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We propose a transmission line working at telecom wavelengths with a cross section as small as λ2/39, which is 1.6
times smaller than that of an optimized silicon waveguide. The proposed line can be implemented as a subwave-
length fiber with plasmonic cladding. This considerable decrease in the line cross section is achieved by utilizing a
plasmonic quasi-antisymmetric mode. The required plasmonic cladding is rather thin; therefore, losses are moder-
ate and could be compensated by using amplifying core materials. Such a transmission line can find applications in
densely integrated optical systems. ©2020Optical Society of America
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1. INTRODUCTION

The development of modern information technologies requires
increasing the clock frequency, preferably up to the optical
frequencies, and reducing the mode area of transmission
lines. To achieve these goals, one requires materials that allow
for strong mode confinement and long propagation length.
Conventional circuits for direct or alternative currents, as well
as for transmission lines operating at radio and microwave
frequencies, are usually made of high conducting metals. To
minimize loss, the thickness, δs, of the skin layer should be
smaller than the thickness, Lm , of metal elements. To achieve
a subwavelength cross section of a transmission line, Lm must
be much smaller than the free-space wavelength λ0. Thus,
for a small cross section and a long propagation length, one
needs λ0� Lm� δs. These inequalities are easily satisfied at
frequencies up to several GHz. For this frequency range, many
transmission lines with small cross sections have been designed.
An example of such a line is a two-wire circuit and a coaxial line.

At optical frequencies, metals are not good conductors;
their skin depth is not very small (e.g., 20–30 nm for silver).
Although the optical hybrid waveguide suggested in [1], which
localizes a mode between a GaAs cylinder and a silver substrate,
has an acceptable mode area of ∼10−3λ2

0, the size of auxiliary
elements (the cylinder and a nearby part of the substrate) of
the transmission line makes the total cross section of the line
about (λ0/3)2. For this reason, such lines should be placed at a

distance larger than that derived from the mode area, since this
distance is determined by the waveguide geometry. Namely,
the diameter of the high-permittivity cylinder is about 400 nm,
which is comparable to the typical size of a silicon waveguide [2].
Therefore, further decrease in the waveguide cross section is still
desirable.

Another approach to create an optical transmission line uses
the effect of total internal reflection. Transmission lines utilizing
this effect are known as optical fibers [3–5]. At the telecommu-
nication frequencies, the diameter of such waveguides is dozens
of micrometers. In the surrounding medium (vacuum), the
characteristic length scale of confinement of modes traveling
along a waveguide with the cylindrical symmetry is determined
by the imaginary part of the transverse wave number of the

mode, κ =
√

k2
z − k2

0 , where k0 is the free-space wavenumber

and kz is the propagation constant. Consequently, the mode
area, Smode, which is defined as in Ref. [1] (see also Section 2),
is estimated as Smode ∼ 1/κ2. Making the cross section of the
waveguide smaller than (λ0/

√
ε)2 results in kz approaching k0,

while Smode ∼ 1/κ2
→∞.

Noticeable confinement can be achieved far from the light
cone, kz� k0. However, even in this case, the mode area is too
large because applications require optical waveguide modes
with a transverse size comparable to the sizes of electronic com-
ponents (dozens of nanometers) [5,6]. The transverse size of
a waveguide could be decreased by using high-permittivity

0740-3224/20/092732-06 Journal © 2020Optical Society of America

https://orcid.org/0000-0003-1796-6007
mailto:eugene.chubchev@yandex.ru
https://doi.org/10.1364/JOSAB.396739


Research Article Vol. 37, No. 9 / September 2020 / Journal of the Optical Society of America B 2733

materials [5]. Unfortunately, there are no transparent dielectric
materials with permittivity greater than 12 in optics and at near
IR [7], which is not sufficient for an acceptable reduction of the
waveguide cross section [5,8–11].

At telecom frequencies the plasmonic materials have high
values of permittivity and, it has been suggested, several plas-
monic waveguides [12–24]. Unfortunately, due to losses purely
plasmonic waveguides, however, cannot have both a large
propagation length and a small mode area.

