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Abstract: Properties of light sources based on amplified spontaneous emission (ASE) are 
similar to the properties of lasers in many regards. However, even though ASE has been 
widely studied, its photon statistics have not been settled. There are no reliable theoretical 
estimates or unambiguous experimental data for the second-order coherence function of 
photons that characterizes the coherence properties of a light source. Our computer simulation 
clearly establishes that, independently of pump power, the light produced by ASE is similar to 
that of a thermal source. This result lays bare the fundamental difference between ASE 
radiation and laser radiation. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

New luminescent materials with high gain and quantum yield such as perovskites [1–3] have 
spurred interest in ASE light sources. The narrow linewidth, high intensity of radiation, and 
low production cost make these light sources attractive for optoelectronic and optical storage 
devices [4]. 

ASE or super-luminescence can be produced by an active medium pumped by incoherent 
radiation. When a luminescent material is pumped, one of the excited atoms spontaneously 
emits a photon. Before leaving the active medium, this photon triggers stimulated emission of 
inverted atoms in its path [5–7]. Moreover, a plane wave traveling over an ASE system is 

amplified: ( ) ~ exp ( ) / ( )p D p DE L LG γ γ γ γ − +  , where L is the length of the active medium, 

G  is the gain coefficient which is characteristic of the medium, and pγ  and Dγ  are the pump 

and dissipation rates, respectively [5,8]. Above the compensation threshold, which is 
determined by the relation p Dγ γ= , a large increase of the output radiation with an increase 

in pumping is observed. The saturation of the population inversion 0 ( ) / ( )p D p DD γ γ γ γ= − +  

results in an S-shaped dependence of the output intensity on the pump rate. The S-shaped of 
the input-output curve is also characteristic of lasers, in which it arises due to lasing above the 
laser threshold ( )p lasrγ γ= , where r  is the reflection coefficient from the resonator walls. 

For the simplest case of the Fabry-Perot resonator, the generation of coherent light begins if 
2 exp ( ) / ( ) 1p D p Dr LG γ γ γ γ − + ≥   This inequality determines the threshold of the pump 

rate [5,8]. In an ASE system, it is assumed that there is no resonator and even if some 
reflection at boundaries of an active medium exists, then ASE occurs if 

2 exp ( ) / ( ) 1p D p Dr LG γ γ γ γ − +  . 
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Thus, similar to a laser, ASE exhibits threshold behavior. Moreover, ASE sources share 
many features with conventional lasers. Since, above the threshold, the gain of the active 
medium has a maximum at the transition frequency of inverted atoms TLSω , the amplification 

of the electromagnetic (EM) field at neighboring frequencies is lower. The spectral linewidths 
of ASE sources are then narrowed when the volume or the gain coefficient of the active 
medium increases. 

One of the most important characteristics of a light source is its photon statistics. The 
statistical properties of radiation are characterized by the second-order coherence function 

2
(2) ˆ ˆ ˆ( ) ( ) ( ) / ( )g I t I t I tτ τ= + , where ˆ( )I t  is the operator of radiation intensity and the time 

t  is such that the system has reached a stationary state and its dynamics does not depend on 
the initial conditions. Coherent laser light has a Poissonian photon distribution with 

( )2 (0) 1g = , while black-body radiation and single-photon sources have super- and sub-

Poissonian photon distributions for which ( )2 (0)g  equals 2 and 0, respectively [9]. Statistical 

properties of ASE, however, are not well-studied because the determination of the distribution 
of emitted photons is complex for a wide spectral range of radiation [10]. The question of the 
statistics expected for ASE is still not settled. There are arguments that ASE is highly 
coherent with Poissonian photon statistics ( (2) (0) 1g = ) [11,12], as well as arguments that 

ASE has low coherency with (2) (0) 2g =  [13]. Recent experiments have yielded contradicting 

results. In [14], it is shown that ASE systems can demonstrate laser-like statistical properties 
and have (2) (0)g  that is close to unity; in [15–17], it is demonstrated that depending on the 

pump power (2) (0)g  changes from 2 to 1, whereas [13,18] reported that (2) (0) 2g =  as is 

characteristic of black-body radiation. 
In this paper, we investigate the dependence of the coherence properties of ASE on the 

pump rate. We demonstrate by computer simulations that ASE has the super-Poissonian 
distribution of photons with (2) (0) 2g ≈  for any value of the pump rate. This makes it 

possible to distinguish ASE sources from lasers. 

