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Abstract: We develop a theory of lasing of a collection of pumped active atoms without a
resonator (either regular or random). Due to spontaneous emission into free space, phases of free
space electromagnetic modes fluctuate. These phase fluctuations can be reduced to frequency
fluctuations. The closer the frequency of fluctuation to the transition frequency of the active
atoms, the higher lifetime of the fluctuation. We show that because of this, the average frequency
of modes pulls toward the transition frequency. This leads to a maximum in the density of
states of the electromagnetic field and a decrease of the mode group velocity. Consequently, the
coupling of modes with atoms as well as the lifetime of fluctuations increase. Thus, mode pulling
provides positive feedback. When the pump rate exceeds a certain threshold, the lifetime of one
of the realized fluctuations diverges, and radiation becomes coherent.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Radiation of a collection of incoherently pumped atoms in a cavity-free system is usually referred
to as amplified spontaneous emission (ASE) or superfluorescence [1]. It occurs in various
physical systems – from so-called cosmic lasers to superluminescent diodes [2–8]. In an ASE
system, a photon spontaneously emitted by one of the excited atoms triggers stimulated emission
of inverted atoms located on its path out of the system [1]. Subsequently, a pulse of coherent
photons is formed. Since for the ASE system it is assumed that there is no reflection at the system
boundaries, this pulse leaves the system. Total radiation of an ASE system is a sum of such pulses
that have random phases. For a small gain coefficient, the resulted radiation is incoherent [9].
A laser is an ASE system placed in a cavity (resonator). In a laser, an ASE pulse, which

is formed inside the cavity, reaches the resonator boundary, returns back, and is amplified
further. The resonator provides positive feedback that makes a laser generate coherent radiation.
Indeed, in a laser, the pulse with the maximum number of photons has an advantage in further
amplification; when the phase and energy conditions are satisfied [1], the system lases.

A resonator does not have to be a part of a laser structure. In random lasers, photons scattered
on inhomogeneities return to the gain medium. As a result, the path of the photon through the
system becomes complicated. Multiple scatterings can lead to backscattering, similar to weak
localization. Configurations of the disordered medium causing backscattering can be considered
as random mirrors [10]. Moreover, a closed path may be formed. This means that in the system,
several random mirrors form a random resonator. It is understood that when random resonators
are present, they provide positive feedback, and can lead to lasing when phase conditions are
satisfied [11–13]. With no closed paths, a random laser should behave as an ASE system [12].
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Below we deal with systems that have no backscattering; then, even a random system is
equivalent to an ASE system. As far as we know, it is commonly expected that an ASE system
can only serve as an incoherent light source or as a light amplifier (see [9] for detail). ASE
and lasing, however, have some common features. First, in both lasing and ASE systems, line
narrowing of output radiation is observed. Second, similar to lasing, the ASE intensity output has
an S-shaped dependence on the pump rate. These features arise due to the nonlinear dependence
of the radiation amplification on the pump rate.
In this paper, we show that even without a cavity, there is a mechanism for creating positive

feedback in ASE systems. Because of spontaneous emission of atoms into modes, the complex
amplitudes of the modes fluctuate. The autocorrelation function of these fluctuations shows the
spectrum broadening that can be treated as frequency fluctuations. Due to the interaction of
free-space modes with pumped atoms, the closer the mode frequency to the transition frequency of
pumped atoms, the longer the lifetime of the fluctuation. This results in pulling mean frequencies
of free-space modes toward the transition frequency. In turn, this leads to an increase in the
density of states (DOS) near the transition frequency. As a result, the group velocity decreases,
and the interaction between the modes and atoms increases. Consequently, the intensity of the
modes grows to cause further enhancement of the frequency pulling. By computer simulation,
we find the parameters of a cavity-free system for which the lifetime of such fluctuations may
diverge so that the stimulated emission of the inverted atoms results in self-oscillations (lasing).
The latter is verified by the calculation of the second-order correlation function, which tends to
unity with pumping increase.

