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The diffusion constant of classical waves propagating in random media with microstructure resonances is ob-
tained. Renormalizations of D that are due to expansions in transferred momentum q and frequency v in the
Bethe–Salpeter equation are taken into account. The diffusion constant is estimated for scalar waves propa-
gating in the medium with randomly distributed dielectric spheres with the use of the nondiagonal off-shell
transition matrix for penetrable scatterers. A detailed comparison of different sources of renormalization is
made. Differences between previous calculations based on the on-shell scattering matrix and new results
implementing the off-shell scattering matrix are discussed.  1996 Optical Society of America
1. INTRODUCTION

The resonant effects in the propagation and the multi-
ple scattering of classical waves in random media have
recently attracted a lot of attention.1 – 11 Usually, a ran-
dom medium is treated as an unbounded collection of ran-
domly distributed point scatterers.12 – 15 This assumption
simplifies calculations greatly, allowing one to use the
conventional perturbation methods to describe transport
properties of waves. In the case of weak disorder when
lyl .. 1, where l is the mean free path and l is the wave-
length, one obtains the diffusion equation for the wave
intensity with the rate of flow given by the diffusion co-
efficient D ­ cly3,15 where c is the speed of waves in the
medium. However, in practice such ideal systems do not
exist. All samples are bounded, and all scatterers are of
particular shape and size. It is well known that a wave
packet scattered from an object of finite size should spend
additional time tW on the scattering process itself, in con-
trast to the point scatterers, for which this time is equal to
zero. The quantity tW is called Wigner or dwelling time
in the electron theory.16 Even if tW itself is small, one
can obtain sizable corrections to the diffusion constant in
a medium with a large number of scatterers, and this ef-
fect is even more significant for classical waves because
of the resonant behavior of their scattering matrix when
scatterers are comparable in size with the wavelength.
These resonances can be obtained from the solution of
the boundary-value problem for an electromagnetic wave
scattered from the dielectric sphere and are known as Mie
resonances.17 Recently, it was suggested by the Amster-
dam group1 – 3 that these resonances are responsible for
the sizable reduction of the transport velocity appearing
in the diffusion constant of classical waves, propagating
through the random distribution of identical Mie spheres.
Thus the conventional expression for D can no longer be
applied to describe diffusion in a medium with the scatter-
ers of finite size. The lowering of the diffusion constant
as a result of the resonant contribution shows that consid-
erable care is needed in interpreting the low values of D in
studies for the search of classical wave localization.18 To
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interpret these low values of D properly, one must calcu-
late from first principles all possible sources contributing
to its reduction.

The usual way to obtain the diffusion constant is to
look for the asymptotic behavior of the average intensity
of the wave, I sq, vd, where q and v are the transferred
momentum and frequency, respectively.4,6,11,15 The func-
tion I sq, vd satisfies the Bethe–Salpeter (BS) equation,19

which is a generalized form of the conventional Boltzmann
kinetic equation. Two approaches have been favorable
for further studies of the BS equation. One can find D by
considering the low-density limit of the BS equation and
then expanding in powers of q and v, retaining only the
lowest-order terms.1,4,6,9 – 11 The alternative approach
is the coherent potential approximation used by Kroha
et al.,7 which leads to numerical computations. De-
spite the similarities in methods used, different results
have been obtained. Barabanenkov and Ozrin6 and in-
dependently Kroha et al.7 have shown that the trans-
port velocity is not lowered, as it was predicted by the
Amsterdam group, but rather renormalized in the same
way as the phase velocity. However, the Amsterdam
group has shown that the conclusion made in Ref. 6,
nE ­ cp 1 Osn2d, where n is the density of scatterers, is
due to neglect of the off-shell contribution into the photon
density of states. The proper treatment of the density
of states provides the desirable renormalization of nE .
The generalization of the well-known coherent potential
approximation was developed by Soukoulis et al.8 Ac-
cording to this approach a basic scatterer in the medium
is a coated dielectric sphere, thus taking into account the
short-range order induced by the spherical shape of the
scatterers. The effective transport velocity and the dif-
fusion constant were studied numerically, and reasonable
agreement with experiment was obtained.

