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We show that a two-level atom with a high transition fre-
quency ωSO can be inverted via non-radiative interaction
with a cluster of excited low-frequency two-level atoms
or quantum oscillators whose transition frequencies are
smaller than ωSO. This phenomenon occurs due to the
Förster resonant energy transfer arising during a train of
quantum superoscillation of low-frequency two-level
atoms. The suggested model could explain the mechanism
of biophoton emission. © 2017 Optical Society of America
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Mitogenetic rays called biophotons are weak (about 300–1,000
photons per second per square centimeter) radiation [1–3]
emitted by living organisms during mitosis [4]. Biophotons
were detected in optical and near-ultraviolet ranges for various
biological systems [5]. Biophotons may play an important
role in processes of cell division and are proposed to have
applications in medical diagnostics [4].

The mechanism of the biophoton generation is still
unknown. In complex organic molecules, only vibronic and
conformational degrees of freedom may be excited at room
temperature. The transition frequencies corresponding to such
excitations are in the infrared range. It is not clear how these
low-energy quanta may excite a high-energy electron state to
radiate biophotons.

In our communication, we examine quantum superoscilla-
tions (SO) [6–8] as a possible mechanism for biophoton exci-
tations. A complex system of levels in organic molecules is
modeled by a system of two-level atoms (TLA’s) and/or quan-
tum oscillators. In particular, we study a quantum problem in
which a TLA with a high transition frequency is excited by the
energy transferred from a cluster of low-frequency (LF) TLA’s
or quantum oscillators. We show that even though an energy
quantum of each LF TLA is lower than the energy required for

the excitation of the high-frequency (HF) TLA near fields of all
LF TLA’s allows for the inversion of the HF TLA. The price
paid for superoscillating behavior is that the total energy of LF
oscillations must substantially exceed the excitation energy
of the HF TLA.

The phenomenon of SO is a counterintuitive mathematical
effect showing that during some finite time interval, a sum of
band-limited functions can oscillate with a frequency that is
higher than the maximum frequency of their spectra [9,10].
This phenomenon is widely used in such fields as quantum
physics [6–8], optics [11–14], and radiolocation [15–17].

Let us consider an HF TLA with a transition frequency of
ωSO and n clusters with N LF TLA’s in each with frequencies
ω1;…;ωn ≤ 0.9ωSO. We assume that all participating particles
are confined to a subwavelength volume. Consequently, the
energy is mainly transferred nonradiatively, by near fields.
For simplicity, the interaction of LF TLA’s with each other
is neglected.

The system is described by the dipole-dipole interaction
Hamiltonian [18]:

H �
Xn
j�1

XN
i�1

ℏωjσ̂
�
ij σ̂ij�ℏωSOσ̂

�σ̂�ℏ�σ̂� σ̂��F̂�t�; (1)

where σ̂� and σ̂ are operators of excitation and de-excitation of
the HF TLA, σ̂�ij and σ̂ij are operators of excitation and de-ex-
citation of the ith LF TLA from the jth cluster, F̂�t� �
Σn
j�1ΣN

i�1Ωij�σ̂ij�t� � σ̂�ij �t�� is the Förster driving operator
which describes the effect of local fields created by LF TLA’s
on the HF TLA, Ωij��d ·d ij−3�d ·nij��d ij ·nij��∕ℏ�jr−rijj�3
(nij � r − rij, j � 1;…; n, i � 1;…; N ) are coupling con-
stants of the dipole moment d ij�σ̂ij�t� � σ̂�ij �t�� of ith
LF TLA from the jth cluster with the dipole moment d �σ̂�t� �
σ̂��t�� of the HF TLA, d and d ij are the matrix elements
of dipole moments of the HF and a LF TLA’s, and r and rij
are the positions of the HF TLA and the jth LF TLA,
respectively. The inversion operator σ̂�ij σ̂ij − σ̂ijσ̂

�
ij of the ith

Letter Vol. 42, No. 21 / November 1 2017 / Optics Letters 4303

0146-9592/17/214303-04 Journal © 2017 Optical Society of America

mailto:lisyansky@qc.edu
mailto:lisyansky@qc.edu
https://doi.org/10.1364/OL.42.004303


LF TLA from the jth cluster we denote as D̂ij, while D̂ is the
inversion operator of the HF TLA.