Nevertheless, it seems that the only way out is using a com-
bination of plasmonic and dielectric materials, which allows
the increase of the propagation length at a subwavelength mode
area. Adding a plasmonic cladding to a dielectric waveguide
leads to an appearance of two more plasmonic modes classified
as HE1 [22]. Plasmonic modes are generally distinguished by
the distributions of the magnetic field in the cladding [25].
According to this classification, the HE1 modes are referred to
as quasi-symmetric and quasi-antisymmetric. In the case of the
thick cladding studied in Ref. [22], the quasi-antisymmetric
mode is similar to the channel mode in bulk metal, while the
quasi-symmetric mode resembles the mode of a metal cylinder.
In the visible range, the quasi-symmetric mode has a high loss
that hinders its use. Therefore, in Ref. [22], the attention was
focused on the quasi-antisymmetric HE1 mode, which is local-
ized outside the waveguide and has lower loss. The mode area
of quasi-symmetric HE1 mode diverges as the waveguide cross
section vanishes. This mode, therefore, is not acceptable for
designing optical transmission lines with subwavelength mode
area.

In this paper, we study the quasi-antisymmetric HE1 mode
at the telecommunications wavelength λ0 = 1550 nm. We
show that the area of this mode decreases with a decrease in
the waveguide cross section. This possibility occurs because
there is an interval of the waveguide radii, at which the Hashin–
Shtrikman condition [26–28] for mutual subtraction of the
transverse polarizations of the cladding and core is almost real-
ized. Consequently, the fields outside the waveguide are small,
and the mode area reduces to the cross section of the core. In the
proposed waveguide, both the mode area and the cross section
of the line are much smaller than λ2

0. At a small thickness of the
metal cladding, the mode may have a propagation length of
10µm. It is sufficient for using it in small optic-based chips with
THz clock frequency. To achieve larger propagation lengths,
gain materials with high gain factors should be implemented.
We show that loss compensation for the quasi-antisymmetric
HE1 mode is possible with the use of semiconductor materials
even at subwavelength mode cross section.

2. WAVEGUIDE MODE OF SUBWAVELENGTH
AREA

We consider the transmission properties of a waveguide con-
sisting of a core of a subwavelength radius a and permittivity
εin covered with a cladding of a subwavelength thickness dcladd

and permittivity εcladd (see inset in Fig. 1). The system is sur-
rounded by a vacuum (permittivity εout = 1). We deal with the
quasi-antisymmetric HE1 mode that exists above the thresh-
old determined by k0a

√
εin ∼ 1. For the telecommunication

frequencies, this condition is realized in silver, in which the real

Fig. 1. Dispersion curves for the two lowest modes in the wave-
guide with a core radius of 120 nm core and a cladding thickness of
20 nm. Straight lines show the light lines for the vacuum (k0 = kz) and
the core material (k0 = kz/

√
εin). Solid red and dashed blue curves

correspond to HE1 (quasi-antisymmetric in metal) and HE11 modes,
respectively. The permittivity dispersions of GaAs and Ag are taken
from Refs. [29,30].

part of the permittivity of the cladding is negative (ε′cladd�−1)
[25]. In this mode, the field concentrates inside the core [22].

We consider the wavelength of λ0 = 1550 nm. The values of
dcladd are chosen to be smaller or equal to the silver skin depth,
which is about 30 nm [15]. To begin with, we assume that
a = 120 nm and dcladd = 20 nm. The dielectric constant of
the core is εin = 11. The cladding material is silver, for which
permittivity at λ0 is−129+ 3.28i [29]. The wavenumber kz of
the quasi-antisymmetric plasmon exceeds k0 (Fig. 1, the inter-
section of the red solid dispersion curve with the horizontal line
corresponding to λ0 = 1550 nm). At this wavelength, the wave-
guide is practically single mode, because the quasi-symmetric
HE1 plasmonic mode appears at higher frequencies at the UV
range (not shown in Fig. 1). The HE11 mode is extremely close
to the light cone (dashed blue curve in Fig. 1) and almost trans-
forms into a plane wave. It has a mode area much larger than λ2

0.
The ratio of mode areas for HE11 and HE1 modes is of the order
of 107. In fact, a mode with so high a mode area can hardly be
considered as a guided mode.