An additional contribution to the renormalization of
D was discussed in the paper by Cwilich and Fu.4 It
originates from the coefficients of the q expansion in
the BS equation, whereas the coefficients in the v ex-
pansion are responsible for the renormalization obtained
by other authors.1,6,9 The reason that these terms were
1996 Optical Society of America
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overlooked in other theories is that the BS equation for
both electrons and classical waves can be supplemented
by the Ward identity (WI). Substitution of the electronic
WI into the BS equation cancels all corrections to the
diffusion constant. The WI for classical waves derived
by Barabanenkov and Ozrin20 is different from its elec-
tronic counterpart, and it preserves terms in the v ex-
pansion in the BS equation. However, for v ­ 0 and
q fi 0, both WI’s coincide, thus canceling terms in the
q expansion. The authors of Ref. 4 have questioned the
applicability of the WI for the case v ­ 0 and q fi 0.
They have performed the power-series expansion with re-
spect to the variable q in the WI and have shown that
terms in that expansion are not canceled. They have
concluded that the known WI is indeed not valid and
that it cannot be used in its present form in the BS
equation.

Another aspect of the calculations of the diffusion con-
stant requires additional attention. Resonant correc-
tions to D involve partial derivatives of the scattering
t matrix for a single scatterer with respect to the mo-
mentum p ­ jpj and energy E. The following proce-
dure of numerical evaluation of the corrections to D,
based on the fact that the scattering occurs on shell
p ­ p0 ­ Eycp, has been adopted in Refs. 1–4. The on-
shell approximation has been applied to the scattering
matrix tp,p0 sEdjp­E/c ­ tsEd, and then derivatives with
respect to E have been taken. As far as derivatives with
respect to the momentum are concerned, it was concluded
from the dispersion relation p2 ­ E2ycp

2 1 nf s p, Ed
that, in the limit of low densities, ≠y≠p ø cp≠y≠E 1 Osnd.
These assumptions simplify calculations significantly,
since the on-shell scattering matrix is simple enough and
well known.12,14 This approach can, however, lead to in-
correct results. The t matrix for point scatterers, for ex-
ample, is initially independent of momentum, and thus its
partial derivatives with respect to momentum should be
equal to zero, whereas the above approach leads to a finite
result. Moreover, the functional dependence ts pd is com-
pletely different from tsEd. The off-shell matrix may also
include terms proportional to p2 2 E2, which would be
zero if the on-shell approximation is applied first and then
derivatives with respect to either p or E are taken. If
derivatives are taken before the application of the on-shell
approximation, the finite result is obtained. Therefore
the off-shell scattering matrix must be used for numerical
evaluations.

In the present study we derive the general expression
for D with possible sources of renormalization taken into
account. This expression is obtained without employing
the WI and differs from results obtained by both the Ams-
terdam group1 – 3 and Cwilich and Fu.4 To make numeri-
cal evaluations, we calculate the off-shell t matrix for a
penetrable dielectric sphere. A comparison between our
correction to the diffusion constant, where the off-shell
scattering matrix is used, and the results of the Amster-
dam group for scalar Mie scatterers is made. We find
that the functional behavior of our correction is different
from the results obtained by the Amsterdam group. We
also consider the case of acoustic waves in a hydrodynamic
medium. We find strong enhancement in the correction
to the diffusion constant compared with the results pre-
viously obtained by Cwilich and Fu.4
2. BASIC EQUATIONS
To calculate the correction to the diffusion coefficient,
we use the formalism of Refs. 1 and 4. We consider the
wave equation for a scalar monochromatic field cV srd of
frequency V:"

=2 1

√
V

c

!2

esrd

#
cVsrd ­ 0 , (1)

where c is a speed of wave propagation in the nonab-
sorbing random medium and esrd is the refraction index,
which is a random function of r. After the formal sub-
stitutions

sVycd2kel ­ E, sVycd2fkel 2 esrdg ­ V sr, Ed , (2)

where k?l stands for averaging over disorder, Eq. (1)
formally coincides with the Schrödinger equation for
a particle in the energy-dependent potential V sr, Ed.
We will further use the notation E instead of V. The
field csr, td generated by the point source at r ­ r0 is
csr, td ­ Gsr, r0; td, where Gsr, r0; td is the Green func-
tion of Eq. (1). On account of the condition of macro-
scopic homogeneity, jGsr, r0, tdj2 averaged over disorder
has translational invariance, i.e., it depends upon jr 2 r0j

only, and, furthermore, kjGsr, r0, tdj2l is a wave intensity
I sr 2 r0, td that is due to a source at a point r0. After
performing the Fourier transform in the space domain
and the Laplace transform in the time domain, we obtain
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Fpsq, v; Ed , (3)

where the notations p6 ­ p 6 qy2 and E6 ­ E 6 vy2 6

i0 were introduced and we defined the advanced sG1d and
the retarded sG2d Green functions as

