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Impurity-induced polaritons in
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1. INTRODUCTION
The opportunity to create Anderson localized states of
electromagnetic excitations in disordered dielectrics has
attracted a great deal of attention during the past two
decades.1,2 Although the localization of light in three-
dimensional (3D) uniform-on-average random systems
proved difficult to achieve, new opportunities opened up
with the development of structures with periodically
modulated dielectric properties, the so-called photonic
crystals.3,4 It was first suggested in Ref. 5 that the pho-
ton localization could be more easily achieved if the pho-
ton density of states (DOS) were depleted at certain fre-
quency domains. Photonic crystals allow the creation of
photon bandgaps, regions of frequencies in which the pho-
ton DOS is zero. Introducing isolated defects in such
structures, one can create local photon modes similar to
well-known defect phonon modes in regular crystals6–10

or electron impurity states in semiconductors.11 A for-
bidden gap in the photonic spectrum occurs when the
electromagnetic wavelength becomes comparable with
the lattice constant. Consequently, for microwave, infra-
red, and visible ranges, the photonic crystal is a structure
of macroscopic dimensions. Local states in these struc-
tures also arise owing to defects of macroscopic dimen-
sions. The great interest in photonic crystals is pro-
moted by their highly unusual quantum electrodynamic
properties. For instance, spontaneous emission, which is
completely suppressed within the frequency range of the
bandgaps,12 can be effectively controlled by introduction
of local modes.13,14

The intriguing possibilities of photonic crystals initi-
ated interest in optical effects in other types of photonic
bandgaps. Such gaps can arise, for example, between
different polariton branches. The fact that the frequency
0740-3224/2000/091498-11$15.00 ©
region between polariton branches can represent a stop
band for electromagnetic waves propagating in certain di-
rections has been well known for a long time. The reflec-
tion coefficient in this situation can reach a magnitude of
90% or greater. This effect was used in the 1940’s and
1950’s to create monochromatic infrared beams (it was
called the method of residual or reststrahlen rays, and the
respective spectral interval was called the reststrahlen
region). However, in certain cases the stop bands exist
for all the directions, and then a genuine spectral gap
arises with the same consequences for quantum electro-
dynamics as in the case of photonic crystals. This was
first realized in Ref. 15, in which it was shown that a two-
level atom can form an atom-field coupled states with
suppressed emission similar to the states discussed in
Ref. 16 for photonic crystals. Periodic arrangement of
such two-level systems produces an impurity-induced po-
lariton band within the polariton gap.17

Local polariton states associated with a regular isotopic
defect without any intrinsic optical activity were intro-
duced in Refs. 18 and 19. These states are coupled states
of electromagnetic excitations with phonons (or excitons),
with both components, including the electromagnetic
component, being localized in the vicinity of the defect.
These states are, in a certain sense, analogous to local
photons in photonic crystals considered in Refs. 13 and
14, although they arise owing to microscopic impurities in
regular crystal lattices. On the other hand, local polari-
tons can be considered as local excitations of a crystal
coupled with the electromagnetic field. Regular local
phonons (excitons) also interact with the electromagnetic
field, but this interaction results mainly in absorption of
light and radiative decay of the states.10 The local po-
laritons arise in the region where electromagnetic waves
2000 Optical Society of America
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do not propagate, and there are, therefore, neither defect-
induced absorption of light nor radiative damping of the
local states. The electromagnetic interaction leads in
this case to new optical effects and strongly affects the
properties of the local states. It is well known, for in-
stance, that local phonons or excitons in a 3D system (as
well as local photons in photonic crystals) arise only if the
strength of a defect exceeds a certain threshold. Local
polaritons in systems with an isotropic dispersion split off
the allowed band without a threshold even in three
dimensions.18 This effect is caused by the interaction
with electromagnetic field, which results in the Van–
Hove singularity in the polariton DOS.

A different type of localized electromagnetic excitation
interacting with dipole active media was considered in
Refs. 20 and 21. In these papers, dipole optical excita-
tions in highly disordered fractal structures were consid-
ered. Localization in this case is achieved because of the
highly disordered fractal nature of the structures rather
than because of depletion of the electromagnetic density
of states in some frequency interval. Since we do not
consider fractal structures in this paper, local polaritons
in what follows are understood as excitations arising in-
side spectral gaps of a host structure.

One of the optical effects caused by local polaritons is
resonant tunneling of the electromagnetic wave with gap
frequencies. This effect was first suggested in Ref. 22, in
which the results of numerical simulation of electromag-
netic wave propagation through a relatively short one-
dimensional (1D) chain with a single defect were re-
ported. It was found that the transmission coefficient at
the frequency of the local polariton state increases dra-
matically up to a value close to unity. In spite of the gen-
eral understanding that local states should produce local
tunneling, this result still seems surprising because
transmission of light is effected by a defect with micro-
scopic dimensions much smaller than the light’s wave-
length. In addition, the energy of the electromagnetic
component of local polaritons is much smaller than that of
the phonon component. Traditional wisdom based upon
properties of conventional propagating polaritons tells us
that, in such a situation, most of the incident radiation
must be simply reflected. The results of Ref. 22 demon-
strated that this logic does not apply to local polaritons.
The physical explanation of the result can be given on the
basis of consideration of local polaritons as the result of
interaction between the electromagnetic field and local
phonons. The latter have macroscopic dimensions com-
parable with light’s wavelength, making the interaction
effective. An electromagnetic wave is carried through a
sample by phonons, which is tunneling resonantly owing
to the local state with mostly phonon contribution. Tun-
neling was confirmed in Refs. 23 and 24, in which we ana-
lytically calculated the transmission coefficient through a
linear chain with a single defect. We found that a light
impurity indeed gives rise to the resonance transmission
through the forbidden gap of the polariton spectrum.
The resonance occurs when the defect is placed at the cen-
ter of the chain. The transmission at the resonance be-
comes independent of the chain’s length and reaches the
value of unity if the resonance frequency coincides with
the center of the polariton gap. The analytical calcula-
tions provided an explanation for the numerical results of
Ref. 22; in particular it explained a strongly asymmetrical
frequency profile of the transmission coefficient and the
presence of a deep minimum following directly after the
maximum.