2. The model for light interaction with active medium 

To describe the interaction between an EM field and atoms of a gain medium we use the 
Jaynes-Cummings Hamiltonian in the rotating wave approximation [19]: 

 ( )† † † †

,

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,n n n TLS j j nj n j n j R SR
n j n j

H a a a a H Hω ω σ σ σ σ= + + Ω + + +      (1) 

where †ˆna  and ˆna  are creation and annihilation operators for the n-th mode of the EM field. 

These operators satisfy the commutation relation †
,ˆ ˆ,n m n ma a δ  =  . The electric field operator 

at the point jx  is expressed as ( ) ( )ˆ ˆ( ) . .j n j nn
x x a h c= +E E , where 

( ) ( )4 / cosn n nx V k xπ ω=E   is the electric field “per one photon” of the n-th mode and V is 

the volume of the system. Atoms of the active medium are described as two-level systems 

(TLSs) with the ground, g , and excited, e , states; ˆ j j je gσ + = , ˆ j j jg eσ = , and 

ˆ
j j j j jD e e g g= −  are raising, lowering, and population inversion operators of the j-th 

TLS, respectively, and TLSω  is its transition frequency. The third term in Eq. (1) describes the 

interaction between field modes and dipole moments of TLSs. The coupling constant njΩ  
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(the Rabi frequency) is equal to ( ) /n j jx− ⋅E d  , where jx  is the position of the j-th TLS and 

j j
e e g=d r  is the matrix element of its dipole moment. 

The first and the second terms of Hamiltonian (1) describe the EM field and the active 
medium, respectively, the third term is responsible for the interaction between the EM field 
and atoms, the other two terms describe all essential reservoirs and their interactions with the 
EM field and the active medium. These reservoirs are critical to our considerations since they 
describe losses in the system, incoherent pumping of the active medium, and the spontaneous 

emission. ˆ
RH  is a sum of Hamiltonians of reservoirs: 

 ( ) ( ) ( )ˆ ˆ ˆ ˆ ,n j j
R Ra R RPump

n j j

H H H Hσ= + +    (2) 

where 

 ( ) †ˆ ˆˆ n b
Ra nm nm nm

m

H b bω=  (3) 

describes the reservoir of phonons in waveguide walls coupled with the n-th mode, 

 ( ) †ˆ ˆ ˆj c
R jm jm jm

m

H c cσ ω=  (4) 

is the Hamiltonian of the reservoir of phonons in the active medium coupled with the j-th 

atom, the operators n̂mb , ˆ jmc  and †
n̂mb , †ˆ jmc  are annihilation and creation operators of phonons. 

We assume that every atom of the active medium couples with its own phonon reservoir [8]. 
This approximation is valid when the coherence length of the phonons is shorter than the 
distance between atoms of the active medium. 

To describe pumping of the active medium atoms, we introduce reservoirs of auxiliary 
TLSs having negative temperature (see for details [8]).The j-th reservoir interacts with the j-th 
atom and is described by the Hamiltonian 

 ( ) †ˆ ˆ ˆ ,j s
RPump jm jm jm

m

H s sω=  (5) 

where ˆ jms  and †ˆ jms  are lowering and raising population inversion operators for TLSs in the 

reservoir with a negative temperature. 
The Hamiltonian that describes the interaction of the system with these reservoirs is the 

sum 

 ( ) ( ) ( )( )ˆ ˆ ˆ ˆ ,j j jn
SR SRa SRdeph SRD SRPump

n j j j

H H H H H= + + +     (6) 

where 

 ( )( ) † †ˆ ˆˆ ˆ ˆn
SRa mn n nm n nm

m

H a b a bν= +  (7) 

describes the interaction of phonons in the waveguide walls with photons; the Hamiltonians 

 ( ) ( )† †ˆ ˆ ˆ ˆ ˆj
SRdeph jm jm jm j j

m

H c cκ σ σ= +  (8) 

and 

 ( ) ( )† †ˆ ˆ ˆ ˆ ˆj
SRD jm jn j jn j

m

H c c= +β σ σ  (9) 
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describes elastic and inelastic interactions between j-th atom and phonons in the active 
medium, and 

 ( ) ( )† †ˆ ˆ ˆ ˆ ˆj
SRPump jm j jm j jm

m

H s sη σ σ= +  (10) 

is the Hamiltonian of the interaction between the j-th atom of the active medium and the 
reservoir with a negative temperature, which describes incoherent pumping. Below we use 
Heisenberg representation of the operators. 