G6
E sr, r0 d ­

Z `

0
dt expfisE 6 i0dtgGsr, r0, td . (4)

The function

PE sr 2 r0, td ­
P
p

Fpsr 2 r0, t; Ed (5)

may be regarded as the Fourier transform of the
E component of the averaged intensity excited at r0

at t ­ 0. Therefore, in the weakly scattering regime,
PE sq, vd must exhibit a singular behavior as q, v ! 0,
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from which the diffusion coefficient can be evaluated.
The Fourier transform Fpsq, v; Ed is related to the
disorder-averaged Green functions,

kG6
E6

sp, p0 dl ­ dsp 2 p0 dfj6
2 2 p2 2 S6sp, E6g21

; G6
E6

spddsp 2 p0 d , (6)

where j6 ­ Eyc 6 i0 and S6 is the self-energy, defined
by the BS equation,

"
2

Ev

c2 1 2q ? p 1 S1sE1, p1d 2 S2sE, p2d

#
Fpsq, v; Ed

­ DGpsq, v; Ed

"
1 1

Z d3p0

s2pd3
Up,p0 sq, vdFp0 sq, vd

#
.

(7)

Here Up,p0 sq, vd is the irreducible four-point vertex, and
DGpsq, v; Ed ; G1

E1
sp1d 2 G2

E2
sp2d. To observe correc-

tions to the diffusion constant, one must take into ac-
count the information about such geometrical properties
of the individual scatterers as their shape and size. It
can be accomplished within the framework of the low-
density approximation, according to which S and U are
expressed through the scattering matrix tp,p0 for a single
scatterer: S6sp6, v; E6d ­ ntp6,p0

6
sE6d, Up,p0 sq, vd ­

ntp1,p0
1

sE1dtp0
2,p2

sE2d. Care must be taken to ensure
that the density of scatterers n is small enough to al-
low the weak-scattering approximation to be valid. Since
we are interested in the singular behavior of Fpsq, v; Ed
when q, v ! 0, our next step is to perform an expansion
of the self-energy and the vertex in terms of the variables
v and q:
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with

Ksp, p0 d ­ in Im

("
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≠p2
1

1 2 m
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#
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)
. (9)

In deriving these equations, we have taken into account
that in the case of elastic collisions the scattering matrix
tp,p0 depends on the magnitude of the momenta, jpj2 ­
jp0j2, and on the cosine of the scattering angle m ­ sp ?

p0 dyp2 only. We have also denoted the phase shift of
the scattering matrix as fp,p0sEd according to tp,p0 sE1d ­
jtp,p0 j expsifp,p0d. After substitution of Eqs. (8) into the
BS equation we obtain
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In order to find the diffusion coefficient from this equa-
tion, we find it useful to introduce, besides the func-
tion PEsq, vd defined by Eq. (5), the correlation current
JE sq, vd ­

P
p sp ? q dFpsq, v; Ed. The quantities PE

and JE satisfy a system of equations that we can obtain
in two steps: first, by integrating Eq. (10) over all out-
going momenta and, second, by multiplying Eq. (10) by
p ? q and performing the same integration. This yields
two relations for PE and JE :
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where k?lm denotes the angular averaging over all out-
going momenta and the phase velocity cp is defined as
cp ; cyf1 2 nc2 RestppdyE2g1/2. In deriving Eqs. (11) and
(12), we have used the fact that, first, in the low-density
approximation the density of photon states is sharply
peaked at jpj ­ Eycp and, second, that the imaginary part
of the scattering matrix is related to the differential cross
section of scattering by the optical theorem:

2Imstppd ­
E

4pcp
kjtp,p0 j2lm . (13)

Solving Eqs. (11) and (12) for PE and taking into account
that it has a diffusive pole PE / s2iv 1 q2Dd21, we find
the diffusion constant D:
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where D0 ­ 1y3cplT is the classical diffusive constant with
the transport mean free path lT defined as

lT ­
1

nks1 2 mdjtp,p0 j2lm

. (15)

Since Eq. (14) is valid for low densities, we rewrite it,
retaining terms of the first order in n only:

DsEd ­ D0h1 1 f fasEd 1 DsEdgj ,

DsEd ­
2
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where f ­ Vn is the volume-filling fraction and V is a
characteristic volume of a scatterer. The terms DsEd and
asEd originate from the nominator and the denominator
of Eq. (14), respectively.

