENCE 
SPECTRUM

Let us consider the interaction of a single two�level
atom with an external monochromatic electromag�
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netic wave E(r, t) = E0cosνt. The Hamiltonian of the
system can be written as follows [32–34]:

(1)

where  = �ωTLS  is the Hamiltonian of the

two�level atom and the operator  = –
describes the interaction between the two�level atom

and the field of the external wave. Here,  =

μTLSetls[ (t) + (t)] is the dipole moment operator

of the atom, where  =  is the operator of the
transition between the excited and the ground states of
the atom (  and , respectively), μTLS =  is
the magnitude of the dipole transition matrix element,
and eTLS is the unit vector in the direction of the dipole
moment. For simplicity, let us assume that the fre�
quency of the external field coincides with the atomic

transition frequency (ωTLS = ν). Substituting  =
exp(iωat) and neglecting antiresonance terms (the

rotating�wave approximation [35]), one obtains the
following expression for the interaction Hamiltonian:

 = �Ω(  + )/2, where Ω = –EµTLS/� is the Rabi
frequency.

To describe the process of the atom relaxation, one
can introduce a reservoir representing a set of bosonic
modes (e.g., phonons) that interact with the atom and
discard the interaction with this reservoir at a later
stage [36]. As a result, the atom dynamics can be
described by the following optical Bloch equations
[34]:

(2)

(3)

(4)

here, the operator  =  –  represents the
atomic level population inversion, τσ describes the

atom relaxation, and operators (T) and (t) rep�
resent the Markovian noise sources. The latter are

characterized by zero average values  =

 = 0 and are δ�correlated, i.e.,  =

(2/τσ)δ(t – t ') and  = [4(1 +

)/τσ]δ(t – t ') [34].
The spectrum of the atom can be determined from

Eqs. (2)–(4) using the quantum regression theorem
[26]. Here, we state this theorem in the form most
convenient for the subsequent discussion [32, 37]. Let

, , …,  be a finite set of operators of a system
that interacts with the reservoir so that noise in this

Ĥ ĤTLS ĤTLS–w,+=
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†
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†

σ̂̃

D̂ iΩ σ̂ σ̂+–( ) 2 D̂ 1+( )/τσ– F̂D t( ),+=
.
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σ̂+ σ̂+
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F̂D t( )F̂D t '( )〈 〉

D̂〈 〉

X̂1 X̂2 X̂n

system is Markovian and δ�correlated. The dynamics
of the system is described by the following linear equa�
tions:

(5)

where the matrix Mij and the free term ξi are deter�
mined by the properties of the system and the noise

operator (t) is δ�correlated, i.e.,  =
2Dijδ(t – t ').

Then the theorem states that the average values of

two�time correlation operators  satisfy
the following set of equations:

(6)

Since Eqs. (2)–(4) represent a set of linear equa�
tions, we can immediately use the quantum regression
theorem and obtain the following expression for the
emission spectrum [33]:

(7)

Here, I0(r) =  determines the

dependence of the spectrum on the position of the
observation point (where η is the angle between the z
axis and the dipole, located in the xz plane, and r is the
radius vector from the dipole to the observation point),
and the frequency dependence is determined by the
following four terms:

(8)

(9)

(10)

(11)

here, μ = (Ω2 – 1/4 )1/2, A± = 3P/2τσ ± Q(ωTLS ± μ –

ω), P = [2Ω2 – (2τσ)2]/[2Ω2 + (2/τσ)2], and Q =
[10Ω2 – (1/τσ)2]/2μτσ[10Ω2 + (2/τσ)2] [33]. One can
see that the shape of the spectrum depends on the
external field intensity. At low intensities, the domi�
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nant contribution comes from the Rayleigh scattering
(term s1(ω)), which, for a strictly monochromatic
external field, exhibits a δ�function behavior (the
coherent contribution). For high intensities, the spec�
trum represents a Lorentzian line with a central peak
(term s2(ω)) at the external�field frequency and two
Lorentzian lines (terms s3(ω) and s4(ω)) shifted from
the central line by the Rabi frequency in the high�field
limit; the widths of these three lines (which form the
Mollow triplet) are determined by the atom relaxation
rate.

Below we consider how the shape of this spectrum
changes in the presence of a metallic nanoparticle in
the vicinity of the atom. Thus, terms responsible for
the dynamics of the near field of the nanoparticle will
be taken into account in Hamiltonian (1).

