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Abstract: Surface plasmon polaritons are commonly believed to be a future basis for the next 
generation of optoelectronic and all-optical devices. To achieve this, it is critical that the 
surface plasmon polariton modes be strongly confined to the surface and have a sufficiently 
long propagation length and a nanosize wavelength. As of today, in the visible part of the 
spectrum, these conditions are not satisfied for any type of surface plasmon polaritons. In this 
paper, we demonstrate that in the ultraviolet range, surface plasmon polaritons propagating 
along a periodically nanostructured aluminum-dielectric interface have all these properties. 
Both the confinement length and the wavelength of the mode considered are smaller than the 
period of the structure, which can be as small as 10 nm. At the same time, the propagation 
length of new surface plasmon-polaritons can reach dozens of its wavelengths. These 
plasmon polaritons can be observed in materials that are uncommon in plasmonics such as 
aluminum. The suggested modes can be used for miniaturization of optical devices. 
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1. Introduction
Our appetite for higher-speed devices inevitably leads to the transition from electronic or 
optoelectronic to all-optical devices. At the same time, the necessity for higher clock 
frequencies for information processing requires greater integration of photonic devices and 
scaling them down to nanometers. In optics, dielectric fiber replaces the coaxial and strip 
transmission lines. However, the characteristic transverse size of a fiber line is orders of 
magnitude larger than the characteristic size of components of semiconductor integrated 
circuitry. Moreover, the radius of curvature for optical line bending reaches a few microns 
[1]. The resulting large total size of the device hinders the realization of a high clock 
frequency which is limited by the signal propagation time within the device. A possible 
solution for this problem is a transition from photons to surface plasmon-polaritons (SPPs). 

The SPP is an electromagnetic wave propagating along the interface between a metal and 
dielectric. Our focus is on a possibility of the information transfer by SPPs. We, therefore, 
consider a situation close to an experiment: a source of the electromagnetic field with the 
frequency 0ω  is positioned at some point 0x , and we are looking at the transmission line 
response at a distance x∆  from the source. In this setting, the frequency is real, and the wave 
vector SPPk  has an imaginary part, which is responsible for the attenuation. Such a setting is 
typical for plasmonics [2–7]. Note that usually the wave vector is considered as a function of 
the frequency. In our study, an SPP is an eigensolution characterized by the complex 
propagation constant SPPk  and the real frequency ω  [8, 9]. SPPk  is the wave vector 
component that is parallel to the direction of propagation of the SPP. It is related the 
transverse component via the dispersion law ( )22 2

02 /SPP dk k ε π λ⊥+ = , where 0λ  is the 
wavelength of light in vacuum. The wavelength of an SPP, 2 / ReSPP SPPkλ π= , is smaller 

than that of the electromagnetic wave in the dielectric with permittivity dε , 0 / dλ ε . In case 

of no attenuation, 2 2
0d SPPk k kε⊥ = −  is purely imaginary. The SPP is therefore confined to 

the metal surface with the transverse (perpendicular to the surface) confinement length 

( ) ( )
0

1/22 2
0

1
Im 2

SPP

d SPP
k

λ λ
δ

π λ ε λ⊥

= =
−

(1) 

In the absence of losses, the SPP propagation length, ( )1/ 2 Impr SPPl k= , would be infinite 
and both SPPλ  and δ  would tend to zero as ( )mε ω  tends to dε− . For 0SPPλ λ , the 
confinement length is 0/ 2SPPδ λ π λ≈  . This enables the miniaturization of optical devices 
and the transition from electronics to on-chip plasmonics technology possible [2–7]. 

The main obstacle to the use of SPPs in applications is Joule losses in the metal. This 
substantially decreases the SPP propagation length, prl  and also raises the SPP minimum 

wavelength, min
SPPλ . SPPs with SPPλ  smaller than min

SPPλ  cannot exist [2]. This weakens the 
transverse confinement of the SPP. 