2. The model

In a typical ASE experiment, a large volume is usually filled with active atoms. Only a fraction
of these atoms within a region stretched in one direction is pumped. It is the direction, in which
ASE is observed. Thus, for simplicity, we consider a one-dimensional multimode waveguide
extended in the x-direction. Only a part of this waveguide within the length Lam is filled with
pumped atoms. To make this model closer to a real ASE experiment, we take into account
radiation losses in the 1D waveguide walls that correspond to losses through side boundaries of
the 3D pumped region.

In order to quantize the electromagnetic (EM) field, we assume that the waveguide is bounded
by ideally reflecting walls, separated by a very large distance LU acting as the size of the Universe.
We assume that the empty waveguide has many eigenmodes, which are standing waves. Note that
the Poynting vector of any waveguide mode is equal to zero, and radiation into this mode would
violate causality. Since we take into account a large number of modes, the interference in these
modes forms a sharp front propagating with the speed of light [14,15] and results in a non-zero
Poynting vector. To avoid the effect of the return of the front reflected from the boundary of the
Universe into the active volume, we consider time-scales smaller than the round-trip time of light
tU = LU/c. By increasing LU , we make tU greater than any time of a transient process in the
system.
In our computer simulation, we use the Maxwell-Bloch equations with quantum noise (for

details, see [9,16,17]):
d
dt

aj = (−γa/2 − i∆j)aj − i
atoms∑

k
Ωjkσk, (1)

d
dt
σk = −σk(γP + γD + γdeph)/2 + iDk

modes∑
j
Ωjkaj + Fσ

k , (2)

d
dt

Dk = (γP − γD) − (γP + γD)Dk + 2i
modes∑

j
Ωjk(a∗j σk − ajσ

∗
k ), (3)
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where aj is the amplitude of the EM field in the j-th free-space mode, σk and Dk are the
polarization and the population inversion of the k-th atom, respectively. Also γa is the relaxation
rate that describes energy losses in the waveguide walls, γD and γdeph are energy and phase
relaxations rates of atoms, respectively, and γP is the rate of incoherent pumping of the atoms;
∆j = ωj − ωTLS is the difference between the eigenfrequency of the j-th mode and the transition
frequency of the atoms. Since the eigenmodes are standing, the coupling constant (the Rabi
frequency) between the j-th mode and the k-th atom, Ωjk, is real. The value of Ωjk is equal to
−Ej(xk) · dk/~, where xk is the position of the k-th atoms, dk = 〈e|er|g〉k is the matrix element of
its dipole moment, and Ej(x) is the electric field “per one photon” of the j-th mode (for details,
see [9,16,18]). Fσ

k are the noise terms. As has been shown in [16,19], the noise terms added to
Eqs. (1)–(3) allow one to describe phenomena associated with spontaneous emission. Note that
in Eq. (3), the last sum contains terms that are responsible for the absorption of photons from
the modes. These terms are needed because, in a system of many atoms that we consider, they
describe processes in which a photon emitted by one atom is absorbed by another one.
The values of the parameters that we consider are close to those of a gain medium based on

organic semiconductors [20]. The atoms are modeled by two-level systems (TLSs) with the
transition frequency ωTLS ∼ 3 · 1015s−1, λTLS = 2πc/ωTLS ∼ 670 nm. The relaxation rates that
describe energy losses in the waveguide walls and the active medium are γa = 4 × 10−3 ωTLS and
γD = 10−6 ωTLS, respectively. The rate of the phase relaxation of the atoms is γdeph = 10−2 ωTLS;
the rate of incoherent pumping γP varies within the interval ( 0, 1000γD).