The 1D model with one or many impurities used in
Refs. 22–24 was meant to provide an insight into optical
properties of 3D dielectrics with pointlike defects. In
spite of their obvious limitations, 1D models proved to be
a useful tool for studying dynamics of dielectrics and were
used extensively in the past to obtain frequencies of local
and extended optical phonons, which agreed reasonably
well with experiments (see, for instance, reviews on di-
electric properties of mixed crystals in Ref. 25). In a
sense, the model considered in this paper is a version of
the widely used, so-called random-element isodisplace-
ment models.25 The model is applied, however, to a new
situation, when a local frequency, associated with the im-
purity, falls in the reststrahlen region of the host crystal.

At the same time, the same model of the chain of dis-
crete noninteracting pointlike dipoles coupled with the re-
tarded electromagnetic field can also be considered in a
different context. It can be shown that this model de-
scribes normal propagation of light through a system of
multiple quantum wells (MQW’s), which were studied in
a number of theoretical and experimental papers.26–32

The local state considered in Refs. 22–24 in this context
corresponds to an interface mode, which is localized only
in the growth direction of the MQW structure but is ex-
tended in the in-plane directions. The idea of a local po-
lariton state in a periodic MQW structure was first put
forward in Ref. 33, in which the dispersion equations for
local states with different polarizations were obtained for
a general model of a defect layer. The presence of inter-
face modes in various multilayered system is not new.
These modes arise and are well studied in ideal periodic
structures; see for instance, Refs. 34 and 35 and refer-
ences therein. What distinguishes the interface mode,
which arises in MQW owing to the presence of a defect
layer, is that its in-plane wave vector k i can be equal to
zero, whereas localized interface modes in ideal periodic
multilayers exist only for k i . v/c, where v is the fre-
quency and c is the speed of light in the respective back-
ground medium. Therefore this local mode can be ex-
cited by an evanescent electromagnetic mode at normal
incidence and may cause its resonant transmission. An
application of the results obtained in Refs. 22–24 to MQW
structures is of significant experimental interest and de-
serves a detailed discussion, which will be published else-
where.

The main purpose of this paper is to present the results
of analytical study of the properties of the impurity-
induced band, which grows from our local polariton state
when the concentration of the impurities increases. This
band was first considered in Ref. 24, which describes nu-
merical simulations of the electromagnetic wave trans-
mission through the chain with a finite concentration of
impurities. Neglecting spatial dispersion of phonons, we
are able to obtain analytical expressions for DOS and the
Lyapunov exponent (LE) for the band in the limit of a
large concentration of impurities l0 /ldef @ 1, where ldef is
the average distance between impurities and l0 is the lo-
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calization length of the single local polariton state. In
this limit the method of microcanonical ensemble, comple-
mented by expansion over (l0 /ldef )

21, gives the DOS of an
effective system with a uniform distribution of impurities
and describes its renormalization caused by local fluctua-
tions of impurity positions. It also reveals localization of
the states of the band, which are all localized owing to the
1D nature of the model. The properties of this polariton
band are found to be drastically different from that of the
band produced by two-level atoms.17 The analytical re-
sults show excellent agreement with numerical calcula-
tions and lead to suggestions regarding experimental ob-
servation of the impurity-induced polariton bands. In
the context of MQW structures the results of this paper
describe normal propagation of electromagnetic waves
through a system containing two types of quantum wells
(QW) stacked together at random.

2. MODEL OF ONE-DIMENSIONAL
POLARITONS AND THE METHOD OF
CALCULATIONS
A. Model
The main objective of this paper is to study properties of
the impurity-induced polariton band arising within the
polariton gap of a 1D chain of atoms with dipole moments
Pn , where n refers to a position of an atom in the chain.
We assume that atoms of the chain do not directly inter-
act with each other and are coupled only by a retarded
electromagnetic field. This assumption means neglect of
a spatial dispersion of material excitations of the chain,
which is usually a good assumption for optical phonons.
In the case of MQW interpretation of the model this as-
sumption means the absence of direct interactions be-
tween excitons of different wells, which is also good, pro-
vided that the wells are not too close to each other.
Dynamics of the chain interacting with electromagnetic
field E(x) is then described by a simple equation:

~Vn
2 2 v2!Pn 5 aE~xn!, (1)

where a is a coupling parameter between the dipoles and
the electromagnetic field and Vn

2 represents a site energy.
We shall assume that the chain is composed of atoms of
two different types, which differ in their site energy only.
In this case, Vn

2 can be presented in the following form:

Vn
2 5 V0

2 1 DV2cn , (2)

where DV2 5 V1
2 2 V0

2, V0
2, and V1

2 are site energies of
the respective atoms and cn is a random variable that
takes values 0 and 1 with probabilities 1 2 p and p, re-
spectively. We assume that p ! 1 so that V0 is attrib-
uted to host atoms, whereas V1 corresponds to the impu-
rities. Equation (1) can be interpreted in terms of both
excitonlike and phononlike excitations. In the latter
case, DV2 5 (1 2 M imp /Mhost)v

2, where Mhost and M imp
are the masses of host atoms and impurities, respectively.

Polaritons in the system arise as collective excitations
of dipoles (polarization waves) coupled to the electromag-
netic wave, E(xn). The equation of motion of the electro-
magnetic component is given by the Maxwell equation:
v2

c2 E~x ! 1
d2E

dx2 5 24p
v2

c2 (
n

Pnd ~na 2 x !, (3)

where c is the speed of the electromagnetic wave in
vacuum and a is the distance between two nearest-
neighbor dipoles. This equation actually describes only
the TE field, and we assume that no coupling to other po-
larizations occurs. In Ref. 36 a chain of quantum dots in-
teracting with an electromagnetic field was considered.
This interaction resulted in a short-range quasi-static
dipole–dipole interaction and a long-range retarded inter-
action between the dots. Our model reproduces only re-
tarded part of the interaction, since there is no longitudi-
nal fields in our model. This situation corresponds to
transverse vibrations in isotropic three-dimensional crys-
tals and to T-polarized polaritons in the case of MQW’s.
Equations (1) and (3) present a microscopic description of
the transverse electromagnetic waves propagating along
the chain in the sense that the description takes into ac-
count all modes of the field including those with wave
numbers outside of the first Brillouin band. Within the
chosen model, these equations fully describe electromag-
netic interaction between the dipoles with retardation ex-
actly taken into account. The microscopic nature of our
approach is particularly important for consideration of
MQW’s, since the interatomic distance in the latter case
can be of the order of magnitude of the electromagnetic
wavelength, and consideration of short-wave components
of the electromagnetic field is crucial.