The Hamiltonian (Eq. 1) does not contain terms describing
electromagnetic modes (photons). Nonetheless, between
TLA’s, the energy can be transferred by near fields via the
Förster mechanism [19–21]. At distances smaller than the
wavelength, this energy is �kr�3 greater than that of far fields.
The energy transfer by near fields has a resonance nature [22].
For example, when the frequency detuning of two interacting
TLA’s is 10%, the population inversion of HF TLA stays below
−0.8 [18].

First, we estimate characteristic parameters of the quantities
that we deal with. The value of the dipole moment can
reach 150 D (for Rhodamine 800, it is 145 D [23]),
and we take distances between TLA’s as ∼20 nm, then
ℏΩ ∼ d 2∕r3 ∼ 10−14 erg, and therefore, Ω ∼ 3 × 1013 s−1,
and in the optical range, the characteristic frequency is
ω0 ∼ 1015 s−1. Below, we use dimensionless time and fre-
quency, t → tω0 and ω → ω∕ω0.

To describe the dynamics of the system, we use the ap-
proach based on the optical Bloch equations. First, we obtain
the Heisenberg equations of motion for operators σ̂, σ̂ij, D̂, and
D̂ij. Then, we move from operators to their expectation values:
hσ̂i � σ, hσ̂iji � σij, hD̂i � D, and hD̂iji � Dij. The result-
ing equations contain higher order correlators for which new
equations should be obtained. To terminate an infinite chain
of equations, we decouple correlators of the second order as
hσ̂σ̂iji � σσij. Below, we consider a system of four clusters
with N � 10 LF TLA’s in each. For the sake of simplicity,
we assume that in each cluster, all TLA’s are the same.

As a result, we obtain a system of equations for c-numbers:

dσ
dt

� −iωSOσ � iDN
Xn
j�1

Ωj�σj � σ�j � − γσ;

dD
dt

� 2i�σ − σ��N
Xn
j�1

Ωj�σj � σ�j � − 2γ�D� 1�;

dσj
d t

� −iωjσj � iΩjDj�σ � σ�� − γjσj ;
dDj

d t
� 2iΩj�σ � σ���σj − σ�j � − 2γj�Dj � 1�; (2)

where ωj and Ωj are dimensionless, and ωSO � 1. In each
equation, the last term describes attenuation in the τ approxi-
mation, and the corresponding relaxation rate is denoted as γ.
For numerical calculations we set γ � γj � 0.001 ≪ ωj.

The dynamics of HF TLA’s driven by the operator F̂ �t�,
which plays the role of an external field, shows complex
Rabi oscillations [24]. To obtain a noticeable inversion,
F̂ �t� should resonantly affect the HF TLA transition. This
may occur during the SO train. Indeed, if the relation
ΩFΔt ≈ π is fulfilled, the inversion should achieve its maxi-
mum value due to the Rabi oscillations. Here, Δt is a duration
of the SO train, and ΩF � �2�Δt�−1 RΔt F 2�t�dt�1∕2 is the ef-
fective Rabi frequency in the Förster field. Since an increase of
the SO train duration usually leads to a decrease in the ampli-
tude of the HF field, which in turn, decreases the Rabi fre-
quency, the value of ΩF must be sufficiently large. This
requires a large expectation value F �t� of the operator F̂ �t�.

A direct way of increasing the Rabi frequency is by raising
the coupling constants Ωj. However, in our calculations, we
have used maximal values of Ωj � 0.01 determined from ex-
periments [23]. Their further increase is not realistic. A larger
Rabi frequency can be achieved by increasing the number
of TLA clusters and the number of TLA’s in each cluster.