To obtain the Heisenberg-Langevin equation of motion for the relevant operators of the 
system, we eliminate the reservoir variables by averaging over the equilibrium states of the 
reservoirs [19]. In the process of averaging, we assume that, first, the reservoir is much larger 
than the system, and therefore, one can neglect the influence of the system on the reservoir. 
Second, since the timescale, characterizing fluctuations in the reservoir ( 14~ / ~ 10R kTτ − s 

[19]), is much shorter than the relaxation time of the system (for a typical gain medium, such 
as organic semiconductors, the relaxation time is about 1310− s), the fluctuation-dissipation 
theorem is correct. Consequently, after averaging, both relaxation and noise terms appear in 
the equations. 

The elimination of the reservoir variables, n̂mb , ˆ jms , and ˆ jmc , results in the appearance of 

the relaxation, aγ , Dγ , dephγ , pγ , and fluctuation (noise) terms, ânF , †
ânF , ˆ

jFσ , †ˆ
jFσ , and 

ˆ
DjF , in the equation for the operators †ˆna , ˆna , †ˆ jσ , ˆ jσ , and ˆ

jD (see [8,19]). Note that the 

corresponding terms are connected via the fluctuation-dissipation theorem. The elimination of 

n̂mb  results in the appearance of aγ  and ânF ; the elimination of ˆ jmc  leads to the appearance of 

dephγ  and ˆ
jFσ′ ; the elimination of ˆ

jmh  leads to the appearance of dephγ , ˆ
jFσ′ , Dγ , ˆ

jFσ′′  and 

ˆ
DjF ′′ . By introducing new noise terms ˆ ˆ ˆ ˆ

j j j jF F F Fσ σ σ σ′ ′′ ′′′= + +  and ˆ ˆ ˆ
Dj Dj DjF F F′′ ′′′= + , we can 

rewrite the final equations for the operators †ˆna , ˆna , †ˆ jσ , ˆ jσ , and ˆ
jD  as follows: 

 ( ) ˆˆ ˆ ˆ/ 2 ,n a n n nj j anj

d
a i a i F

dt
γ σ= − − Δ − Ω +  (11) 

 ( )† † † †ˆˆ ˆ ˆ/ 2 ,n a n n nj j anj

d
a i a i F

dt
γ σ= − + Δ + Ω +  (12) 

 ˆ ˆˆ ˆ ˆ( ) / 2 ,j j p D deph nj n j jn

d
i a D F

dt σσ σ γ γ γ= − + + + Ω +  (13) 

 † † † †ˆ ˆˆ ˆ ˆ( ) / 2 ,j j p D deph nj n j jn

d
i a D F

dt σσ σ γ γ γ= − + + − Ω +  (14) 

 ( ) ( ) ( )† †ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ1 1 2 ,j p j D j nj n j n j Djn

d
D D D i a a F

dt
γ γ σ σ= − − − + + Ω − +  (15) 

where n n TLSω ωΔ = − . 

In Eq. (15), the term ( )ˆ 1p jDγ− −  describes pumping that increases the expectation value 

of the population inversion operator ˆ
jD  to 1, while the term ( )ˆ 1D jDγ− +  describes 

relaxation that decreases ˆ
jD  to –1. After simple algebra, Eq. (15) may be recast as 
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 ( ) ( )† †
0

ˆ ˆ ˆˆ ˆ ˆ ˆ( ) 2 ,j p D j nj n j n j Djn

d
D D D i a a F

dt
γ γ σ σ= − + − + Ω − +   

where ( ) ( )0 /p D p DD γ γ γ γ= − + . In the stationary solution, the inverse population ˆ
jD  

approaches ( ) ( )0 /p D p DD γ γ γ γ= − +  from below. 

Since each atom of the active medium interacts with its own environment described by the 
corresponding phonon reservoir, the correlation functions of noise operators of different 
atoms are assumed to be equal to zero [8], i.e. 