Considering propagation of the electromagnetic wave
as a sequence of scattering events separated by free
propagation, one can present Eq. (3) in a discrete form.
The entire system of dynamic equations (1) and (3) can
then be transformed into a transfer-matrix form:

vn11 5 t̂nvn , (4)

Vectors vn with components (En , En8 /k), where En and
En8 are the electromagnetic field and its derivative at the
nth site, represent the state of the system, and the trans-
fer matrix t̂n is a 2 3 2 matrix of the following form:

t̂n 5 F cos ka sin ka

2sin ka 1 bn~ka !cos ka cos ka 1 bn~ka !sin kaG .

(5)

The parameter bn is given by

bn 5
d2

v2 2 Vn
2 , (6)

with d2 5 4pa/a representing the polarizability of the
nth dipole. The transfer matrix of this form is equiva-
lent to the transfer matrix describing propagation of light
in QW structures.26–28

In the case of a single impurity an approximate equa-
tion for the frequency of the local state was first derived
in Ref. 33 for a defect of a general form. In the particular
case of a defect atom that is different from hosts by its
resonance frequency V1 only, the following equation for
the frequency of the local state was derived in Refs. 23
and 24:
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v loc
2 5 V1

2 2 d2
v loca

2c

DV2

A~v loc
2 2 V0

2!~V0
2 1 d2 2 v loc

2 !
,

(7)

which is exact in the long-wave limit av/c ! 1. The last
term here describes the shift of the local frequency from
the resonance frequency V1 of the impurity owing to cou-
pling to the electromagnetic field; DV2 5 V1

2 2 V0
2 is the

measure of the difference between host atoms and the im-
purity. In the case of the atomic interpretation of the
model this radiative shift is very small, but taking into ac-
count the direct interaction between the atoms (the spa-
tial dispersion of atomic excitations) moves the local fre-
quency farther away from V1 . However, this formula
can also be applied to short-period MQW’s. In this case
the radiative shift described by Eq. (7) can be made large
enough and observed experimentally. The transmission
coefficient through the chain passes through the maxi-
mum at v loc and goes to zero at V1 .23,24 For experimen-
tal observation of this effect it is sufficient to have the ra-
diative shift greater than homogeneous broadening of the
QW exciton resonance at V1 .

The main object of interest in this paper is the proper-
ties of the impurity-induced band in the case of a finite
concentration of impurities. They are characterized by
the Lyapunov exponent (LE), l, which in our case can be
defined as37

l 5 lim
L→`

1

L
ln

iP1
Nt̂nv0i

iv0i
, (8)

where L is the total length of the chain consisting of N at-
oms. It is well known that the quantity defined by Eq.
(8) is nonrandom (self-averages). It characterizes the
spatial extent of the envelope of system eigenstates, all of
which are localized in one dimension (see Ref. 38 and ref-
erences therein). The same quantity also describes the
typical value of the transmission coefficient, T, of an ex-
ternal excitation incident upon the system: Ttyp
. exp(2lL), and through the Thouless relation39 it de-
termines the DOS of the system. Calculation of the LE
in the spectral region of the polariton gap of the pure sys-
tem is the main task of this subsection.

B. Method of Microcanonical Ensemble
The major problem with calculation of the LE or the DOS
in the region of impurity bands is that a simple concen-
tration expansion is not able to describe the impurity
band. Electron and phonon impurity bands have been
intensively studied in the past (see, for example, Ref. 38).
In the limit of extremely small concentration of impuri-
ties, ( pl0)/a ! 1, it was proved possible to provide a
regular systematics of the arising states and to use sta-
tistical arguments to describe their DOS.6 Another
method used for this type of calculations employed the so-
called phase formalism (see Ref. 38 and references
therein). This approach allowed one to calculate the
DOS of impurity bands in different spectral regions, in-
cluding exponential behavior at the tails of the band for
both small and large, ( pl0)/a @ 1, concentrations. In
the case of local polaritons the localization length, l0 , of
an individual local state can be so large that one has to
deal with the situation described by the latter inequality
even in the case of a rather small concentration of impu-
rities. Therefore in this paper we focus mainly on the
properties of the well-developed polariton impurity band
when individual local states are overlapped. To this end
we use the method of the microcanonical ensemble, which
was first suggested for analytical calculations of the LE in
1D single-band model of a disordered alloy.37 The advan-
tage of this method over other methods of DOS calcula-
tions is that it allows one to calculate simultaneously both
the DOS and the localization length. Its main shortcom-
ing is, as we shall see below, that this method is a version
of effective-media methods, and as such it is unable to de-
scribe the DOS near fluctuation boundaries of the spec-
trum. At the same time the results obtained allow a
clear physical interpretation and, as follows from com-
parison with numerical simulations, they quite accurately
describe properties of the bulk of the impurity band.

The starting point of our calculations is the general
definition of the LE given by Eq. (8). In spite of the LE
being a self-averaging quantity, it is convenient in practi-
cal calculations to perform averaging over the random
configurations of the impurities. The regular ensemble
of the realization is described by the fixed concentration of
the impurities p, and their total number can vary from re-
alization to realization. Therefore one can distinguish
two causes for fluctuations: (1) local arrangements of the
impurities and (2) the total number of the impurities.
The main idea of the method of microcanonical ensemble
is to reduce the finite size fluctuations in the system,
eliminating the fluctuations of the total number of impu-
rities. Such an ensemble with a fixed number of impuri-
ties is called the microcanonical ensemble in analogy with
statistical physics. At the same time the result of the av-
eraging in the limit L→` should not depend on the type of
ensemble used by virtue of the self-averaging nature of
the LE. The key idea of the microcanonical method is
based on the assumption that with one cause of fluctua-
tions eliminated, one can obtain reliable results when the
microcanonical ensemble average of ^ln(...)& is replaced by
ln^...&. Such a substitution gives an exact result in the
case of commutating matrices and leads to an excellent
agreement between analytical calculations and simula-
tions in the case of 2 3 2 matrices with a single-band
spectrum.37

Using the microcanonical ensemble, one can evaluate
the average over all matrix sequences using the following
expression derived in Ref. 37:

K)
1

N

t̂nL 5 S N
pN D 21 1

~ pN !!