The term asEd coincides exactly with the correction to D
obtained by Barabanenkov and Ozrin.20 Since the Am-
sterdam group has considered the transport velocity nE

rather than the diffusion constant, comparison between
their results and Eqs. (16) is straightforward if one as-
sumes the applicability of the expression D ­

1
3 nElT for

the diffusion constant. Then the term asEd is equal to
the correction following from the results of Refs. 1–3.
The term DsEd is the result of the expansion in the vari-
able q and is missing in Refs. 1–3 and 6. It was first
discussed by Cwilich and Fu.4 Thus Eqs. (16) represent
the most general expression for the renormalization of the
diffusion constant in the low-density approximation. For
the purpose of numerical comparison between Eqs. (16)
and previously obtained results the exact expression for
the nondiagonal off-shell t matrix must be known. The
details of the calculation of tp,p0 for the case of scalar
waves are given in the next section.

3. CALCULATION OF THE
OFF-SHELL ttt MATRIX
In order to calculate a nondiagonal off-shell transition or
t matrix for a single scatterer, we will utilize the general
formalism developed in Refs. 23 and 24. We introduce
the retarded and advanced Green functions J6

Esr, r0 d for a
problem of scattering from a single scatterer that satisfy
the differential equations
s=2 1 j6
2dJ6

E,outsidesr, r0 d ­ dsr 2 r0 d (17)

outside the single scatterer and

s=2 1 M2j6
2dJ6

E,insidesr, r0 d ­ dsr 2 r0 d (18)

inside the scatterer of average index of refraction M .
Equations (17) and (18) should be supplemented by
boundary conditions that for permeable scatterers have
the following form:

J6
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­
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É
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The equation that defines a transition matrix for a single
scatterer can be written in a wave-number representation
as

J6
Esp, p0 d ­ J6

E,0sp, p0 d 1 J6
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p,p0 sEdJ6
E,0sp, p0 d ,

(20)

with the matrix elements of the free-space Green operator
JE,0 given in the wave-number representation by

J6
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2 2 p2d21dsp 2 p0 d . (21)

Then the desired matrix elements are found to be
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2 dsp 2 p0 dfJ6
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In order to calculate the fill Green function J6
Esp, p0 d, we

find it convenient to solve for J6
E sr, p0 d, which satisfies

the differential equations

s=2 1 j6
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s=2 1 M2j6
2dJ6

E,insidesr, p0 d ­ expsip0rd (24)

with the boundary conditions given by Eqs. (19) and then
to perform the Fourier transform with respect to the re-
maining space variable. For a dielectric sphere of index
of refraction M and radius a one obtains, after lengthy
but straightforward calculations,
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where jlsxd are spherical Bessel functions of lth order,
hs6d

l sxd are spherical Neumann functions of the first fhs1d
l g

and the second fhs2d
l g kind, Plsmd is the Legendre polyno-

mial of lth order, and j 0
l sxd ­ djlsxdydx. It is worthwhile

to mention that when the on-shell limit is used in Eq. (25)
the well-known result22 for scalar Mie scatterers is
reproduced.

4. DIFFUSION CONSTANT
FOR SCALAR WAVES
After performing the angular averaging in Eqs. (16), we
obtain with the help of Eq. (25) expressions for D and a
for the case of scalar waves:
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where R is the radius of the scatterer and x ­ pR is the
size parameter. The coefficients Al and Bl are defined as
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The function blsx, yd is given by

blsx, yd ­
Mj 0

l sMydjlsxd 2 jlsMydj 0
lsxd

Mj 0
l sMydhs6d

l s yd 2 jlsMydhs6d0
l s yd

(28)

and can be recognized as a van de Hulst coefficient
for the TE mode of the vector Mie sphere22 when y ­
x. Below we attempt a numerical comparison between
Eqs. (26)–(28) and the previously obtained results1 – 3 for
the scattering by scalar Mie spheres. We would like to
mention that our results are also valid for acoustic waves

Fig. 1. Comparison among corrections to the diffusion constant
as a function of size parameter x for M ­ 1.5: thick curve,
correction calculated in this paper; dashed curve, correction asxd
obtained by the Amsterdam group1 – 3; thin curve, Dsxd, correction
obtained by Cwilich and Fu.4

Fig. 2. Same comparison as in Fig. 1 but for M ­ 2. In this
case, in contrast to Fig. 1, all three corrections show a definite
structure with spikes at frequencies close to the internal reso-
nances of the scatterers.

Fig. 3. Same comparison as in Fig. 1 but for M ­ 2.73. In
order to provide a good resolution of the functional behavior of
all corrections, we have omitted the principal Mie resonances
that are in the form of narrow spikes with an amplitude as large
as 700.
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Fig. 4. Our correction to the diffusion constant in the
off-shell (thick curve) and on-shell (thin curve) approximations
for M ­ 1.5.