Due to cylindrical symmetry, all of the mode components
depend on the azimuthal angle ϕ as exp[imϕ], where m is the
mode azimuthal number. Throughout this paper, we suppose
m = 1. In [9], it is shown that the components of the electric,
E, and magnetic, H, fields of the HE1 mode outside of the
waveguide are determined by the following equations:

E (out)
r = −

1
κ2

(
ikzCE

∂
∂r −

k0
r CH

) K1(κr )
K1(κb) exp(ikzz+ iϕ),

E (out)
ϕ = −

1
κ2

(
−ik0CH

∂
∂r −

kz
r CE

)
K1(κr )
K1(κb) exp(ikzz+ iϕ),

E (out)
z = CEK1 (κr )/K1(κb)exp(ikzz+ iϕ),

H(out)
r = −

1
κ2

(
εout

k0
r CE + ikzCH

∂
∂r

) K1(κr )
K1(κb) exp(ikzz+ iϕ),

H(out)
ϕ = −

1
κ2

(
ik0εoutCE

∂
∂r −

kz
r CH

)
K1(κr )
K1(κb) exp(ikzz+ iϕ),

H(out)
z = CHK1(κr )/K1(κb)exp(ikzz+ iϕ),

(1)
where b = a + dcladd is the external radius of the waveguide, εin

is the permittivity of the waveguide core, and K1 is the modified
Bessel function of the second kind. CE and CH are equal to
the amplitudes of longitudinal field components E (out)

z and
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H(out)
z at the outer waveguide boundary [9,31]. Note that the

derivatives over ϕ are taken explicitly as ∂/∂ϕ = i . The relation
between CE and CH is found from the boundary conditions
at r = a and r = b. The absolute values of CE and CH are
normalized by the condition max

(
∂(εω)

∂ω
|E|2 + |H|2

)
= 1.

The equations for the fields inside the core and the cladding are
provided in Supplement 1.

Since we are interested in the modes with the subwavelength
mode area, we have to choose both the core radius and the
cladding thickness to be smaller than the free-space wavelength
(k0a � 1 and k0dcladd� 1). Therefore, in the neighborhood
of the core-cladding waveguide, a near-field region k0r � 1
appears. We deal with the values of kz, which are only slightly
larger than those of k0. This means that in the near-field region,
the inequality κ� k0 holds, resulting in κr � 1. Then, in
Eq. (1), the functions K1(κr ) may be expanded in the power
series

K1(κr )≈ 1/(κr )+ (2γ − 1) κr /4+ (κr /2) ln (κr /2)

+ O
(
(κr )2

)
, (2)

whereγ is the Euler constant.
First, for κr � 1, in Eq. (2), we can retain only the first term,

K1(κr )≈ 1/(κr ). In this approximation, the derivative ∂/∂r
can be replaced with −1/r, and the first equation in Eq. (1) is
reduced to

E (out)
r = (ikzCE + k0CH)

b
κ2r 2

exp(ikzz+ iϕ). (3)

The other field components are reduced in the same manner.
Finally, the near-field contribution outside the core and

cladding into the mode area, Smode = 2π
∫
+∞

0
(|E|2 + |H|2)r dr , may be estimated as

SNF ∼

∫
+∞

b

∣∣E (out)
r

∣∣2r dr =
1

κ4
|ikzCE + k0CH |

2b2

×

∫
+∞

b

dr
r 3
∼

1

κ4
|ikzCE + k0CH |

2.

(4)

In the far-field region, κr � 1, K1(κr )≈
√
π/2κr exp(−κr ). Then, from Eq. (1) we obtain

E (out)
r ∼

ikzCE

κ

√
b
r

exp(−κr ), (5)

and the far-field contribution into the mode area results in

SFF ∼

∫
+∞

1/κ

∣∣E (out)
r

∣∣2r dr ≈
bk2

z

2κ3
|CE |

2e−2.

High confinement requires that SNF� SFF. Then, Smode is
determined by SNF only, and we obtain the condition for the
subwavelength mode area

b� e 2 |nzCE − iCH |
2

κ|CE |
2 . (6)

Under this condition, the field is localized at a length scale
much smaller than 1/κ . Since at such distances the field
decreases considerably, the mode confinement in the sug-
gested waveguide does not require large wavenumbers, as is
usually believed. In Fig. 2, the distributions of the z-component
of Poynting vector Sz calculated in COMSOL Multiphysics
is shown. Comparing these distributions for different system
parameters, we can see that the subwavelength mode confine-
ment can be obtained in a broad range of parameters. The key
moment is that the mode area is formed in the near-field region