The values of prl , min
SPPλ , and δ  are strongly determined by the geometrical configuration. 

The dispersion curves ( )xk ω  and parametric dependencies of ( )δ ω  as a function of ( )prl ω
for various configurations are shown in Figs. 1(a) and 1(b), respectively. The curves in these 
figures are characterized in Table 1. In the terminal points iA  and iB , the dispersion curves 
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cross the light cone or reach the plasma frequency. Points iA  and iB  denote upper lower 
bounds of the respective frequency range. In the low-frequency part of the spectrum, the SPP 
propagation lengths increase and iB  may absent. Consequently, in Figs. 1(b), the movement 
along the parametric curve ( )prlδ  starting from points iA  corresponds to a decrease in the 
frequency. 

Inside the light cone, the SPPs become the Zenneck waves [10]. Due to the small 
propagation length of these waves, we only consider the part of the dispersion curve outside 
the light cone. 

In the simplest geometrical configuration of an SPP propagating along the flat interface 
between half-spaces filled by the metal and dielectric, the wavenumber of the SPP is given by 
[2] 

0 / ( ),SPP m d m dk k ε ε ε ε= +  (2) 

where 0k  is the free space wavenumber [2]. Due to loss in the metal, according to Eq. (2), the 
dependence ( )SPPk ω  is not monotonic. At the first part of the curve 1 1A B , the wavelength of 
SPP, SPPλ , and the transverse confinement length, ( )δ ω , decrease with a decrease in the 
frequency until ( )SPPλ ω  and ( )δ ω  reach the minimum values min

SPPλ  and minδ , respectively. 
With a further decrease in the frequency, the ( )SPPλ ω  and ( )δ ω  increase (see Figs. 1(a) and 
1(b), curves 1). 

The minimum wavelengths for silver-vacuum and gold-vacuum interfaces are 
00.78min

SPPλ λ≈  and 00.91min
SPPλ λ≈ , respectively. Minimal transverse confinement lengths of 

SPPs in silver and gold are about 00.2λ  and 00.36λ , respectively. Unfortunately, at the 
maximal confinement ( minδ δ= ), an SPP cannot propagate at all since min min

pr SPPl λ<  (see Fig. 

1(b), curve 1). At low frequencies ( 3.0eVω < ), the SPP wavelength is of the order of the 

wavelength in the dielectric ( 0 /SPP dλ λ ε≈ ) and the transverse confinement length is much 
greater than SPPλ . 

The propagation length may be increased, even to hundreds of wavelengths, by using thin 
metal films [15]. The corresponding dispersion curve for long-range SPPs is determined by 
the equation [2] 

2 2
02 2

0 2 2
0

tan ,
2

d SPP m
m SPP

m SPP d

k khi k k
k k

ε ε
ε

ε ε

− − = 
  −

 (3) 

where h  is the thickness of the metal film. According to Eq. (3), the dispersion curve of the 
long-range SPP is close to the light cone (see Fig. 1(a), curve 2), so its wavelength SPPλ  is 
about 0λ , while the confinement length tends towards infinity [15–17]. In other words, the 
SPP tends to a plane wave, and the plasmonic thin films turn into an analog of a single-wire 
transmittance line (see curve 2 in Figs. 1(a), (b)). At the point 2A , curve 2 ends crossing the 
line cone. Such a transmittance line has no advantages compared to a common optical 
dielectric waveguide. 
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Fig. 1. The dispersion curves (a) and the parametric dependence of the transverse confinement 
length ( )δ ω  on the propagation length ( )prl ω  (b) for different topologies that support 

SPPs. In insets of Fig. 1(a), the frequency units are eV. For details, see Table 1. In Fig. 1(b), 
points iC  correspond to the boundary of the visible and IR regions assumed to be 780 nm (1.6 

eV); in Fig. 1(a), this boundary is shown by the yellow line; segments i iAC  correspond to the 
visible region. In the manuscript, for numerical calculations, we assume that the dielectric is 
vacuum with 1dε = . 