Fig. 5. Same corrections as in Fig. 4 but for M ­ 2.

Fig. 6. Same corrections as in Fig. 4 but for M ­ 2.73.

in the hydrodynamic media considered in Ref. 4 for the
case M ­ z, where z is an impedance.

Three corrections to the diffusion constant—asxd,
obtained by the Amsterdam group1 – 3; Dsxd, obtained
by Cwilich and Fu4; and our correction, given by
Eqs. (16)—are shown in Figs. 1–3. It is important to
point out that the on-shell t matrix has been used in
the evaluation of both asxd (Refs. 1–3) and Dsxd (Ref. 4),
whereas Eqs. (26), implementing the off-shell t matrix,
have been employed in the evaluation of our correction.
To make a thorough comparison among different correc-
tions, the results in Figs. 1–3 have been plotted not only
for the same value of M ­ 2.73 (Fig. 3) as in Refs. 1–3
but also for M ­ 1.5 (Fig. 1) and for M ­ 2 (Fig. 2). The
last choice is rather arbitrary and is based only on the fact
that for M . 2 all three corrections exhibit strongly reso-
nant behavior that makes a detailed comparison among
different corrections difficult. One the other hand, one
would expect Mie resonances to be washed out for values
of M , 2, as can be seen in Fig. 1. It is evident from the
figures that, despite the similarities in the vicinity of the
principal Mie resonances at x ø 1, 1.5, 2, 2.5, 3, 3.5, 4, and
4.5, our correction exhibits different functional behavior
from that previously known. Moreover, the magnitude
of our correction for the principal Mie resonances is much
larger than the magnitude of both asxd and Dsxd. For
example, for the fourth Mie resonance located at x ­ 2
sM ­ 2.73d the magnitude of our correction is of the or-
der of 700, whereas the magnitude of asxd is of the order
of 500.

The importance of the off-shell approximation is demon-
strated in Figs. 4–6, where we have plotted our correction
calculated with the help of on-shell (thin line) and off-shell
(thick line) t matrices for the same values of M as those in
Figs. 1–3. The changes caused by the off-shell approxi-
mation for the transfer matrix are significant for all val-
ues of x and for all three indices of refraction. This effect
can be attributed to the specific structure of the deriva-
tive of bls p, jd with respect to p involved in Dsxd, in con-
trast to that of ≠bls p, jdy≠j at constant p involved in asxd.
The energy derivative contains differentiation of both the
numerator and the denominator of the van de Hulst co-
efficient and therefore is proportional to ≠blsxdy≠x, which
leads to sharp resonances in asxd. The derivative with
respect to p involves only the numerator of bls p, jd, and
it can be shown to be proportional to blsxd. The magni-
tudes of the resonances in blsxd are much smaller than
those in ≠blsxdy≠x for M . 2 (both terms can be of the
same order for M , 2), and they are much less sensi-
tive to the value of the index of refraction. In the case
of the on-shell approximation, however, Dsxd depends on
≠blsxdy≠x and therefore exhibits resonances as strong as
those of asxd. As a result, the functional behavior of the
total correction to D, asxd 1 Dsxd, is significantly altered.

5. CONCLUSION
In conclusion, we have calculated the general expres-
sion for the renormalization of the diffusion coefficient
for classical waves propagating in a random medium
with microstructural resonances. The diffusion constant
is estimated in the low-density limit for scalar waves.
Numerical calculations require the off-shell scattering
matrix, which is obtained. The renormalization terms
show a functional behavior significantly different from
that obtained by other authors, where the on-shell ma-
trix was implemented. The importance of the off-shell
approximation for the evaluation of the diffusion constant
is demonstrated. The ultimate goal is to make a com-
parison of the obtained results with experimental data
(see, for example, Ref. 21). However, the comparison of
our results with experiment is limited by the low-density
approximation used in the calculations. When propaga-
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tion occurs in a medium with a high relative index of
refraction, both renormalization terms can become large
(see Figs. 3 and 6), thus requiring low enough densities
to provide the condition jD 2 D0jyD ,, 1 that ensures
the applicability of the low-density approximation. How-
ever, the filling fractions used in published experiments
range from 15% to 35%, which are too big to satisfy the
low-density approximation in the vicinity of resonances.
Thus Eqs. (16) cannot be used for direct comparison be-
tween theory and experiment, which is possible only if
higher powers in the density of scatterers are taken into
account.
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