] pN

]xpN ~ t̂0 1 x t̂1!NU
x50

, (9)

where t̂0 and t̂1 are host and defect matrices, respec-
tively, and x a free parameter. The derivative in Eq. (9)
then can be presented in the form of the Cauchy integral

K)
1

N

t̂nL 5 S N
pN D 21 1

2pi
E

C
dx

n N~x !

xpN11 D̂~x !, (10)

where the contour of integration C is taken on the com-
plex plane around x 5 0, n(x) is the largest eigenvalue of
the matrix t̂0 1 x t̂1 , and the matrix D̂(x),
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D̂~x ! 5 n2N~x !~ t̂0 1 x t̂1!N, (11)

has eigenvalues not exceeding 1 in absolute value. In the
limit of large N the above integral can be evaluated by the
saddle-point method. As the result we arrive at the fol-
lowing expression for the complex-valued LE, l̃:

l̃ 5 lim
N→`

1

L
lnF largest eigenvalueK)

1

N

t̂nL G
5

1

a
@ln n~x0! 2 ~1 2 p !ln x0 1 p ln p

1 ~1 2 p !ln~1 2 p !#, (12)

where x0 is defined by the saddle-point equation

] ln n~x !

] ln x
U

x5x0

5 p. (13)

The real part of l̃ given by Eq. (12) represents LE, while
its imaginary part according to Thouless39 gives the inte-
gral density of states N(v) in the impure system:

l 5 Re@ l̃#, (14)

N~v! 5 2
1

p
Im@ l̃#. (15)

The eigenvalues of the matrix t̂0 1 x t̂1 can be found
from the equation

n

1 1 x
1

1 1 x

n
5 k~x ! 5 2 cos~ka ! 1

b0 1 xb1

1 1 x
, (16)

where b0 and b1 are polarizabilities of the host and the
defect atoms, respectively.

It is convenient to rewrite Eqs. (12) and (16) in terms of
a new variable y 5 x/(1 1 x):

k~ y ! 5 ~1 2 y !n~ y ! 1
1

~1 2 y !n~ y !
5 k0~v! 1 yF~v!,

(17)

k0~v! 5 2 cos~ka ! 1 d2ka sin~ka !
1

v2 2 V0
2 , (18)

F~v! 5 d2ka sin~ka !
V1

2 2 V0
2

~v2 2 V0
2!~v2 2 V1

2!
. (19)

In the long-wave limit e 5 ka ! 1, functions F(v) and
k0(v) can be simplified and presented in the form that
clarifies their physical meaning:

F~v! . e2f~v!,

k0~v! . 2 1 e2g ~v!,

where f (v) is defined according to

f ~v! .
d2~V1

2 2 V0
2!

~v2 2 V0
2!~v2 2 V1

2!
(20)

and represents the difference b1 2 b0 between polariz-
abilities (6) of the impurities and host atoms. Function
g (v), defined as
g ~v! 5 1 1
d2

V0
2 2 v2

, (21)

is the long-wave dielectric function of the pure chain.
Similarly, Eq. (12) transforms into

l̃~ p ! 5 ln$@1 2 y0~ p !#n@ y0~ p !#%

2 Fp ln
y0~ p !

p
1 ~1 2 p ! ln

1 2 y0~ p !

1 2 p G , (22)

with the saddle-point equation reading as

6
y~1 2 y !F

A~k0 1 yF !2 2 4
1 yU

y5y0

5 p. (23)

The choice of the sign in Eq. (23) is determined by the re-
quirement to use the greatest of the eigenvalues n. In-
troduction of the new variable y turns k( y) in a linear
function of y, essentially simplifying future calculations.

3. LYAPUNOV EXPONENT AND THE
DENSITY OF STATES
A. Boundaries of the Impurity Band
Dielectric function g (v) determines the frequency region
of the polariton gap: for V0

2 , v2 , V0
2 1 d2 it is nega-

tive, and hence, propagating modes do not exist in this re-
gion. We shall assume that the defect frequency V1

2

obeys the inequality V0
2 , V1

2 , V0
2 1 d2, so that the

impurity-induced band develops inside the gap of the
original spectrum. As we already mentioned, the ap-
proach we use in the paper belongs to the class of
effective-medium approximations since we neglect here
certain kinds of fluctuations in the system. Therefore it
is natural to expect that within this approach the impu-
rity band would have well-defined spectral boundaries,
outside of which the differential DOS remains exact zero.
Our first goal is to determine these boundaries and find
the concentration dependence of the width of the impurity
band. The differential DOS, r(v) 5 dN(v)/dv, takes on
nonzero values when l̃(v) acquires a nonconstant imagi-
nary part. Rewriting Eq. (22) in the form

l̃~v! 5
1

a XlnH 1

2 Fk0 1 y0F 6
y0~1 2 y0!F

p 2 y0
G J

2 Fp ln
y0

p
1 ~1 2 p !ln

1 2 y0

1 2 p GC, (24)

one can see that in the case of real y0 , Im l̃(v) can be ei-
ther zero or p (the latter happens when the argument of
ln is negative). In both cases differential DOS is obvi-
ously zero, and it can only take on a nonzero value when
y0 becomes complex. Equation (23), which defines y0 , is
formed by a polynomial of the third order with real coef-
ficients; therefore it has either three real roots or one real
solution and a complex-conjugated pair. In order to de-
scribe formation of the polariton band, one has to select
the root, which has a complex component in a certain fre-
quency interval and yields a positive LE. Comparison
with numerical simulations shows that the choice of only
one of three saddle points, according to the above-
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mentioned criteria, produces the correct description of the
impurity band. It is not difficult to show that at the fre-
quency at which y0(v) becomes complex, the derivative
]y0 /]v diverges. This fact gives us an explicit equation
for the spectrum boundaries. From Eq. (23) one can find
that the divergence occurs when y0 satisfies the equation

y0
3F@F~1 2 p !1k0#1y0

2@k0F~1 2 3p !1k0
2 2 4#

1 y0k0~F 2 2k0
2 1 4 ! 1 p~k0

2 2 4 ! 5 0. (25)

Equations (23) and (25) define the concentration depen-
dence of the boundaries of the polariton impurity band.
An approximate solution of this equation can be obtained
as a formal series in powers of parameter e 5 ka. How-
ever, it will be seen from the results that the actual ex-
pansion parameter in this case is 1/pl0 ! 1. The solu-
tion of Eq. (23) with the accuracy to e2 can be obtained in
the form

y 5 p 2 p~1 2 p !
f

2Apf 2 g
e 1 p~1 2 p !