Fig. 2. Distribution of the z-component of Poynting vector (a), (b) and of the charge density (c), (d) of the mode at (a), (c) a = 120 nm and dcladd =

20 nm, and (b), (d) a = 120 nm and dcladd = 5 nm. The corresponding values of the propagation constant are kz = (2.01+ 0.029i)k0 for (a), (c) and
kz = (4.46+ 0.09i)k0 (b), (d).

https://doi.org/10.6084/m9.figshare.12689051
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of the waveguide. The contribution of the far-field region decays
exponentially and is negligibly small (see Fig. 2). Despite the
difference in the field distribution, the charge density distribu-
tion is quite similar in both cases [Figs. 2(c) and 2(d)]. In the
quasi-antisymmetric HE1 mode, a charge density distribution
is quasi-symmetric, i.e., the charge has the same sign across the
metal film. Such charge distribution is observed for both exam-
ples in Figs. 2(c) and 2(d), which confirms that the same mode
is shown. On the other hand, a charge density distribution of
the quasi-symmetric HE1 mode is quasi-antisymmetric, i.e., the
charge changes the sign across the metal film (see Refs. [25,32]
for more details). It should be noted that, instead of exp(±iϕ),
the cos(ϕ)dependence of Sz is shown in Fig. 2.

The reason for the field suppression outside the waveguide is
the Hashin-Shtrikman effect of the dielectric dipole moment
compensation by a metallic cladding, which leads to the field
concentration inside the core.

In order to show that the subwavelength mode confinement
can be obtained in a wide range of parameters, we show the
mode area as a function of the core radius a and the cladding
thickness dcladd (see Fig. 3). The mode area is calculated via the
equation Smode = 2π

∫
+∞

0 ( ∂(εω)
∂ω
|E|2 + |H|2)r dr with the

normalization condition max( ∂(εω)
∂ω
|E|2 + |H|2)= 1.

It should be noted that the mode area Smode can take values
less than π(a + dcladd)

2. The reason for this is a concentra-
tion of the field in some part of the waveguide core. Inside
the waveguide core, the fields are expressed via the Bessel

function, J1(

√
εink2

0 − k2
z r ), and its derivatives. These func-

tions oscillate at nz <
√
εin, and the field intensity has a

maximum in the center of the core. On the other hand, at
nz�

√
εin and kza � 1, the Bessel function decays into the

core, J1(

√
εink2

0 − k2
z r )∼ exp(

√
k2

z − εink2
0r ), so that the field

is concentrated in the cladding. This leads to a significant reduc-
tion of the Smode below the waveguide cross-sectionπa2 at small
values of dcladd (see Fig. 4).

3. COMPENSATION FOR LOSSES

Since in the optical region, all the plasmonic metals have signifi-
cant Joule losses, the propagation length of the waveguide mode

Fig. 3. Mode area as a function of the waveguide radius a and the
cladding thickness dcladd. In the white area, the mode is leaky. The
boundary of the white region corresponds to the cutoff where kz

approaches k0. The value of 1/κ grows near the boundary; however,
the mode area stays deeply subwavelength as has been discussed above.

Fig. 4. Mode area Smode (the solid line), the real (the dash-dotted
yellow line) and imaginary (the dashed green line) parts of kz , and the
material gain G required for loss compensation (the red dotted line) as
a function of the cladding thickness dcladd at radius a = 120 nm.

is not large. In Fig. 5(a), the propagation length lpr = 1/(2Imkz)

is shown as a function of a and dcladd. For the waveguide with
the core radius of 120 nm and the cladding thickness of 20 nm,
the mode propagation length is equal to lpr = 4.2 µm, which is
sufficient for future applications. Note that when the cladding
thickness decreases, the volume occupied by the metal also
decreases. Nevertheless, due to the field concentration in the
metallic cladding in the electrostatic regime, losses increase.

Energy absorption can be fully compensated if the waveguide
core is made of a gain medium, such as quantum dots [33,34],
quantum wells [35], or nanorods [36]. However, even these
strong gain media are not sufficient for loss compensation in
the most plasmonic geometries. In our system, loss compen-
sation is possible due to the small metal cladding thickness
compared to the waveguide core [37]. Since the mode energy
is mainly concentrated inside the core (see Fig. 2), gain should
be localized in the same region. In the proposed waveguide,
loss compensation can be achieved at realistic values of material
gain. Figure 5(b) shows the material gain sufficient for loss
compensation as a function of a and dcladd. We consider the
core made of a GaAsBi/GaAs nanowire. Such quantum wells
have the material gain of approximately 1500 cm−1 [38] and
permittivity ε′in = 11 [39].