 ( ) ( )ˆ ˆ ~ .i j ijF t F t δ′  (16) 

The correlation functions of the noise operators of Eqs. (11)-(15) are 

 ( ) ( ) ( ) ( )†ˆ ˆ 2 ,an am a n nmF t F t n t tγ ω δ δ′ ′= −  (17) 

 ( ) ( ) ( )ˆ ˆ ˆ ˆ ,j j j k kj
k

F t F t i a t tσ σ σ δ′ ′= Ω −  (18) 

 ( ) ( ) ( )† † † †ˆ ˆ ˆ ˆ ,j j j k kj
k

F t F t i a t tσ σ σ δ′ ′= − Ω −  (19) 

 ( ) ( ) ( ) ( )† 1ˆ ˆ ˆ1 ,
2j j p ph jF t F t D t tσ σ γ γ δ ′ ′= + + −  

 (20) 

 ( ) ( ) ( )( ) ( ) ( )† †
0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 ,Dj Dj D p j kj k j k j
k

F t F t D D a a t tγ γ σ σ δ ′ ′= + − + Ω − −  
 (21) 

where ( ) ( )( ) 1
exp / 1n kTω ω −

= −  is the mean number of excitations in reservoir (7). 

Because in the optical region ( ) 1n ω  , below we do not take into account ânF  and †
ânF . 

Since in most ASE experiments, the number cN  of inverted atoms even in a 

subwavelength volume is large (e.g., in a volume about 100 nm in extent, cN  is of the order 

of 310 ), we can transition from operators to c-numbers. For this purpose, we use the method 
of large cells. We divide the whole volume into cells of the size /10TLSλ  ( TLSλ  is the 

transition wavelength of gain medium atoms) and switch to the mean operators: 
† †ˆ ˆ /

k

cell
k j cj cell

Nσ σ
∈

= , ˆ ˆ /
k

cell
k j cj cell

Nσ σ
∈

= , and ˆ ˆ /
k

cell
k j cj cell

D D N
∈

= . Following the 

method of the system size expansion [19], we consider 1/ cN  as an expansion parameter and 

investigate the limiting behavior of the system when cN → ∞ , neglecting higher-order terms 

with respect to 1/ cN  terms. In this limit, the expected values of operators grow with cN  

faster than the quantum corrections to these expected values. This enables us to transform 
Eqs. (11)–(15) to a system of equations for c-numbers in the leading order of 1/ cN , while 

quantum corrections can be presented as a classical noise in the second order of 1/ cN . 

Since the cell size is smaller than the wavelength of radiation, we assume that the Rabi 
frequency is the same for all the atoms in the cell. For the n-th mode and the k-th cell, 

nj nkΩ = Ω  for any j-th atom of the cell. The corresponding terms in Eqs. (11) and (12) 

become ˆ ˆ
k

cell
nj j nk c kj cell

Nσ σ
∈

Ω = Ω , where ( ) /nk eg k n kxΩ = − ⋅d E  , kx  is the coordinate of 
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the k-th cell and eg kd  is the transition dipole moment of atoms averaged over the k-th cell. 

Finally, we obtain the system of equations for c-numbers: 

 ( )/ 2 ,celln
a n n nk c k

k

da
i a i N

dt
γ σ= − − Δ − Ω  (22) 

 ( )/ 2 ,
cc

cc cell ccn
a n n nk c k

k

da
i a i N

dt
γ σ= − + Δ + Ω  (23) 

 ( ) / 2 ,
cell

cell cell cellk
k p D deph nk n k k

n

d
i a D F

dt
σσ σ γ γ γ= − + + + Ω +  (24) 

 ( ) / 2 ,
cell cc

cell cc cc cell cell cck
k p D deph nk n k k

n

d
i a D F

dt
σσ σ γ γ γ= − + + − Ω +  (25) 

 ( ) ( )0( ) 2 .
cell

cell cc cell cell cc D cellk
p D k nk n k n k k

n

dD
D D i a a F

dt
γ γ σ σ= − + − + Ω − +  (26) 

In these equations, the unknown variables are denoted by the same letters as the 
corresponding operators except for operators †ˆna  and †ˆ cell

kσ . The latter operators are replaced 

by the c-numbers cc
na  and cell cc

kσ . The last terms in Eqs. (24)-(26) describe classical noises; 

their correlation functions are similar to the correlation functions for the operators, see Eqs. 
(17)-(21) [8]. 

In the absence of noise terms in Eqs. (24)-(26), Eqs. (22) and (23) and Eqs. (24) and (25) 

are complex conjugates. If initially ( )*
( 0) ( 0)cc

n na t a t= = =  and 

( )*
( 0) ( 0) ,cell cc cell

k kt tσ σ= = =  then these variables remain complex-conjugated all the time. 