The gain of pumped atoms is characterized by the gain coefficientG(n) = 4πnωTLS |d |2/~cγdeph =

(2.3 · 10−15 cm2) n, where d is the dipole moment of a TLS transition and n ∼ 6.4÷32 ·1017 cm−3
is the density of active atoms, Lam = 35λTLS. Since the interaction of modes with atoms is
resonant, we consider a finite frequency interval (ωTLS − 20γσ , ωTLS + 20γσ). The value of
LU is chosen large enough to provide about 1600 equidistant modes within the interval. The
noise terms and the relaxation rates in Eqs. (1)–(3) are connected via the fluctuation-dissipation
theorem [18]. Since the phase relaxation rate of dipole moments, γdeph, is much greater than the
other relaxation rates, corresponding noise terms, Fσ

k , prevail [18]. For this reason, we take into
account only these noise terms.

3. Results of computer simulation

Our computer simulation shows that the parameter determining the dynamics of the system is
the product G(n)Lam. For G(n)Lam = 5.2 (n = 6.4 × 1017 cm−3), we obtain that the dependence
of the output radiation on the pump rate has a characteristic S-shape [1]. The pump rate that
corresponds to the inflection point of the curve is usually considered as the ASE-threshold, γASE
[7,8]. An increase in gain does not change the shape of the curve qualitatively. We find that the
only characteristic of the system, which does change qualitatively, is the coherence of output
radiation.
Coherent properties of light are characterized by the second-order coherence function:

g(2)(τ) = 〈I(t)I(t + τ)〉 /〈I(t)〉2, (4)

where I is the radiation intensity. For incoherent light of a black body, g(2)(0) = 2, while for
lasers, g(2)(0) = 1 [19]. For an ASE system, g(2)(ωTLS, 0) does not depend on the pump rate γP
and is about 2 both below and above the threshold γASE [9,21,22]. When τ →∞, g(2)(τ) → 1.0
with the characteristic time inversely proportional to the linewidth [16,19]. In experiments, to
measure g(2)(0), a spectrum of the investigated source is narrowed by filtering [19], we, therefore,
calculate g(2)(ωTLS, 0) in a frequency interval near the transition frequency of active atoms.
For relatively small G(n)Lam<8, the value of g(2)(ωTLS, 0) does not depend on the pump rate.

In particular, for G(n)Lam = 5.2, g(2)(ωTLS, 0) is equal to 1.9± 0.1 (see also [9]) that characterizes
the output radiation as incoherent.
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Fig. 1. The dependence of the intensity of output radiation and g(2)(ωTLS, 0) on the pump
rate for the cavity-free system exhibiting the coherence threshold γcoh (shown by the vertical
dashed line). The solid thick and the thin curves are output intensities obtained by solving
the Maxwell-Bloch equation with and without noise, respectively. The computer simulation
is performed for G(Nc)Lam = 26 (n = 32.0 × 1017 cm−3). The dashed blue curve is the
second-order correlation function, g(2)(ωTLS, 0).

For larger values of G(n)Lam, our model demonstrates an unexpected behavior of a cavity-free
ASE system. We find that on the intensity curve, a new pumping threshold γcoh>γASE arises
(see Fig. 1). Above this threshold, the value of g(2)(ωTLS, 0) drops to unity (Fig. 1), which is
typical for coherent light of lasers. This is a consequence of adding coherent radiation to the
incoherent radiation arising in the system with noise, the appearance of which above the threshold
is predicted in the problem without noise.

The system under consideration demonstrates the behavior that is typical for a common laser
with cavity [1,16,19]. Since the refractive index of the active medium differs from the refractive
index of the surrounding medium, one can expect that the lasing may occur at the Fabry-Perot
cavity formed by the boundaries of the active medium. However, the estimation for the lasing
threshold shows that lasing at the Fabry-Perot cavity requires the pump rate greater than γcoh by
several orders of magnitude. Indeed, the edges of the active medium play the role of mirrors, and
lasing is determined by the reflection coefficient, which depends on dielectric permittivity of the
active medium, εgain(ω) [23]:√

εgain(ω) − 1√
εgain(ω) + 1

exp
(
i
ω

c

√
εgain(ω)Lam

)
= 1 (5)