Table 1. The dependencies ( )xk ω  and ( )prlδ  for various transmission lines. For 

dielectric permittivities of aluminum and silver, the data from Refs [11]. and [12] were 
used. 

Curve # (color) Transmission line 
Ai (upper bound of the 
frequency region) 

Bi (lower bound of the 
frequency region) 

1 (red) Flat surface silver half-space DCILCa Does not exist 

2 (green) 30-nm-thin silver film (long-range SPP) DCILC Does not exist 

3 (purple) Chain of oblate aluminum spheroids 
(longitudinally polarized mode) [13] Plasma frequency DCILC 

4 (orange) Chain of oblate silver spheroids 
(transversely polarized mode) DCILC Does not exist 

5 (cyan) Microstructured silver surface (Spoof SPP) 
[14] DCILC Does not exist 

6 (blue) Nanostructured aluminum surface Plasma frequency DCILC 
aDCILC - dispersion curve intersection with the light cone 

Using chains of metal nanoparticles allows one to decrease both the wavelength of an SPP 
and its transverse confinement length [13, 18–25]. In the quasistatic approximation, in which 
only the nearest neighbor interaction is taken into account, the dispersion law of nanoparticles 
periodically positioned along the chain is either [24, 25] 

( )
31 arccos ,

4SPP
ak

a α ω
 

=  
  

(4) 

for dipole moments parallel to the direction of propagation (the longitudinal polarization), or 

( )
31 arccos ,

2SPP
ak

a α ω
 

= − 
  

(5) 
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for dipole moments perpendicular to the direction of propagation (the transverse polarization). 
In Eqs. (4) and (5), the nanoparticles are considered as point dipoles and ( )α ω  is the 
polarizability of a nanoparticle [26]. In [13], Eqs. (4) and (5) are generalized by including 
retardation effects. For oblate spheroids, the propagation length exceeding a hundred of SPPλ
is predicted. Such a great ( )prl ω  requires a large ratio of the greatest axis of the spheroid to 
the distance between spheroids. Our evaluations show that approximating nanoparticle by 
point dipoles results in a substantially overestimated ( )prl ω . Note, that unless we are working 
far from the stop band, the effects of retardation are not important. Neglecting the retardation 
effects and taking into account size effects results in curves 4 (Fig. 1) showing the 
propagation length smaller than a dozen of SPPλ . 

In contrast to the transverse SPP mode, the mode with the longitudinal polarization (see 
Fig. 1, curves 3) exists in the ultraviolet part of the spectrum in which Re ( ) 0d mε ε ω− < < . In 
gold and silver, this mode is non-existent due to high losses caused by inter-band transitions. 
Thus, in the visible region, even the best plasmonic materials, such as gold and silver, are not 
suitable for applications that require 0δ λ  and prl  of the order of a dozen SPP 
wavelengths. 

The search for new plasmonic materials has been growing sharply in recent years [27–30]. 
In particular, the transition to the ultraviolet part of the spectrum brings into consideration 
new materials, such as aluminum [29, 31]. The mode with the longitudinal polarization can 
propagate in chains of oblate aluminum nanospheroids (see curves 3 in Fig. 1). The upper 
bound of the narrow region in which this mode can propagate is the plasma frequency. 
Therefore, the SPP frequency is close to the plasmon resonance of the nanoparticle. This 
leads to large losses so that the propagation length of an SPP is only a few SPPλ  (in Fig. 1, 
curves 3 originate at the points 3A  at which the dispersion curve crosses the light cone and 
ends at the point 3B  at which the real part of the metal permittivity becomes positive). Short 
propagation lengths of both transverse and longitudinal modes substantially limit their 
practical use. 