Since operators †ˆna , ˆna  and †ˆ cell
kσ , ˆ cell

kσ  do not commute, in Eqs. (24)-(25), one needs to 

consider different realizations for noises. Consequently, c-number noise terms corresponding 
to conjugated operators though retain correct correlations properties are no longer complex 
conjugated [8,19]. Then, Eqs. (22) and (23) and Eqs. (24) and (25) are also not complex 
conjugates. As a result, the variables cc

na , na  and cell cc
kσ , cell

kσ  corresponding to the operators 
†ˆna , ˆna  and †ˆ cell

kσ , ˆ cell
kσ  cease to be complex conjugates. 

3. Computer simulation of ASE 

As a model for ASE source, we use a 1D waveguide of length 0 1800 TLSL λ=  which contains 

a region of length 140 TLSL λ=  filled with gain medium atoms, 2 /TLS TLScλ π ω= . Pumping of 

this region creates a positive population inversion (see Fig. 1). 

 

Fig. 1. The sketch of the ASE source based on a single-mode waveguide. The active medium 
in the central region of the waveguide (shaded by red) with the length L is pumped by an 
external source; the active medium outside of this region is not pumped. 

In our numerical simulation, the EM field is modeled by 600 modes with equidistant 
frequencies within the interval (0.92 ,1.08 )TLS TLSω ω . The gain medium is divided into 
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subwavelength simulation cells of size /10x λΔ =  (the total number of cells is 1400). To 
verify the validity of the chosen parameters for the computational scheme, namely, the 
lengths of the waveguide and the active medium cells, we compared the results of simulations 
for various values of 0L  and xΔ . We confirmed that an increase in the waveguide length 

above 1800 TLSλ , as well as a decrease of the cell size below /10λ , did not affect the results 

of the simulation. We use Eqs. (22)-(26) to find the radiation output, the spectrum, and the 
second-order coherence function of ASE and laser radiations. Variations in dissipation rates 
can be compensated for by changes in the pump rate. Therefore, in calculations, the 
parameters in Eqs. (22)-(26) are chosen to be close to the gain medium based on organic 
semiconductors [20], while the pump rates are varied over the wide range. The relaxation 
rates are 32 10a TLSγ ω−= × , 25.2 10deph TLSγ ω−= × , 610D TLSγ ω−= , and the pump rate varies 

within the interval 7 2(2 10 10 )p TLSγ ω− −= × − . Such a choice of the modeled medium means 

that lasing may start if ( ) ( )2 exp / 0.05p D p Dr LG γ γ γ γ = − − +   , and ASE is observable if 

2| | 0.05r < . 

As mentioned above, the main characteristic that allows one to distinguish coherent laser 
radiation from incoherent black-body radiation experimentally is the second-order coherence 
function (2) ( )g τ . The value of (2) ( )g τ  for any radiation source tends to unity as 1 /τ ω≥ Δ , 

where ωΔ  is the radiation linewidth of the source [9,19]. Consequently, the response time 

resτ  of an experimental setup should be smaller than 1 / ωΔ . If 1 /resτ ω> Δ , the measured 

value of (2) (0)g  is always about unity. Experimentally, a spectrum of an investigated source 

is narrowed by filtering. It is preferable to narrow the line as much as possible. For this 
reason, we study the second-order coherence function at a fixed frequency, 

2(2) ( , ) ( ) ( ) / ( )g I t I t I tω ω ωω τ τ= + , where Iω  is the output intensity at the frequency ω . 

Representing the electric field operator as ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ, , ,x t x t x t+ −= +E E E , where 
( ) ( )ˆ ˆ, ( ) ( )n nn

x t x a t+ =E E , and ( ) ( ) * †ˆ ˆ, ( ) ( )n nn
x t x a t− =E E , for the average intensity of the 

electromagnetic field, ( ) ( ) ( ) ( ) ( )ˆ ˆ, , ,I x t x t x t− += E E  [9], we arrive at the following 

expression for ( )(2) ,ng ω τ : 

 ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

† †

(2)

† †

ˆ ˆ ˆ ˆ
, .

ˆ ˆ ˆ ˆ

n n n n

n

n n n n

a t a t a t a t
g

a t a t a t a t

τ τ
ω τ

τ τ

+ +
=

+ +
 (27) 

After the transition to c-numbers, we calculate (2) ( , )ng ω τ  at 0τ =  as 
2

( ) ( ) ( ) ( ) / ( ) ( )cc cc cc
n n n n n na t a t a t a t a t a t , where averaging is performed over different 

realizations after the corresponding mean values reach the stationary values. For this purpose, 
we find the stationary state of the system without noises utilizing the Runge-Kutta scheme 
[21]. Then we consider these stationary values as initial conditions and solve Eqs. (22)-(26) 
with the noise terms. At this calculation stage, we use the Euler scheme, which is stable near 
the stationary state [21,22]. 