(the dielectric permittivity of the waveguide materials is assumed to be 1). The dielectric
permittivity of the active medium below the lasing threshold can be estimated through the dipole
moment of a TLS transition, d, and the concentration of TLSs, n, [23]:

εgain(ω) = 1 −
α

ωTLS − ω − iγdeph/2
, (6)

where α = 4π |d |2n/~. The gain coefficient of the active medium is expressed via dielectric
permittivity as [24]:

G = −2
ω

c
Im

√
εgain(ω) ≈ −

ω

c
Im εgain(ω). (7)

The absolute value of the reflection coefficient at the transition frequency, ωTLS, is

|r(ωTLS)| =

�����
√
εgain(ωTLS) − 1√
εgain(ωTLS) + 1

����� ≈ |Imεgain(ωTLS)|

4
≈

c G
4ωTLS

. (8)
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At the coherent threshold, Gcoh = G D0_coh = 1450 cm−1, from Eq. (8), we obtain that
|r(ωTLS)| = 3.68 ·10−3, where D0_coh = (γcoh − γD)/(γcoh + γD). This value is much smaller than
the absolute value of the reflection coefficient, which is necessary for lasing at the Fabry-Perot
cavity

|rFP(ωTLS)| =

����exp
(
i
ω

c

√
εgain(ω)Lam

)����−1 = exp(−Gcoh Lam/2) ≈ 7.9 · 10−2. (9)

Thus, we conclude that lasing can take place in a cavity-free system. In a toy-model, in which the
cavity-free system consists of Nat atoms located at a single point, an analytical expression for the
lasing threshold can be derived (see Appendix). It is important that the value of this threshold
remains finite when the box size LU → ∞ (see Appendix). That is, the lasing in a cavity-free
system does not depend on the box size.

4. Mechanism for cavity-free lasing

To understand the origin of lasing in a cavity-free ASE system, it is useful to look at the textbook
picture of lasing in a system with a resonator from a nonconventional point of view. An open
resonator placed in free space leads to a local maximum in the DOS at the resonance frequency
[25]. The modes forming the maximum have almost the same frequencies and can interfere.
A certain configuration of these modes interferes constructively, increasing the field intensity.
Consequently, excited atoms are stimulated to emit photons into the configuration of the modes
more intensively, increasing the field further. Thus, the DOS maximum serves as positive
feedback providing coherent radiation of the system.
Below we show that the mechanism, in which a DOS maximum provides positive feedback,

can be realized in a cavity-free system. The main difference between our mechanism and the
mechanism of [25] is that in a cavity-free system, the DOS maximum is created not by a resonator
but by the interaction of free-space modes with an active medium. This interaction results in
pulling eigenfrequencies of modes having fixed wavenumber to the transition frequency.

Although the coherence threshold γcoh exists in a noiseless system, the mechanism responsible
for mode pulling becomes apparent by considering the system with quantum noise that is
responsible for spontaneous emission. In such a system, the complex amplitude of the free-space
mode with a fixed wavenumber, k, fluctuates. The spectrum of this amplitude defines the
corresponding frequency. Since at the transition frequency of active atoms, the gain coefficient
has a maximum, below γcoh the closer modes to the transition frequency, the slower their
decay [1,16]. Therefore, the longest-living fluctuations are those that pull the mode toward the
transition frequency. Such fluctuations give the greatest contribution to the mean frequency. To
demonstrate this frequency pulling, we consider the spectrum of the complex amplitude of each
space harmonic. For this purpose, we calculate the values of the correlator

Aj(τ)=
〈
a∗j (tst + τ)aj(tst)

〉/ 〈
a∗j (tst)aj(tst)