3. HEISENBERG–LANGEVIN EQUATIONS 
FOR THE INTERACTING NANOPARTICLE 

AND TWO�LEVEL SYSTEM IN AN EXTERNAL 
FIELD

Now, let us consider the effect of a nanostructure,
e.g., a metallic nanoparticle, on the resonance fluores�
cence spectrum of the atom. We assume that (i) the
distance r between the atom and the nanoparticle sat�
isfies the condition kr � 1, and, thus, their interaction
can be described as the near�field interaction of two
dipoles, and (ii) the atom transition frequency coin�
cides with the plasmon�resonance frequency of the
nanoparticle dipole mode. For describing the quan�
tum dynamics of the nanoparticle and two�level atom
in an external field, we use the following model
Hamiltonian [12, 13, 31, 38]:

. (12)

Here,  = �ωSP  is the Hamiltonian of the
nanoparticle at the plasmon�resonance frequency

ωSP;  and  are the Bose creation and annihilation
operators of the dipole surface plasmon, respectively

[5, 8, 35]; and operators  = – and

= –dTLSENP describe the interaction of the
nanoparticle with the external monochromatic wave
and the two�level atom, respectively.

The nanoparticle polarization at the plasmon�res�
onance frequency is described by the equation of an
oscillator with a frequency equal to the plasmon�reso�
nance frequency:

(13)

Let us introduce Bose creation, (t), and annihila�

tion, (t), operators of the dipole surface plasmon,

Ĥ ĤNP ĤTLS V̂TLS�NP V̂TLS–w V̂NP–w+ + + +=

ĤHP ẫ
+

ẫ

ẫ
+

ẫ

V̂NP–w d̂NPÊ

V̂TLS�NP

d··NP ωSP
2 dNP+ 0.=

ẫ
+

ẫ

satisfying the commutation relation [ (t), (t)] = 1.
Then, the dipole�moment operator can be written as

(14)

and the harmonic�oscillator Hamiltonian is expressed

as  = �ωSP . In order to find , we compare
the energy of a quantum and the energy of a single
plasmon

(15)

In the case of a spherical nanoparticle, the electric
field inside and outside the particle equals Ein =

⎯ /  and Eout = –µNP/r3 + 3(  ⋅ r)r/r5,
respectively. Let us take into account that

(16)

As a consequence of the Laplace equation
∇[Reε(ωSP)∇ϕ] = 0 and the boundary conditions

εin  = εout , the second term in the braces van�

ishes:

(17)

In addition, we assume that the medium outside the
nanoparticle has no dispersion, i.e., ∂εout/∂ω = 0.

ẫ ẫ
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Then, we obtain the following expression for the plas�
mon energy:

(18)

As a result,

(19)

from whence  = . For

convenience, let us designate µNP = / . Thus,

the particle dipole moment operator is  = µNP(  +

), where µNP = eNP (on the
quantization procedure, see also [31]).

Thus,  = �ΩR(  + )(  + ), where
ΩR = [µNPµTLS – 3(µTLS ⋅ er)(µNP ⋅ er)]/�r3 (here, er =
r/r is the unit vector) is the Rabi frequency for the
interaction between the two�level atom and the nano�
particle.

Let us seek solutions of the form (t) ≡ (t)exp(–iωt)

and (t) ≡ (t)exp(–iωt), where (t) and (t) are
the slowly varying amplitudes. Disregarding rapidly
oscillating terms ~exp(±2iωt) (the rotating�wave
approximation [35]), one can express the interaction

Hamiltonian  in the Jaynes–Cummings form
[33]:

(20)

Let the dipole moments of the two�level atom and the
nanoparticle be collinear and oriented along the x axis.
Then, the interaction between the nanoparticle and
the external wave assumes the form

(21)

where α = .

The decay of the nanoparticle dipole moment can be
described similarly to the decay of the dipole moment of
an atom [39]. Starting from Hamiltonian (4), we obtain
the following equations of motion describing the
dynamics of the average values of the operators:

(22)

(23)
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ẫ
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(24)

(25)

(26)

Equations (22)–(26) contain average values of the
products of two operators. Using Hamiltonian (7), we
can now write equations for these operator products.
However, these equations will contain averages of the
products of three and four operators, etc. Thus, there
emerges an infinite chain of equations for the average
values.

As was noted in the Introduction, owing to high
Joule losses in metallic nanoparticles (τa ~ 10–14 s, so

that Ω � ), the number of plasmons excited by the

external field is smaller than unity:  ~ (αΩτa)
2 ≤ 1.

Consequently, the average values of operator products
containing plasmon creation or annihilation operators

in the second or higher powers ( , ,
etc.) are also smaller than unity. Disregarding terms of
the second and higher orders in the plasmon creation
and annihilation operators, we obtain the following
closed set of equations for the operator averages:

(27)

Here,

(28)

(29)

and

(30)

where
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, (32)

(33)

(34)

(35)

(36)

(37)

(38)

The dimension of matrix (30) is 13 × 13; M11, M12,
M21, and M22 are 5 × 5 matrices; M33 is a 3 × 3 matrix;
M13 and M23 are 5 × 3 matrices; and M31 and M32 are
3 × 5 matrices.

Equation set (27) describes the dynamics of the
interacting atom and nanoparticle in the field of an
external wave. The set is linear, which means that the
spectrum of an atom in the presence of a nanoparticle
can be determined using the quantum regression the�
orem.