To calculate the material gain G required for loss compen-
sation, we numerically solve the dispersion equation. We find
an imaginary part of the core permittivity, ε′′in, which pro-
vides purely real values of kz. The value of G is calculated via
the equation G =−Im

√
ε′in + iε′′ink0. As shown in Fig. 5(b),

the material gain sufficient to compensate the absorption is
of the order of 1000 cm−1, which is achievable employing
GaAs nanowires [40]. In particular, the material gain required
for loss compensation in a waveguide with the core radius of
a = 120 nm and the cladding thickness of dcladd = 20 nm is
568 cm−1 at 1550 nm.

In many cases, to increase the propagation length, a partial
loss compensation may be sufficient. With the help of the data
for k′′z in a system without gain and for the gain G that pro-
vides the total loss compensation (dotted and dashed curves
in Fig. 4), one can estimate the mode propagation length at
any intermediate gain level g (0< g < G). To do this, let us
note that the difference between the material gain G and the
modal loss k′′z is due to the field distribution both inside and
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Fig. 5. Propagation length (a) and the value of material gain required for loss compensation (b) versus the radius of the waveguide and the thickness
of the cladding. In the white area, the mode is leaky.

outside the gain medium. Let us suppose that the field fraction
located in the gain medium does not depend on the gain level.
Therefore, at an arbitrary gain level, the imaginary part of the
wavenumber at a current level of gain, k′′z (g ), is a difference of
its value without gain, k′′z = k′′z (0), and of the term caused by
gain: k′′z (g )= k′′z − χ g . Here, the coefficient χ is calculated
from the total gain compensation: 0= k′′z − χG . Thus, one
obtains k′′z (g )= k′′z − k′′z g /G , and the propagation length
L(g )= 1/2k′′z (g ) is estimated as

lpr(g )=
lpr(0)

1− g /G
, (7)

or lpr(g )= lpr(0)G/(G − g ). Particularly, for lpr(0)= 4.2 µm
and G = 568 cm−1, the value of gain g = 330 cm−1 increases
the propagation length up to lpr(g )= 10 µm.

4. CONCLUSION

We study a structure of an optical dielectric waveguide with
a thin metal cladding. We demonstrate that utilizing the
quasi-antisymmetric mode HE1 allows one to construct a
transmission line with a subwavelength cross section and a suf-
ficiently long propagation length of 4.2 µm, which is enough
for communication between the usual (electronic) kernels. In a
subwavelength neighborhood of the waveguide, the electromag-
netic field acquires a near-field character. This special property
is accompanied by a power-law decay in 2D and 3D systems
(cladding fiber and chain of spherical particles), and cannot
be realized in layered systems in which there is no near-field
decay. The contribution of the near-field region is crucial in
the formation of the area of the mode propagating along the
waveguide. Upon exiting this region, the field acquires a far-field
character. In the far-field region, the field decays exponentially,

∼exp(−κr ), but with a very small decay rate, κ =
√

k2
z − k2

0

with kz ∼ k0. Therefore, strong decay in the near field makes the
contribution of the far-field negligible, so that the mode area is
Smode� 1/κ2.

In Ref. [21], a transmission line operating in the quasi-
symmetric mode was considered in the visible range. Although
this transmission line realization has a cross section of (λ0/3)2,
the mode area is determined by the same relation as discussed
above, Smode ∼ 1/κ2. Due to a high loss in metal, the possible

values of kz are about k0 [15,41,42], which do not allow for the
subwavelength confinement of the mode [43].

The range of geometrical and material parameters needed
for the realization of the proposed waveguide is shown in Fig. 3.
A mode area as small as 0.01λ2 at λ= 1550 nm is achievable
even if the mode wavenumber is only slightly larger than the
free-space wavenumber. Due to the thin cladding, Joule losses
in metal can be compensated if the core of the waveguide is
made of a gain medium such as quantum dots, quantum wells,
or nanorods. The proposed waveguide can find applications in
dense integrated optical circuits and crosstalk suppression.
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