Our numerical simulation confirms that the input-output curve of the ASE source has an 
S-shape (the blue line in Fig. 2) similar to the intensity of conventional laser radiation. The S-
shape of the input-output curve of ASE sources arises due to the three regimes of the system 
behavior corresponding to different pump rates. At a low pump power, the energy loss of the 
EM wave propagating in the waveguide exceeds its gain in the active medium. In this regime, 
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the EM wave exponentially decays while propagating through the structure; the output power 
linearly increases with the growth of the pump power. At a higher pump power, the gain 
exceeds the propagation losses, and the propagating EM wave exponentially intensifies. At 
this regime, the saturation of the active medium is inessential. This regime corresponds to the 
shaded area in Fig. 2. A further increase in the pump rate leads to saturation of the active 
medium (see Fig. 2). The transitional region between the first and third regimes is referred to 
as the ASE threshold [5]. Note that in all three regimes, (2) ( ,0)TLSg ω  remains equal to 2 (see 

Fig. 2.) 
In the third region, the decrease of intensity happens because incoherent pumping not only 

increases D  but also causes additional dephasing of the atom dipole moments [see Eq. (24)]. 
As a result, the stationary value of the dipole moment of atoms of the active medium, cellσ , is 
inversely proportional to the sum deph p Dγ γ γ+ + . In this sum, the relaxation rate of the atomic 

dipole moment, dephγ , and the relaxation rate of population inversion, Dγ , describe the 

dephasing that arises due to the interaction of active atoms with phonons, while the pump rate 
of active atoms, pγ , describes the dephasing arising due to incoherent pumping. For pumping 

rates pγ , which are much greater than both dephγ  and Dγ , the stationary value of the dipole 

moments of atoms of the active medium is inversely proportional to the pumping rate, 

~ 1/cell
pσ γ . The output power is proportional to 

2cellσ  and therefore, when the pump rate 

tends to infinity, the output power monotonically decreases [23], as seen Fig. 2. In this region, 
(2) ( ,0)g ω  also remains equal to 2 for any frequency. 

 

Fig. 2. The intensity of the EM field at the boundary of the active medium (the blue line) and 
( 2)

( , 0)
TLS

g ω  (the red line). The left vertical dashed line shows the compensation threshold, at 

which pumping compensates for losses in the active medium. The right vertical dashed line 
represents the pump rate, at which the system transitions to the nonlinear regime due to 
substantial saturation of the active medium. In this regime, the output power linearly depends 
on the pump power [5]. The shaded area shows the transitional region in which an increase in 
the pump rate results in an exponential increase in the radiation intensity. 

Though, within the transition range, the output intensity increases by more than an order 
of magnitude (see the blue line in Fig. 2), the value of the second-order coherence function of 
ASE is independent of the pump rate and the frequency (see the red line in Fig. 2) and is 
about 2, while for coherent light it should be equal to 1. 

In Figs. 3(a),(c) and 3(b),(d), the spectral distribution of the photon number, 

( ) ( ) ( ) ( ) ( )
max

/cc ccn a a a aω ω ω ω ω= , and ( )(2) ,0g ω  are shown at the pump rates below 

and above the compensation threshold, respectively. For small pump rates, the spectrum of 
the system is similar to the spectrum of a single atom of the active medium, see Fig. 3(a). For 
pump rates that are higher than that of the transitional regime, the spectrum of the system 
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markedly narrows, Fig. 3(c). The observed narrowing is a common feature for both lasers and 
ASE. 

At the same time, we can see that despite the narrowing of the spectrum line, 
(2) ( ,0) 2.0g ω ≈  for any mode, independently of the frequency [see Figs. 3(b) and 3(d)]. As 

we discuss below, this distinguishes ASE from laser radiation. Visible fluctuations of 
(2) ( ,0)g ω  are due to the finite number of realizations of stochastic process used in the 

calculations. 
As Figs. 2 and 3(b),(d) show, the second-order coherence function (2) ( ,0)g ω  depends on 

neither the pump rate nor the frequency, and it is about 2. This means that the coherent 
properties of ASE are substantially different from radiation of lasers; they are rather close to 
the black-body radiation. 