We recall that the observation of a triplet spectrum

requires that the condition  = /� �  be
valid. At the same time, the restriction imposed on the
magnitude of the external field by the small�plasmon�

number condition is Ω � . The experimental decay

constant for metallic nanoparticles is τa ~ 10–14 s and
that for semiconductor quantum�dot implementa�

tions of the two�level system is τσ ~ 10–1 s, i.e.,  �

Ω � . Thus, there is a range of external�field ampli�

tudes (  � Ω � ) where the atom spectrum has a
triplet shape, while the number of plasmons in the
nanoparticle is small. Thus, in a wide range of external
fields, the effect of the nanoparticle on the resonance
fluorescence spectrum may be analyzed under the
assumption that the number of plasmons is small.

4. ATOM SPECTRUM IN THE PRESENCE
OF THE NANOPARTICLE

According to the Wiener–Khinchin theorem, the
spectrum S(ω) is given by the Fourier transform of the

two�time correlation function . We
assume hereinafter that the dipole moments of the
nanoparticle and the two�level atom are collinear and
oriented parallel to the x axis, the electromagnetic
wave is linearly polarized along the x axis and propa�
gates along the y axis, and the observation point is

located on the z axis. Then, E <  =

I0(r)〈[α (t + τ) + (t + τ)][α (t) + (t)]〉, where

I0(r) = ( /c2 )2. The factor I0(r) will be
dropped in the calculations below. Thus, in order to
calculate the spectrum of the system, we need to
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find the operator averages ,

, , and .
These quantities can be determined by applying the
quantum regression theorem, expressed by Eq. (6), to
equation set (27). In this way, the following set of
equations for the required average values is obtained:

(39)

here, , x0, and M are given by Eqs. (28)–(30),
respectively.

Equation set (39) was solved numerically. The Fou�

rier transforms of  are shown in
Figs. 1–4. In the case where the nanoparticle and the
atom do not interact (Fig. 1), the spectrum represents
a sum of the resonance fluorescence triplet (Mollow
triplet) and the broad line of the nanoparticle. As the
nanoparticle–atom interaction increases, the side
peaks of the resonance fluorescence spectrum merge

â+ t τ+( )â t( )〈 〉

â+ t τ+( )σ̂ t( )〈 〉 σ̂+ t τ+( )â t( )〈 〉 σ̂+ t τ+( )σ̂ t( )〈 〉

∂
∂τ
���� x̂i t τ+( )x̂j t( )〈 〉

=  Mik x̂k t τ+( )x̂j t( )〈 〉 x0i x̂j t( )〈 〉 ,+

x̂

E r t τ+,( )E+ r t,( )〈 〉

into the widening central peak. Characteristically, this
“merger” occurs asymmetrically for each peak. First,
the right peak gets “swallowed” (Fig. 2), so that only
two peaks (the central and left ones) remain (Fig. 3).
One can see that the spectrum assumes the shape of a
Fano resonance line, typical of situations with two
interacting oscillators. In the case under study, the
external field acts to excite the system, and a shift
between the phases of the dipole moments sets in only
owing to the interaction between the nanoparticle and
the atom.

As the strength of the interaction between the
nanoparticle and the atom increases further, the left
spectral peak becomes absorbed as well. When this
interaction is much stronger than the interaction with
the external field (i.e., ΩR � Ω), the spectrum repre�
sents a Lorentzian line whose width is proportional to

, i.e., to the square of the atom–nanoparticle cou�

pling constant (Fig. 4).

ΩR
2

Fig. 1. Spectrum of the atom–nanoparticle system in an
external filed for ΩR = 0. Fig. 2. Same as in Fig. 1, but for ΩR = 4 × 1012 s–1.

Fig. 3. Same as in Fig. 1, but for ΩR = 8 × 1012 s–1. Fig. 4. Same as in Fig. 1, but for ΩR = 2 × 1013 s–1.
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5. CONCLUSIONS

Thus, we have investigated the effect of the interac�
tion between a nanoparticle and an atom on the reso�
nance fluorescence spectrum. We have shown that the
shape of the Mollow triplet is modified upon an
increase in the atom–nanoparticle interaction
strength. First, the right peak disappears and the spec�
trum assumes a shape typical of a Fano resonance line.
The physical origin of this behavior can be understood
if we consider the interacting nanoparticle and two�
level atom as two coupled oscillators. Owing to their
interaction, the phase shift between the oscillating
dipole moments of the nanoparticle and the atom
depends on the detuning between the external excita�
tion frequency and the oscillator resonant frequencies.
The resulting interference leads to a Fano resonance
feature superimposed on the resonance�fluorescence
spectrum. An important fact is that, for a certain
strength of the atom–nanoparticle interaction, the
right peak of the Mollow triplet disappears, while the
left peak is still present. As the interaction becomes
still stronger, the spectrum degenerates into a Lorent�
zian line whose width is proportional to the square of

the atom–nanoparticle coupling constant .
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