Using aluminum allows for significant enhancements of UV fluorescence and the rates of 
photochemical reactions [31–34]. In Sections II-IV, using aluminum as an example, we 
consider the propagation of strongly localized SPPs. The effects under consideration cannot 
be observed in silver and gold. It would also be highly desirable to obtain topologically more 
complicated interfaces that combine advantages of the aforementioned systems without their 
shortcomings. 

In this paper, we demonstrate that a periodically nanostructured metal-dielectric interface 
(an array of metal nanoparticles deposited on the metal surface) supports an SPP mode which 
transverse confinement length and the wavelength are comparable to the period of the 
structure. In contrast to spoof SPPs that exist on structured surfaces in the far-infrared region 
[14, 35–37], the eigenfrequency of the suggested mode is in the ultraviolet part of the 
spectrum ( λ  is in the range from 83 to 115 nm). This mode cannot be observed in traditional 
plasmonic materials due to high losses caused by interband transitions in this part of the 
spectrum. In the ultraviolet region, losses in aluminum are relatively small because interband 
transitions are in the visible region. Therefore, the propagation length of the SPP can be as 
large as several dozens of SPPλ  on a periodically nanostructured aluminum-dielectric 
interface. 

2. Nanostructured surface
In the absence of losses, on a rough metal surface, an additional SPP may arise [38]. The 
solution corresponding to this SPP has been obtained with the assumption that for a smooth 
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surface, near the frequency for which ( )m dε ω ε= − , the group velocity of the SPP is zero. 
This provides a resonance interaction of the field with all harmonics of the roughness. As a 
result, the frequency curve splits and the second SPP mode with large k arises. However, in a 
lossy system, on a smooth surface, an SPP with sufficiently large wavenumbers does not 
exist. In addition, the assumption of zero group velocity, which is necessary for the second 
branch of the SPP, is not realistic. Therefore, it is not clear whether in a lossy system an 
additional SPP may arise. 

To model periodically nanostructured metal-dielectric interface, we consider a system 
shown in Fig. 2. The interface between the metal and dielectric is modulated by the function 

( )( ) cos 2 /s x h x aπ= . The upper half-space is a dielectric with the permittivity dε  and the 
lower half-space is a metal with the permittivity mε . We look for a frequency-domain 
solution as a TM-polarized wave propagating along the x-axis. Since the roughness is 
periodic, we seek for the solution in the form ( , ) xik x

yH F x z e= , where yH  is the magnetic 
field strength of the SPP, ( , )F x z  is periodic in the x-direction function with the period a , 
and x x xk k ik′ ′′= +  is the propagation constant. 

To solve Maxwell’s equations, we use the coordinate transformation [39, 40] which 
makes the interface flat, but coefficients in the equations become periodic with respect to x . 
This method is even applicable for a large amplitude of roughness when the Rayleigh 
hypothesis is invalid [41, 42]. Within the framework of this method, the tangential 
components of the electric and magnetic fields are represented as a series of Bloch harmonics. 
This allows one to reduce Maxwell’s equations to the system of linear differential equations 
with constant coefficients and to obtain expressions for the fields in both media analytically. 
By using the Maxwell boundary conditions, one can obtain the propagation constant ( )xk ω
of the eigensolution as a function of frequency. 

Fig. 2. The schematics of the system studied. 

3. Analysis of the dispersion curves for the nanostructured surface
For an SPP, a periodically nanostructured surface is a photonic crystal. For typical plasmonic 
materials such as silver and gold, the SPP curve in the second Brillouin zone cannot be 
observed due to high losses in the UV frequency region in which these losses are due to the 
interband transitions. In the UV part of the spectrum of aluminum, losses are small because 
interband transitions are in the visible part of the spectrum. Therefore, in aluminum, this SPP 
dispersion branch can be observed. 