3
2~ pf 2 g!f~1 2 2p ! 2 fp~1 2 p !

8~ pf 2 g!2 f 2e2, (26)

where y 5 p is the only nonvanishing zero-order approxi-
mation for y. Since two other solutions, y 5 0, corre-
spond to a singular point of the integral (10), the chosen
solution y 5 p represents the only saddle point accessible
within our perturbation scheme. Using additional crite-
ria outlined above, we verify that the solution given by
Eq. (26) correctly reproduces the behavior of the LE.
Substituting Eq. (26) into Eq. (22), one finds the complex
LE in the long-wavelength approximation:

l̃~v! 5
v

c HApf~v! 2 g ~v! 2
p~1 2 p !f 2~v!

8@ pf~v! 2 g ~v!#
eJ .

(27)
According to Eq. (27), l̃(v) acquires an imaginary part at
frequencies obeying the inequality

pf~v! 2 g ~v! < 0. (28)

The boundaries are determined by the respective equa-
tion pf(v)2g (v) 5 0, which coincides with the long-
wavelength limit of Eq. (25). This equation determines
two points at which pf(v)2g (v) changes sign to nega-
tive:

v il
2 5

~V0
2 1 V1

2 1 d2!2A~V0
2 1 d2 2 V1

2!2 1 4d2~V1
2 2 V0

2!p

2
,

vpu
2 5

~V0
2 1 V1

2 1 d2!1A~V0
2 1 d2 2 V1

2!2 1 4d2~V1
2 2 V0

2!p

2
,

(29)

The first of these solutions belongs to the initial polariton
bandgap and as such represents the low-frequency bound-
ary of the new impurity band. The second one lies out-
side of the gap and is a bottom frequency, modified by im-
purities, of the upper polariton branch of the initial
spectrum. These two frequencies, however, are not the
only points at which the expression pf(v)2g (v) turns
negative. Two other points are

vpl
2 5 V0

2,

V iu
2 5 V1

2, (30)

and the change of the sign at these points occurs through
infinity of pf(v)2g (v) rather than through zero. These
two frequencies do not depend on the concentration of im-
purities and therefore present stable genuine boundaries
of the spectrum. This property of V0 and V1 is due to
their resonance nature (they correspond to the poles of
the respective polarizabilities) and disappears when, for
example, the spatial dispersion is taken into account. At
the same time, the numerical simulations of Ref. 24, in
which the spatial dispersion was taken into consider-
ation, indicate that the shift of these frequency from their
initial values is negligibly small for realistic values of the
interatom interaction parameter F, even for a relatively
large concentration of impurities.

These four frequencies set the modified boundaries of
the initial polariton spectrum of the pure system
(vpl

2 , vpu
2 ), and boundaries of the newly formed impurity

band (v iu
2 , v il

2). The lower boundary of the forbidden gap
of the crystal, V0 , is not affected by the impurities; the
singularity in the polariton DOS at this point survives for
any concentrations of defects. The upper boundary of the
bandgap, vpu , shifts toward higher frequencies with the
concentration, and when p 5 1, it coincides with the up-
per band boundary of the new crystal, VL

i 5 (V1
2

1 d2)1/2. Frequencies v il and v iu give approximate val-
ues for the lower and the upper boundaries of the
impurity-induced pass band that arises inside the origi-
nal forbidden gap V0 , v il , v iu , (V0

2 1 d2)1/2. The
impurity band grows asymmetrically with concentration:
while its lower boundary moves toward V0 with an in-
crease of the concentration, the upper edge remains fixed
at v iu 5 V1 . Such a behavior of the impurity band
agrees well with our numerical results.24

The width of the impurity-induced band defined in
terms of squared frequencies D im

2 5 v iu
2 2 v il

2 can be
found from Eqs. (29) and (30) as

D im
2

5
A~V0

2 1 d2 2 V1
2!2 1 4d2~V1

2 2 V0
2!p 2 ~V0

2 1 d2 2 V1
2!

2
.

(31)

For V1 not very close to the upper boundary of the initial
polariton gap, VL 5 (V0

2 1 d2)1/2, the linear in p approxi-
mation is sufficient to describe the concentration depen-
dence of the bandwidth

D im
2 '

d2~V1
2 2 V0

2!p

V0
2 1 d2 2 V1

2 . (32)

When V1 , however, happens to be close to VL , a cross-
over is possible from the linear dependence (32) of the
square-root behavior:

D im
2 ' Ad2~V1

2 2 V0
2!p. (33)

The condition for such crossover to occur is
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1 ! p !
~V0

2 1 d2 2 V1
2!2

4d2~V1
2 2 V0

2!
.

B. Lyapunov Exponent and the Density of States Far
from the Spectrum Boundaries
Using Eqs. (14), (15), and (27), one can calculate the LE
and the integral DOS for different regions of the spec-
trum. For allowed bands, (0, V0), (v il , V1), and
(vpu , `), one has

l~v! 5 2
p~1 2 p !f2

8~ pf 2 g!

v

c
e 1 O~e2!,

N~v! 5
1

p

v

c
Au pf 2 gu 1 O~e2!; (34)

for forbidden bands, (V0 , v il) and (V1 , vpu), we obtain

l~v! 5
v

c HApf 2 g2Fp~1 2 p !f2

8~ pf 2 g!
GeJ ,

N~v! 5 0. (35)

One can see from Eqs. (34) and (35) that within allowed
bands the DOS appears in the zero order of the formal ex-
pansion parameter e, whereas the LE starts from the first
order. For the forbidden bands the situation is reversed:
the LE contains a term of zero order in e, whereas the
DOS in this order disappears. This observation suggests
a simple physical interpretation of the microcanonical ap-
proximation in conjunction with the expansion over e.
Analysis of the series in this parameter shows that the ac-
tual small parameter is a/( pl0) 5 ldef /l0 , where ldef is a
mean distance between impurities. The zero-order ex-
pansion in this parameter can be interpreted as a uniform
continuous (ldef → 0) distribution of impurities with con-
centration p. The results in this approximation then cor-
respond to the polariton impurity band that would exist
in such a uniform system. The parameter ldef /l0 in this
case is a measure of disorder in the distribution of impu-
rities, which leads to the localization of excitations de-
scribed by the DOS in Eq. (34) with the localization
length, l21 5 l, presented in the first line of the same
equation.