〉
(10)

and the spectrum of the j-th harmonic

Sj(ω) = Re
∫ ∞

0
Aj(τ) exp(iωτ)dτ, (11)

in the stationary regime reached at t = tst. Figure 2 shows the frequency spectra of the harmonic
with the wavevector kb = 0.978ωTLS/c for pump rates below, near, and above the lasing threshold.
Deep below the threshold, the spectrum has a pronounced maximum at kb = 0.978ωTLS/c and a
noticeable high-k wing with a weak maximum at kTLS = ωTLS/c. With increasing pumping, the
first maximum decreases while the second maximum increases. Thus, the mean frequency of
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the space harmonics shifts toward the atomic transition. This maximum sharply grows with a
further rate increase. We refer to this phenomenon as frequency pulling of space harmonics with
different wavenumbers. The frequency of the space harmonic with the wavenumber kj is defined
as

ω(kj) =

∫ ∞

0
ωSj(ω)dω/

∫ ∞

0
Sj(ω)dω. (12)

Fig. 2. Spectra of the free-space mode with the free-space eigenfrequency ω = 0.978ωTLS
for different pump rates: γP = γD (the dotted blue curve), γP = 1.5γD (the solid green
curve), and γP = 2γD (the dashed red curve) for an extended system. Below the threshold,
the maximum of the spectrum is at ω = 0.978ωTLS (marked by the vertical black line);
with an increase in the pump rate, the maximum at the atom transition frequency grows.
G(Nc)Lam = 26.

Figure 3 shows that near kTLS = ωTLS/c, due to the frequency attraction of free-space modes
to the transition frequency of active atoms, an interval of wavenumbers in which the dispersion
curve tends to a horizontal line ω(k) = ωTLS arises. The size of this interval is determined by the
level of noise and tends to infinity when noise vanishes. The flattening of the dispersion curve
results in a decrease of the group velocity vgr = ∂ω/∂k, which tends to zero, and a sharp increase

Fig. 3. The dependence of the mean frequency on the wavenumber for γP = 2γD (the
dashed blue curve) and γP = 1000γD (the solid red curve). The DOSs near the transition
frequency for γP = 2γD (the dashed blue curve) and γP = 1000γD (the solid red curve) are
shown in the inset. The side maxima correspond to antisymmetric solutions, which have
weaker interaction with atoms.
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in the DOS, which is inversely proportional to vgr. Such a behavior of the DOS is shown in the
inset in Fig. 3.

Sj(ω) defined by Eq. (11) may be considered as a contribution of the j-th harmonic into the
DOS dependence on the frequency, so that DOS(ω) =

∑
j Sj(ω) [19]. The inset in Fig. 3 shows

that for γP = 1000γD, the DOS has a sharp maximum at the atomic transition frequency. The
maximum of the DOS and the zero of the group velocity lead to lasing in the system (see also
[17]).

5. Conclusion

We have demonstrated that for a high gain coefficient of active media, in a cavity-free ASE system,
a new pump threshold - a coherence threshold, γcoh, may arise. Above γcoh, an ASE system
generates coherent light. The cause for coherent radiation is pulling frequencies of free-space
modes with different wavevectors toward the transition frequency of active atoms. This pulling
occurs due to the interaction of free-space modes with active atoms. Consequently, a peak in the
DOS of the system arises, and the group velocity of light decreases sharply. This decrease leads
to an increase in the strength in the interaction between the EM field and the active medium [17],
which ultimately leads to lasing.

Our analysis shows that the coherence threshold cannot be identified with the lasing threshold,
which may arise due to reflection at the boundaries of an active medium and vacuum. To
demonstrate this, we compare the lasing threshold in our system with the lasing threshold in a
system with a Fabry-Perot resonator. The comparison shows that in order to obtain lasing at
the coherence threshold due to feedback provided by the Fabry-Perot resonator, the amplitude
reflection coefficient should be≈0.079. This is much larger than the reflection from the boundaries
of an active medium and vacuum, which in our system is ≈3.7 · 10−3. Moreover, the lasing can
take place even in a cavity-free toy-system consisting of Nat atoms located at one point (see
Appendix). In this system, the length of the active medium is zero, and there is no Fabry-Perot
resonator that is formed in the active medium. In our system, the only condition necessary for
lasing is a maximum in the DOS.
Even though our calculations demonstrate a possibility of lasing in a cavity-free system, we

note, however, that difficulties that may arise in experiment can complicate an unambiguous
interpretation of the nature of coherence of the output ASE [9,26–28].