First, we consider a hypothetical lossless vacuum-aluminum system. The dispersion 
functions, ( )xk ω , of SPPs on the nanostructured surface for various amplitudes of the 
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interface profile are shown in Fig. 3. The dispersion curve (shown by the blue line in Fig. 3) 
( )xk ω  of the SPP propagating on the flat surface ( 0h = ) is described by Eq. (1) [2]. For 

small h, similar to photonic crystals, due to the Bragg reflection of plasmon-polaritons 
between neighboring surface inhomogeneities, the band gap at / 1xk a π =  opens up (the rеd 
line). The width of this band gap increases with an increase of h  [43]. At a certain value of 
h , in the second Brillouin zone, a part of the dispersion curve moves to the frequency region, 
in which ( )Re m dε ω ε> − . In this region, SPPs on a flat metal-vacuum interface do not exist 
because xk  becomes pure imaginary. One might expect that the “plasmon” band gap should 
arise in this region. However, there is a passband because, in a periodic system, the energy 
can be transferred by evanescent fields [44]. 

In a lossless system, the dispersion curves for interfaces with technologically achievable 
amplitudes of the surface perturbation ( 5h =  nm and 10a =  nm in our calculations) are 
shown in Fig. 4(a). In this case, the band gap arises for the wavelengths 97 nm – 207 nm. In 
the first Brillouin zone, the dispersion curve of the SPP becomes non-monotonic, and a point 
in which the group velocity is zero arises. In the second Brillouin zone, the dispersion curve 
moves completely to the frequency region defined by the inequality Re ( )m dε ω ε> − . In this 
zone, the waves are backward. 

Fig. 3. The dispersion curves of the SPP on the nanostructured surface for various modulation 
amplitudes h. The period of the modulation is 10 nm. The dielectric permittivity of metal 
assumed to be equal to the permittivity of aluminum taken from Ref [12]. The dash-dotted 
purple line corresponds to / 0.73plω ω = at which Re m dε ε= −  ( plω  is the plasma 

frequency). 

Losses change the SPP dispersion curves significantly [see curve 6 in Figs. 1(a), 1(b) and 
4(b)]. One can see that in the first Brillouin zone, / 1xk a π < , at the point in which in the 
absence of loss, the group velocity is zero, the SPP curve splits into two branches. Both of 
these branches are in the visible region. One of the branches has a negative slope 
corresponding to the backward wave. Because the respective wavenumber is of the order of 

/ 2aπ  [see Fig. 4(b)], this wave exists far from the light cone where it may be strongly 
confined. However, computer simulations show that on an aluminum surface, the propagation 
length of the SPP associated with this curve is small. It is not more than the SPP wavelength. 
Even for silver, which in visible does not have interband transitions, the propagation length 
does not exceed the SPP wavelength. 
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For a and h of the order of 10 nm, the attenuation may depend on the surface 
inhomogeneities because their size becomes comparable with the electron mean free path in 
metal [45]. For silver and gold, the electron mean free path is 20-30 nm [45, 46]. In 
aluminum, the electron mean free path is 2 nm [45]. Therefore, in aluminum, the electron 
scattering off the surface is small, and there is no additional loss due to the smallness of the 
structure. Thus, to calculate the SPP dispersion branch in the second Brillouin zone, one may 
use bulk values for aluminum permittivity. 

Fig. 4. The dispersion curves of the SPP on an aluminum surface calculated without (a) and 
with (b) taking loss into account. The dispersion curve of the SPP on flat and nanostructured 
surfaces are shown by blue and red lines, respectively. The structure parameters are h = 5 nm 
and a = 10 nm. Orange lines show boundaries of the light cone, the dash-dotted purple line 
corresponds to / 0.73plω ω = . Re m dε ε= −  for the frequency 0.73 plω ω= . In this 

figure, the line numbering is the same as in Fig. 1. 