Let us now consider frequencies in the interval v
P (0, V0) ø (VL

i , `), where passbands of the pure
chains composed of either host or impurity atoms overlap.
The DOS in this region can be written in a physically
transparent form,

N~v! 5 A~1 2 p !N0
2~v! 1 pN1

2~v!, (36)

where N0(v) and N1(v) are an integral DOS in pure
chains containing host atoms or impurities, respectively.
In the remaining portion of the initial spectrum, v
P (vup , VL

i ) (but not very close to the boundary vup ,
where the expansion ceases to be valid), DOS can be pre-
sented as N(v) 5 @(1 2 p)N0

2(v)2pl1
2(v)#1/2, where l1 is

the penetration length through the polariton gap of the
100% impure chain.
Our main goal, however, is obtaining the DOS and the
LE of the impurity-induced band, v P (v il , V1). Near
the center of this region the DOS can be presented in the
following form:

N~v! 5
1

pl0
H 1 1

4uguvc

pd2 ~v 2 vc! 1 OF S v 2 vc

d D 2G J ,

(37)
where vc is the center of the impurity band, which in the
linear in p approximation is

vc
2 5 V1

2 2
1

2
D im

2 , (38)

where D im
2 is the width of the band in terms of squared

frequencies defined in Eq. (32). The first term in Eq. (37)
represents the total number of states between v il and the
center of the band; it is interesting to note that this num-
ber does not depend on concentration of impurities. The
coefficient at the second term gives the differential DOS
at the center and can be rewritten as

r~vc! 5
4uguvc

pl0 pd2 5
2

pl0d
, (39)

where d 5 D im
2 /2vc is an approximate expression for the

impurity band width d . V1 2 v il . This DOS has a
simple meaning of the average density of states uniformly
distributed through the entire band over the distance
equal to l0/2. In 1D uniform systems the wave number of
the respective excitations, k, is simply connected to N(v):
k 5 pN(v). The differential DOS would in this case be
proportional to the inverse group velocity. Accordingly,
1/pr(vc) given by Eq. (39) can also be viewed as a group
velocity, v, of excitations in the center of our impurity
band in the case of the uniform distribution of impurities.
The expression for v can also be presented as

v 5
d2

4pc
2ugu3/2

pc ! c, (40)

which demonstrates that polariton excitations of the im-
purity band have much slower velocities not only com-
pared with c but also with the velocities at both regular
polariton branches.

Expanding Eq. (34) for the LE about the center of the
band, we obtain a parabolic frequency dependence of the
localization length of the impurity polaritons:

l~v! 5 l~v!21 5 2l0~ pl0!F1 2
20g2

p2 S v2 2 vc
2

d2 D 2G .

(41)
One can see from this expression that l(v) reaches its
maximum value 2pl0

2 at the center of the band. It is im-
portant to note that the localization length here grows lin-
early with the concentration, whereas it is the LE that
grows with the concentration for frequencies outside of
the impurity band. An increase of the concentration of
the impurities also results in fast (}1/p2) flattening of the
maximum in the localization length, the fact we first no-
ticed in our numerical simulations.24

The frequency dependence of the LE, defined by Eqs.
(22) and (23), is shown in Fig. 1. For frequencies corre-
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sponding to the impurity band the LE drops sharply (the
localization length increases); it then diverges at the up-
per boundary of the impurity band. This divergence has
the same origin as the LE divergence at the lower bound-
ary of the bandgap of the original crystal, where, owing to
the specificity of the polariton spectrum, the wave vector
becomes infinite. The concentration dependence of the
LE and the integral DOS for some frequency v0
P (V0 , V1) is shown in Fig. 2. For p 5 0 this frequency
belongs to the forbidden gap; thus DOS is zero. With an
increase of the concentration the LE decreases (the local-
ization length increases). For the concentration when
the lower boundary of the impurity band crosses v0 the
DOS becomes nonzero, and in l(v) the crossover between
behaviors described by Eqs. (35) and (34) occurs. In Fig.
3 we compare the results of our analytical calculations
with numerical simulations of Ref. 24. The comparison
shows an excellent agreement between numerical and
analytical results, confirming the validity of the microca-
nonical method in the considered limit. In addition,
since numerical results were obtained with the spatial
dispersion taken into account, the comparison shows that
the model with dispersionless phonons produces reliable
results for the LE even not very far away from the spec-
trum boundaries.

C. Solution in the Vicinity of the Spectrum Boundary:
Nonanalytical Behavior
The results obtained in the previous subsection are
clearly not valid for frequencies close to the band bound-

Fig. 1. LE for a chain with a defect concentration of 10% (solid
curve) in comparison with a pure system (dashed curve).