We optimize the objective function, hDi50–300 �
1

250

R
300
50 D�t�dt, assuming that the frequencies of LF TLA’s vary

within the limit 0 < ω1;…;ω4 < 0.9. The optimization gives
hDi50–300 � 0.485 for the following values of the frequencies:
ω1 � 0.36, ω2 � 0.55, ω3 � 0.73, and ω4 � 0.88, and the
initial conditions arg�σ1��0.06, D1�0��0.04, arg�σ2��0.20,
D2�0� � 0.00, arg�σ3��5.89, D3�0��0.17, arg�σ4� � 4.73,
and D4�0� � 0.08. The dynamics of the system with the
parameters obtained during optimization are shown in Fig. 1.

Even though the maximum initial energy in the system is
achieved when the population inversion of LF TLA’s is
D � 1, the optimized values of D are rather small. This hap-
pens due to the necessity of increasing the Rabi frequency,
which is proportional to the field amplitude. The maximum
values of fields of LF TLA’s are proportional to

P
j Ωj and

achieved for Dj�0� � 0. Indeed, D and jσj are interrelated.
For a pure TLA state, we have jψi � Cejei � Cg jgi; thus,
σ � C�

g Ce and D � jCej2 − jCg j2 by definition [18]. Using
the condition jCej2 � jCg j2 � 1, we obtain 1 − D � 2jCg j2
and similarly 1�D�2jCej2. This gives 1−D2�4jC�

g Cej2�
4jσj2. Thus, the maximum amplitude of near fields is reached
for Dj�0� � 0; then jσj�0�j � 0.5.

The calculations show that there are several trains of
SO (Fig. 1). The first train lasts from t � 0 to t � 9.5π.
The corresponding spectrum is shown in Fig. 2. Clearly, the
harmonic with the frequency ωSO � 1 dominates. For com-
parison, we present a spectrum for a time interval without
SO (inset in Fig. 1). Thus, during an SO train, the population
inversion of the HF TLA should oscillate with the Rabi
frequency ΩF, which is equal to ≈0.15 for the first SO train.

Fig. 1. Dynamics of the population inversion of the HF TLA.
Interval Δt corresponds to the SO train; interval Δt 0 is a typical in-
terval without SO. Inset: dynamics of the system during the first train
of SO; thick line shows the population inversion of the HF TLA
(left axis); and thin line corresponds to the field amplitude created by
LF TLA’s at the location of the HF TLA (right axis).
jF j ≤ Σn

j�1ΣN
i�10.02jσij�t�j ≤ 0.4.

4304 Vol. 42, No. 21 / November 1 2017 / Optics Letters Letter



As one can see from Fig. 1, the excitation time Δtexc of the
HF TLA approximately coincides with the duration of the SO
train, Δt � 9.5π, and it is approximately equal to five periods
of the SO. The product ΩFΔt is ≈4.5, which is in good agree-
ment with the estimation ΩFΔtexc ≈ π following from the
theory of the Rabi oscillations [18].

The HF TLA is being excited until the train of the SO lasts.
When the SO ends, the Rabi oscillations stop until the next SO
train. After all trains end, the HF TLA remains in the excited
state during the time that is much larger than the inverse Rabi
frequency (Fig. 1).

The phenomenon considered can be generalized for the in-
teraction of the HF TLA with quantum harmonic oscillators,
that is, with multi-level systems. The Hamiltonian for such a
problem can be written as