Since the SPP dispersion curve 6 in Fig. 4(b) is in the second Brillouin zone, the 
wavelength of the SPP should be determined by the period of the surface structure. Indeed, 
this wavelength is related to the propagation constant 2 /xk aπ≈  as 

2 .
ReSPP

x

a
k
πλ = ≈  (6) 

The smallness of the SPP wavelength implies the subwavelength confinement of the SPP. 
Indeed, numerical calculations presented in Fig. 5 show that the field intensity is mainly 
confined near the surface. Since the frequency of the SPP is equal to the light frequency in a 
vacuum, it is clear that the field of the SPP is confined on a subwavelength scale. 
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Fig. 5. The distribution of the electric field intensity 
2E  near the interface. The values of ω  

and xk  used in numerical calculations are marked by the black point in Fig. 4(b). 

Note that in the second Brillouin zone, a strongly confined SPP with the Bloch 
wavenumber x Blk k=  also includes the harmonic with the wavenumber 2 /x Blk k aπ= − , that 

belongs to the first Brillouin zone. Though we consider ( ) 02 /Bl dk a kπ ε− > , the difference 

between 2 /Blk aπ−  and 0 dk ε  is small and the corresponding harmonic has weak 
transverse confinement. Nevertheless, the amplitude of this harmonics is much smaller than 
that of the Bloch harmonics corresponding to the second Brillouin zone [47]. This is 
confirmed by our computer simulation. As a result, the Bloch harmonics of the first Brillouin 
zone does not affect much the confinement of the SPP. 

The strongly confined SPP propagates over relatively long distances. Its propagation 
length prl  can be determined by the equation 

Re
,

4 Im
pr x

SPP x

l k
kλ π

= (7) 

where prl  is defined as the distance over which the field intensity decreases by the factor of 
e . On the sine surface with the amplitude of 5 nm, the maximum value of the SPP 
propagation length is about 17 SPP wavelengths. By optimizing the surface structure, one can 
increase this length significantly. By using the Nelder–Mead method for optimization [48], 
we find that the optimal surface profile is given parametrically by the equations: 
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(8) 

where the height of modulation is 18.5h =  nm, the period is 10a =  nm, 2.5γ =  nm, and v  
is the parameter varying in the range from / 2a−  to / 2a . The profile of the surface is shown 
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in Fig. 6. With the surface profile given by Eq. (7), the SPP propagation length is about 
53 SPPλ  or 628 nm. Its frequency dependence is shown in Fig. 7. 

Fig. 6. The optimal surface structure defined by Eq. (6). 

Fig. 7. The dependence of the SPP propagation length on its frequency on the optimized 
nanostructured interface. 

The profile given by Eq. (8) may be difficult to realize experimentally. However, our 
numerical simulations demonstrate that the effect reported in the paper is fairly stable to 
variations of the surface profile. 

4. Mechanism for the formation of the strongly confined SPP
To explain the formation of the strongly confined SPP, we represent the sine-profile of the 
surface, 

( ) cos(2 / ),s x h x aπ=  (9) 

as a chain of peaks with the height 2h  and the width / 2a , spaced by the distance a . Electric 
charge accumulates on inhomogeneities with a small radius of curvature increasing the 
electric field strength near the spike [6]. Spikes, therefore, have high polarizabilities. In 
addition, the high polarizability of a spike can arise due to localized plasmon resonances [49–
51]. If spikes have the same shape and are located close to each other, then a propagating 
mode arises [24]. 

Assuming that the chain of spikes is equivalent to the chain of two-dimensional dipoles 
with the polarizability ( )α ω , one can obtain the dispersion law for the propagating mode. 
Numerical calculations show that a dipole moment of a spike is directed along the SPP 
propagation direction, x . Therefore, we consider the longitudinally polarized mode of the 
dipole chain. The dipole moment of the i-th spike is determined by the equation: 
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,( ) ( ),i x n i
n i

d E xα ω
≠

= ∑  (10) 

where , ( )x n iE x  is the electric field of the n-th dipole acting on the i-th dipole. It can be 
determined by using the equation: 