Fig. 2. Dependences of LE (solid curve) and DOS (dashed curve)
on concentration for a frequency in the interval V0 , v , V1 .
aries v il and vpu , where pf 2 g 5 0 and the second term
in expansion (26) diverges. It is well known that pertur-
bation expansions in disordered systems usually fail in
the vicinity of boundaries of the initial spectrum of the
system unperturbed by disorder.38 The regions in the vi-
cinity of these special frequencies v il and vpu require spe-
cial consideration. Attempting to regularize our e expan-
sion, we shall seek corrections to the zero-order solution
in the form

y 5 p 1 Bea, (42)

admitting a possibility of fractional values of a and hence
nonanalytical behavior of the solution. We also intro-
duce a new variable z that determines the proximity to ei-
ther of two frequencies v il or vpu :

pf 2 g 5 zea8. (43)

Substituting these expressions into Eq. (23) and equating
the lowest-order terms, we see that the equation can only
be satisfied for a 5 a8 5 2/3. In this case we find that
the parameter B introduced in Eq. (42) obeys the equation

p~1 2 p !f

2Az 1 Bf
1 B 5 0. (44)

The substitution of y given by Eq. (42) in the condition for
the spectral boundaries presented by Eq. (25) allows one
to obtain an exact expression for the renormalized bound-
ary

pf 2 g 5 F3p2/3~1 2 p !2/3S 2f

2 D 4/3Ge2/3, (45)

that modifies Eq. (28). The shift is small by virtue of
smallness of e2/3. In the lowest order in e the new posi-
tions of the band edges for small p are

Fig. 3. Comparison of LE calculated both with (dashed curve)
and without (solid curve) spatial dispersion in the vicinity of V1 .
The concentration of defects for both curves is 1%.
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ṽ il
2 5 V1

2 2
d2~V1

2 2 V0
2!

d2 2 ~V1
2 2 V0

2!
pF1 1 3S a

4pl0
D 2/3G ,

ṽpu
2 5 VL

2 1
d2~V1

2 2 V0
2!

d2 2 ~V1
2 2 V0

2!
pF1 2 3S a

16pl0
D 1/3G ,

(46)

where we again encounter a/( pl0) as a true small param-
eter of the expansion. It is interesting to note the differ-
ent character of nonanalytical corrections to the positions
of the boundary of the impurity band ṽ il

2 and the bottom of
the upper polariton branch ṽpu

2 . They have fractional
concentration dependence with the correction to ṽpu

2 being
much stronger in the limit a/( pl0) ! 1.

Now let us consider the modification of the LE and the
integral DOS owing to the nonanalyticity. Substituting
Eq. (42) into Eq. (22), the complex LE can be written as

l̃ 5 2
p~1 2 p !f

2B
e4/3 5 A~ pf 2 g! 1 Bfe2/3e. (47)

This expression explicitly demonstrates the crossover be-
tween analytical and nonanalytical behavior. When fre-
quency v lies far from the initial boundary u pf 2 gu
@ Bfe2/3, one recovers the term proportional to e with the
same coefficient as in Eq. (27), whereas in the opposite
limit u pf 2 gu ! Afe2/3, when we approach the boundary,
the leading term gains fractional power and becomes
}e4/3.

At the vicinity of the renormalized spectral boundary,
Eq. (46), DOS r(v) [ 0 to the left of ṽ il , and for
v . ṽ il it can be obtained as

r~v! 5
3

pd S g

l0
D 1/2 1

~l0 p !1/2

v

~v2 2 ṽ il
2!1/2

, (48)

where g and l0 are evaluated at v 5 V1 , and we have ne-
glected the renormalization of the boundary when calcu-
lating the coefficient in r (v). In this approximation the
frequency and the concentration dependence of the DOS
does not change as compared with the one obtained from
nonrenormalized expansion (34). However, it is interest-
ing that the renormalization brings about an additional
numerical factor of 3 in Eq. (48), which is absent in the
nonrenormalized expression. This frequency dependence
is typical for excitations with the quadratic dispersion law
in the long-wave approximation. The main characteris-
tic of this dispersion law is the effective mass m, which
can be found from Eq. (48) as

m 5
9g

2pd2l0
2 5

9g2

2pc2 S v il

d D 2

. (49)

It is interesting to compare this expression with the effec-
tive mass of the upper polariton branch of the pure sys-
tem at the bottom of the band 2m0 5 (vL /dc)2. The two
expressions have a similar structure if one introduces a
renormalized speed of light,

c̃ 5 cAp/9g2. (50)

Although the introduced parameter c̃ does not have a di-
rect meaning of the speed of the excitations, it shows
again that the excitations in the impurity polariton band
are considerably slower than their regular counterparts,
with a similar dispersion law at the spectrum boundary
as well as at the center of the band. However, unlike the
center-of-band situation (40) the renormalized velocity at
the edge is proportional to the square root of concentra-
tion.

The LE in the vicinity of ṽ il is represented by different
expressions for frequencies below and above ṽ il , respec-
tively,

l 5
1

2l0
S 1

4pl0
D 1/3 F1 1

12

d

~gl0!1/2

~4l0 p !1/6 ~ṽ il
2 2 v2!1/2G ,

l 5
1

2l0
S 1

4pl0
D 1/3 F1 2

12

d

gl0

~4l0 p !1/3 ~v2 2 ṽ il
2!G , (51)

reflecting a discontinuity of its frequency derivative at the
spectrum boundary. The LE itself is, of course, continu-
ous at ṽ il , giving rise to the localization length l
5 2l0(4pl0)1/3 at the edge of the band. It is interesting
to compare this expression with the localization length at
the center of the impurity band, Eq. (41). They both
grow with the concentration, but the latter one is much
smaller and demonstrates slower fractional concentration
dependence.

At the upper impurity band edge V1 the integral DOS,
N(v), diverges, causing much stronger singularity in the
differential DOS than at the lower boundary v il :

r~v! 5
dvp1/2

pc~V1
2 2 v2!3/2

, (52)

which is typical for the DOS in the vicinity of resonance
frequencies. Comparing this expression with a similar
formula for a pure chain, one can again interpret this re-
sult as a renormalization of the velocity parameter c by
the concentration of impurities, which is different from
that presented by Eq. (50) by a numerical coefficient only.

The last spectrum boundary is the bottom of the upper
polariton branch VL . The spectrum in the vicinity of
this frequency exists in the absence of the impurities,
which are responsible for two effects in this region.
First, they move the boundary from VL to higher frequen-
cies [Eq. (46)]; second, they increase the effective mass of
the upper polariton branch, such that the differential
DOS in the frequency region above ṽup

2 becomes

r~v! 5
1

pdc

v

@v2 2 ṽup
2 ~ p !#1/2

3 H 1 1
p

2 F d2~V1
2 2 V0

2!

d2 2 ~V1
2 2 V0

2!
G 2J . (53)

This expression can also be interpreted as a renormaliza-
tion of the speed of light c.