 

Fig. 3. Spectra, ( )n ω , normalized by its maximum value, and 
( 2 )

( , 0)g ω  of an ASE source 

for the pump rates below (a), (b) and above (c), (d) the compensation threshold. In Figs. (a) 

and (b), the pump rate pγ  is equal to Dγ , and in Figs. (c) and (d), it is equal to 20
D

γ . 

Dashed red curves show the absorption line of the unpumped medium. The values of 
( 2 )

( , 0)g ω  are found by using Eq. (27). 

4. Laser emission 

To test our results, in the system shown in Fig. 1, we add mirrors to the edges of the active 
medium and make calculations similar to that discussed above. The mirrors introduce positive 
feedback, and the system is expected to lase. In a laser, the value of (2) (0)g  depends on the 

pump rate [9]: below the generation threshold, (2) (0)g  must be close to two, above the 

threshold, it should tend to one. Our computer simulation confirms this assumption. 
In Fig. 4, the dependence of the system output intensity on the pump rate is shown. This 

dependence has a pronounced S-shape (the blue line). The laser generation threshold (an 
inflection on the S-shaped curve) arises due to three regimes of a laser. For small pump rates, 
the amplification of radiation in the gain medium is not sufficient for the loss compensation in 
the waveguide and mirrors. In this regime, auto-oscillations are not established. For 
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intermediate pump rates, auto-oscillations begin, but the nonlinear contribution is not 
dominant yet. The beginning of auto-oscillations is defined by the Maxwell-Bloch threshold 
in a system without noise. At a further increase in the pump rate, the population inversion of 
the active medium becomes significant causing the transition of the dependence of the 
radiation intensity from exponential to linear. 

 

Fig. 4. Red and black curves represent the coherence function 
( 2 )

( , 0)g ω  for the dominant 

modes shown in Fig. 5(c). The blue curve is the generation curve of the laser. The curves are 
obtained by solving the Maxwell-Bloch equations with noise. The left vertical dashed line 
shows the lasing threshold given by the Maxwell-Bloch equations without noise. The right 

vertical dashed line corresponds to the pump rate, for which 
( 2)

( , 0) 1g −ω  of the modes 

becomes inversely-proportional to the average number of photons. Grey shading marks the 
transitional regime of the laser. The parameters of the active structure are the same as for the 
ASE system discussed above. The amplitude reflectance of the mirrors is 0.8. 

 

Fig. 5. Normalized spectra and 
( 2 )

( , 0)g ω  of laser emission for pump rates 
p D

=γ γ  (a), (b) 

(below the lasing threshold) and 20
p D

=γ γ  (c), (d) (above the laser threshold). 
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Below the generation threshold, the system spectrum exhibits a large number of lines 
corresponding to modes of the Fabry-Perot cavity [see Fig. 5(a)]. The value of (2) ( ,0)g ω  for 

all modes is approximately 2 [see Fig. 5(b)]. This is close to (2) ( ,0)g ω  for the system without 

mirrors [see Fig. 3(b)]. Far above the generation threshold, there are only a few lines in the 
spectrum [see Fig. 5(c)]. These lines correspond to the eigenfrequencies of the Fabry-Perot 
cavity that are closest to the transition frequency of the active medium, and consequently, 
have the lowest values of thresholds. For these modes, (2) ( ,0)g ω  is close to 1 even though 

for all other modes it remains close to 2. 
Near the generation threshold, our model exhibits large fluctuations and a large spread in 

(2) ( ,0)g ω . This happens because, near the threshold, the laser behavior is similar to a second 

order phase transition [8,19], in which a system undergoes strong fluctuations near the critical 
point [24]. In our case, the critical region corresponds to pump rates between 1.5p Dγ γ=  and 

6 Dγ  (the shaded area in Fig. 4). 

Thus, in the system with mirrors, a pronounced generation threshold is observed. Our 
calculations show that below the threshold, for all modes, (2) ( ,0)g ω  significantly exceeds 1, 

while above the threshold, for the modes in which generation occurs, (2) ( ,0)g ω  tends to 

unity. (2) ( ,0)g ω  decreases only for the eigenmodes of the system with mirrors and only when 

there is coherent feedback. This is in agreement with the expected behavior of a laser. We 
emphasize that in this section we use exactly the same model as in the previous one except 
that mirrors that create a cavity are added. Then, using the same procedure as in the previous 
section, we obtain well-known results. This can serve as a confirmation of the correctness of 
the results obtained for ASE. 