( )
2

2
, 02( ) , ,x n n n

dE x d k G x x
dx

 
= + 

 
 (11) 

where ( )(1)
0 0( , )i iG x x i H k x xπ= −  is the Green function of the two-dimensional Helmholtz 

equation. Since the chain is periodic, the dipole moments of spikes are related via the Bloch 
theorem: 

( ) .xik n i a
n id d e −=  (12) 

Excluding id  from Eqs. (10) and (11) we obtain the dispersion law: 

( ) ( ) ( )
0

2
2 (1)
0 02

1
1 2 cos .x

n x nk a

di k H x nk a
dx

πα ω
∞

= =

 
= + 

 
∑  (13) 

Let us assume that the polarization of a single peak, ( )α ω , has the form [52]: 

max

max

1
( ) ( ) ,

( )m
m

bh
ε

α ω α ω
ε ω ε

−
=

−
 (14) 

where ( ) 1( ) ( ) (4 )m m dα ω ε ω ε π −= −  is the polarizability of a metal and maxε  is the permittivity 
for which the polarizability reaches its maximum value. The dispersion curves calculated by 
using the coordinate transformation [39, 40] and with the help of Eqs. (13) and (14) are 
shown in Fig. 8. For calculations, we consider the lossless case and assume that 10a =  nm, 

5h =  nm, and max 0.24 dε ε= − . We use such a value of maxε  because as the distance between 
peaks increases, the dispersion curve calculated with the help of the method coordinate 
transformation becomes a straight line max constω ω≈ =  at which ( )max max 0.24 dε ω ε ε= = − . 
Both curves are qualitatively the same: they have the same slopes and are approximately in 
the same frequency region. This shows that strongly confined SPP modes arise due to the 
high polarizability of surface inhomogeneities. 
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Fig. 8. The dispersion curves calculated by using the coordinate transformation [39, 40] (the 
red line) and with the help of Eqs. (13) and (14) (the blue line). The latter curve is extended to 
the second Brillouin zone. 

5. Conclusion
In this paper, we have shown that strongly confined SPPs traveling dozens of wavelengths 
exist on a periodically nanostructured interface between a metal and dielectric. This mode, 
being a Bloch wave, exists near the second stop band. In contrast to Bloch waves in solids, an 
electromagnetic Bloch wave has a harmonic, which amplitude is much greater than all other 
harmonics of the wave. It is the wavenumber of this harmonic that determines the transverse 
confinement length of the wave. In the second passband, this wavenumber is about 2 / aπ ; 
therefore, its confinement length is ( )~ / 2aδ π . In our case, the second passband lies in the 
UV range where no SPPs are traveling along flat surfaces. Therefore, the Bloch wave is 
tunneling from one surface peak to another. This decreases the Joule losses consequently 
increasing the propagation length. A similar mechanism of an SPP propagation is realized for 
the longitudinally polarized mode in a chain of oblate nanospheroids [13]. Both modes are in 
the UV part of the spectrum. However, our computer simulation shows that the chain mode 
requires a greater dipole moment of a spheroid than the dipole moment of a peak on a 
nanostructured surface. As a result, the chain mode has a higher concentration of the electric 
field inside the ellipsoids. This results in greater losses leading to a smaller propagation 
length of this mode compared to the propagation length of an SPP along a nanostructured 
surface. In addition, the chain mode has a large confinement length because it exists in the 
first passband. 

In traditional plasmonic materials, such as silver or gold, for ultraviolet frequencies, the 
SPP propagation length would be extremely small due to interband transitions. The suitable 
metal for the modes considered in the paper is aluminum in which losses are small in the 
ultraviolet region. In addition, the electron mean free path in these metals is about 2 nm 
providing small surface scattering. The period of the nanostructure, which may be 10-20 nm, 
determines the wavenumber of the SPP and results in strong confinement, which is crucial for 
SPP sensing and enhancement of nonlinear effects. Strong field localization also makes 
possible further miniaturization of a variety of “plasmonic optical” devices. 
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