4. CONCLUSION
In the paper we have presented a detailed study of an
impurity-induced band of excitations, which arise in the
gap between lower and upper polariton branches of a lin-
ear chain with dipole active atoms. We have also studied
impurity-induced effects on properties of the regular po-
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lariton branches. The method of microcanonical en-
semble in conjunction with the expansion in the param-
eter ldef /l0 ! 1, where ldef is the average distance
between the impurities and l0 is the localization radius of
a single local polariton state, produces a clear physical de-
scription of the excitations and shows excellent agree-
ment with the results of numerical simulations. In the
zero order of this expansion we recover the DOS and the
dispersion law of excitations in the system with uniform
continuously distributed impurities. Corrections to this
solution describe effects owing to local fluctuations in the
positions of impurities such as a finite localization length
of the excitations, a renormalization of the spectral
boundaries, and the effective mass of the excitations.
Therefore the parameter ldef /l0 , can be considered as a
measure of disorder in the system.

We found that the dispersion law of the impurity-band
excitations at the lower-frequency spectral boundary re-
sembles that of the upper regular polariton band, but
with a significantly (by a factor of p1/2 ! 1) reduced effec-
tive mass. At the higher-frequency edge of the band the
wave number diverges in a manner similar to the regular
lower polariton branch with a velocity parameter again
reduced by the same factor. The group velocity of the ex-
citations near the center of the band, as well as the local-
ization length, is proportional to p. However, the latter
demonstrates a parabolic frequency dependence with the
curvature of the parabola falling off with an increase of
the concentration as 1/p2. Excitations considered in this
paper are drastically different from impurity-induced po-
laritons studied in Ref. 17. The authors of the latter pa-
per considered excitations of an ordered chain of two-level
atoms embedded in a polar 1D crystal. Most signifi-
cantly, the effective mass of polaritons of Ref. 17 is nega-
tive at the long-wave boundary of the spectrum whereas
our excitations have a positive effective mass in this re-
gion; concentration dependencies of the effective mass
and the bandwidth also differ significantly.

The regular expansion in powers of the parameter
ldef /l0 produces diverging expressions at the boundaries
of the zero-order spectrum. Allowing for fractional pow-
ers in the expansion, we obtained a finite regularized ex-
pression for the density of states and the localization
length at the boundaries. It is interesting to note that
renormalized DOS at the lower boundary of the impurity
band differs from its initial form only by a numerical fac-
tor of 3, whereas the position of the boundary is shifted
toward lower frequencies.

The considered model can be applied to two different
experimental situations. First, it describes certain prop-
erties of excitations that could arise in 3D polar dielec-
trics with some special type of impurities. In this case an
experimental significance of the results presented is af-
fected by two factors: absorption that is due to a differ-
ent kind of anharmonic processes, and the 1D nature of
the considered model. Effects that were due to absorp-
tion were studied numerically with absorption introduced
phenomenologically. We found that at low-enough tem-
peratures the impurity-induced band survives the absorp-
tion and can be observed. As for the one dimensionality
of our model, it is generally accepted (see for instance Ref.
8) that 1D models give a fair description of tunneling in
the limit of small concentrations (ldef /l0 @ 1). We deal
with the opposite limit; however, our zero-order results
could describe the dispersion law of excitations in the real
3D medium propagating in one specified direction (for ex-
ample, the direction with the highest symmetry). Disor-
der in this case would lead, of course, to scattering and
deviation from 1D geometry, but effects that are due to
disorder are much weaker in three dimensions and would
probably not inhibit an observation of a defect-induced
transparency in the frequency region of a polariton gap.
Besides, as we have mentioned before, viability of 1D
models in describing dynamics of mixed crystals had been
tested by many studies in the past.25

Another type of experimental situation relevant to the
presented calculations is reflectance and luminescent
studies of multiple-quantum-well structures with a large
number of wells. Such studies have been carried out re-
cently in Ref. 32, where reflectance and luminescent spec-
tra of structures with up to 100 QW’s were studied. In-
troducing into such a structure a single QW with exciton
resonance frequency inside the forbidden gap of the host
structure must give rise both to a local polariton state33

and to strong transmission resonance and a narrow lumi-
nescent line at the frequency of the local state. The
quantitative analysis of Refs. 23 and 24 and of the
present paper can be directly applied to so-called short-
period QW structures with periods much smaller than the
electromagnetic wavelength. In the case of QW struc-
tures with periods compared with the wavelength, which
currently attract a great deal of interest, some additional
analysis of local state frequencies is required. This
analysis is under way.
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32. M. Hübner, J. P. Prineas, C. Ell, P. Brick, E. S. Lee, G.
Khitrova, H. M. Gibbs, and S. W. Koch, ‘‘Optical lattices
achieved by excitons in periodic quantum well structures,’’
Phys. Rev. Lett. 83, 2841–2844 (1999).

33. D. S. Citrin, ‘‘Waveguiding without a waveguide: local-
mode exciton polaritons in multiple quantum wells,’’ Appl.
Phys. Lett. 66, 994–996 (1995).

34. A. Dereux, J.-P. Vigneron, P. Lambin, and A. Lucas, ‘‘Po-
laritons in semiconductor multilayered materials,’’ Phys.
Rev. B 38, 5438–5452 (1988).

35. M. L. H. Lahlaouti, A. Akjouj, B. Djafari-Rouhani, and L.
Dobrzynski, ‘‘Resonant and localized electromagnetic
modes in finite superlattices,’’ Phys. Rev. B 61, 2059–2064
(2000).

36. D. Citrin, ‘‘Coherent transport of excitons in quantum-dot
chains: role of retardation,’’ Opt. Lett. 20, 901–903 (1995).

37. J. M. Deutsch and G. Paladin, ‘‘Product of random matrices
in a microcanonical ensemble,’’ Phys. Rev. Lett. 62, 695–
699 (1989).

38. I. M. Lifshitz, S. A. Gredeskul, and L. A. Pastur, Introduc-
tion to the Theory of Disordered Systems (Wiley, New York,
1988).

39. D. J. Thouless, ‘‘A relation between the density of states
and range of localization for one dimensional random sys-
tem,’’ J. Phys. C 5, 77–81 (1972).