H �
Xn
j�1

ℏωjâ�j âj � ℏωSOσ̂
�σ̂ � ℏ�σ̂ � σ̂��F̂�t�; (3)

where âj and â�j are operators of annihilation and creation of an
excitation of the jth quantum oscillator, Ωj are coupling con-
stants of the jth oscillator with the HF TLA, and F̂ �t� �
Σn
j�1Ωj�âj�t� � â�j �t�� is the corresponding Förster driving op-

erator. To describe this system, one can obtain a system of
equations for expectation values hD̂i � D, hσ̂i � σ, and
hâji � a. Similar to system of equations (3) we have

dσ
d t

� −iωSOσ � iD
Xn
i�1

Ωi�ai � a�i � − γσ;

dD
dt

� 2i�σ − σ��
Xn
i�1

Ωi�ai � a�i � − 2γ�D� 1�;

daj
d t

� −iωjaj − iΩj�σ � σ�� − γajaj: (4)

Equation (4) for four quantum oscillators with initial con-
ditions similar to the system of TLA’s described above provides
the dynamics of the population inversion of the HF TLA very
similar to the one shown in Fig. 1.

If the initial state of the system is not an eigenstate of the
Hamiltonian, then the energy of the system is not defined.

There is an energy spread due to which the energy may be
exchanged between LF and HF TLA’s. For the inversion
hD̂iji ≈ 0, the dimensionless energy spread can be estimated as��X

ij
ωijD̂ij

�
2
�
−

�X
ij
ωijD̂ij

�
2

≈
��X

ij
ωijD̂ij

�
2
�
: (5)

As in previous sections, ωij are dimensionless. Since averages
of cross-terms are negligible, we have��X

ij
ωijD̂ij

�
2
�
≈
X
ij
ω2
ijhD̂2

iji: (6)

Taking into account that, by definition, D̂2
ij ≡ 1̂, for the

energy spread we obtain
�X

ij

�ωijD̂ij�2
�

�
X
ij

�ωij�2hD̂iji2 �
X
ij

�ωij�2: (7)

Substituting the values given by the optimization into
Eq. (7), we obtain

P
ijω

2
ij ≈ 17ω2

SO ≫ ω2
SO. Thus, the energy

dispersion allows for the excitation of the HF TLA. Now, let us
estimate the probability of such an excitation. For this purpose,
we calculate the objective function for initial phases of near
fields from the interval �−π; π� with the step of π∕5 and initial
population inversions from the interval [−0.9, 0.9] with the
step of 0.1. Altogether, we obtain 190,000 system configura-
tions and calculate the distribution pf � df ∕d hDi50–300,
where f �hDi50–300� is a number of the systems in which
the value of an averaged inversion population smaller than
hDi50–300 is realized (see Fig. 3). High values of population in-
versions are observed in very rare cases. The solution obtained
above, hDi50–300 � 0.49, belongs to this interval. Thus, the
maximum population inversion is in the interval [0.48,
0.50], where SO are observed. This means that the probability
of observing SO is less than 10−5.

We show that an HF TLA can be inverted by near fields of
spontaneously relaxing LF TLA’s. This phenomenon occurs
due to an excitation of the resonant Rabi oscillations of the
HF TLA by a train of SO of the driving operator. This is
demonstrated for a system in which the HF TLA is excited
at the instant when the HF packet is terminated. This means

Fig. 2. Fourier spectra of the field amplitude F for the train of SO
Δt � �0; 9.5π� (the thick line) and for the time interval without SO,
Δt 0 � �34π; 43.5π� (the thin line).

Fig. 3. Distribution of configurations pf � df ∕dhDi50–300 found
in numerical experiment.
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that the relaxation of the HF TLA into the lower state is not
resonant, that is, it does not happen during the Rabi period but
due to the spontaneous radiation of a photon during the life-
time of the upper state.

We have generalized the observed phenomenon for the in-
teraction of the HF TLA with quantum oscillators. Thus, the
energy can be transferred to the HF TLA from electron, rota-
tional, and vibrational transitions. Therefore, the discussed
phenomenon can be a good candidate for the mechanism caus-
ing biophotons radiation. As we estimate, the probability of
such a process is extremely small, but it can be realized and
fortified in biological systems, which evolutionary selection
has taken billions of years to perfect.

Funding. National Science Foundation (NSF) (DMR-
1312707).
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