Appendix. Toy-model: cavity-free system having Nat atoms located at one point

To demonstrate that in our system, lasing does not occur due to a Fabry-Perot resonator formed
by the boundaries of the active medium, we consider the case of an infinite number of the modes
that interact with Nat atoms located at the point x = 0. The difference between the eigenfrequency
of the j-th mode and the transition frequency of the atoms ∆j = ωj − ωTLS = ∆0(j − 1/2), where
∆0 = πc/L is the step between mode frequencies. We seek the self-oscillating solution at the
atom transition frequency ωTLS. In other words, we investigate the possibility of an existence of
the solution for which frequencies of all modes are pulled toward the atomic transition frequency.
To describe this system, Maxwell-Bloch equations for slowly varying amplitude, Eqs. (1)–(3),
are modified as

d
dt

aj = (−i∆j − γa/2)aj − iΩRNatσ, (13)

d
dt
σ = −γdephσ/2 + iΩR D

mode∑
j

aj, (14)

d
dt

D = (γP − γD) − (γP − γD)D + 2iΩ

(
σ

mode∑
j

a∗j − σ
∗

mode∑
j

aj

)
. (15)



Research Article Vol. 27, No. 24 / 25 November 2019 / Optics Express 35383

From Eq. (13), the stationary value of the mode amplitude aj may be expressed through the atom
polarization σ as

aj =
−iΩRNat

γa/2 + i∆j
σ. (16)

Inserting Eq. (16) into Eq. (14) one obtains

0 = −γdephσ/2 +Ω2
RσNatD

mode∑
j

1
γa/2 + i∆j

. (17)

From Eq. (17) we obtain the pumping threshold for the non-trivial solution:

Dst = Dth =
γaγσ

4Ω2
RNat

1
mode∑

j

1
1+2i∆j/γa

≡
γaγσ

4Ω2
RNatξ

, (18)

where we denote

ξ ≡

mode∑
j

1
1 + 2i∆j/γa

. (19)

The main point here is that in the limit of an infinite number of modes, the threshold value of the
solution with pulled mode frequencies, Eq. (18), tends to a finite value. Indeed, in this limit,

ξ =

∞∑
j=−∞

1
1 + 2i∆j/γa

= 2
∞∑

j=1

1
1 + 4∆20(j − 1/2)

2/γ2a
=

π

2∆0/γa
tanh

(
π

2∆0/γa

)
(20)

and
Dth =

∆0γσ

2πΩ2
RNat tanh(π γa/2∆0)

. (21)

When the size of the box tends to infinity, LU →∞, the step between the mode frequencies tends
to zero ∆0 → 0 and Eq. (21) takes the form

Dth =
∆0γσ

2πΩ2
RNat

. (22)

Taking into account that with an increasing box size LU , first, the frequency distance between the
modes decreases as ∆0 ∼ L−1U , and second, the coupling Rabi constant decreases as ΩR ∼ L−1/2U ,
we obtain that the lasing threshold of the solution for which frequencies of all modes are pulled
toward the atomic transition frequency does not depend on the system size. Moreover, this
threshold does not depend on the relaxation rate of the EM field in the mode, γa, provided that
γa/∆0 � 1. The last condition is always true when LU →∞ (∆0 ∼ L−1U ) and γa is not zero.
It should be emphasized that the threshold for each separate mode, D(0)th = γaγσ/4Ω2

RNat,
increases as D(0)th ∼ LU with an increase in the box size LU . Thus, the threshold for the solution,
for which all mode frequencies are pulled toward the atomic transition frequency, is smaller than
that for each mode, and this threshold is finite in the limit of an infinite system size.
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