5. Discussion and conclusion 

In this paper, we compare the coherent properties of a mirrorless ASE system to the 
properties of a laser built of the same pumped atoms. To make this comparison, it is 
convenient to use the parameter 0GD Lη = . At the transition frequency, the gain is 

( )2
4 /TLS j TLS dephG n cπ ω γ= d  , where TLSn  is the concentration of the atoms of active 

medium (see [25,26]). 

Since the refractive index of the active medium ( )gainε ω  differs from the refractive 

index of vacuum, the reflection from boundaries results in the appearing a Fabry-Perot cavity 
that, in turn, may cause lasing. The lasing threshold is determined by the following condition 
[25]: 

 ( )
( ) 1

exp / 2 1,
( ) 1

gain

gain

GDL
ε ω

ε ω

−
=

+
 (28) 

The gain is easily expressed through the refractive index 

2 Im ( ) / Im ( ) /gain gainG c cω ε ω ω ε ω= − ≈ − . In our computer simulation, the parameter η  

has not exceeded 5.6. For the considered values of the parameter η , criterion (28) is not 

satisfied. We, therefore, conclude that our system should produce ASE. 
In our 1D model, each atom radiates in both directions forming incident and refracted 

waves. Therefore, the difference in refractive indices is automatically taken into account. 

Thus, the independence of 
( )2 ( ,0) ~ 2.0g ω  on the pump rate and the frequency (see Fig. 2) 

indicates that lasing is not achieved, and our system may be considered as mirrorless ASE. 
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An addition of semi-transparent mirrors with 0.8r =  to the boundaries of the active 
medium with 5.6η =  converts the system into a laser . As one can see from Fig. 4, for this 

laser, 
(2) ( ,0)g ω  tends to unity above the laser threshold. 

In [15], it has been reported that for a commercial superluminescent light diode (SLD), the 

value of ( )2 (0)g  tends to unity with an increase in the pump rate. SLDs are high intensity 

light sources having a broad spectrum in the output radiation. This type of light source is 
required for a number of applications [27-29]. Since, even for multimode lasers, the spectra 
are modulated by lines of Fabry-Perot modes, SLDs are manufactured as ASE systems with 
high gain. To achieve this, special efforts are taken to reduce reflections inside an SLD. A 
broad spectrum of the SLD output radiation is often considered as the criterion confirming 
that an SLD operates as an ASE system [30, 31]. According to [30, 31], to eliminate the 

spectrum modulation by lines of Fabry-Perot modes, the intrinsic reflection coefficient, 
2

r  , 

should be less than 62.5 10−⋅  . Thus, if 
2 62.5 10r −< ⋅  , the SLD may be considered as an 

ASE system. 
In fact, the definition of ASE as the absence of the spectrum modulations is not quite 

correct. Indeed, for high gain, lasing may start at an even lower value of the reflection 
coefficient and before the spectrum becomes modulated. For such a small value of the 
reflection coefficient, the Q-factor of modes is also low, and the linewidth of the modes may 
be much greater than the distance between them. This means that the modulation in the 
spectrum is smoothed. For an SLD, a typical value of the gain is 1~ 1500 cmG −  [20], with 

the size of active medium of ~ 0.01 cmL  . In such a system, the lasing may start at 
2 7| | = exp( ) ~ 3 10r GL −− ⋅  . Thus, the system considered in [15] could be a laser with 

( )2 (0) 1g →  . 

To verify this assumption, we perform computer simulation for our model with increased 
length of the region filled with gain medium atoms. The linear stability analysis of the system 
shows the existence of the Hopf bifurcation with a lasing solution at the threshold value of the 
population inversion. The results of computer simulation shown in Fig. 6(a), demonstrate that 

(2) ( ,0)TLSg ω  starts decreasing above the lasing threshold while the spectrum width remains 
constant. The spectrum remains almost without modulation, and for 600 modes taken into 
account we observe only a weak ripple near TLSω  [see Fig. 6(b)]. Note that an addition of 

mirrors with high reflection coefficient causes intense modulation of the spectrum shown in 
Fig. 5(c). 

 

Fig. 6. (a) The dependence of ( ( )( 2 )
, 0

TLS
g ω the red line) and the spectrum half-width at the half-

height Δω  (the blue line) on the pump rate for the mirrorless system with 700
TLS

L = λ
 and 
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1
673G cm

−= ; the dashed black line denotes the lasing threshold derived from linear analysis, 

8.66
p D

=γ γ ; the threshold value of the population inversion is 0.793
th

D = . (b) The 

normalized spectrum of the system at 800
p D

=γ γ  (the black solid line) and the spectrum of 

the atom (the red dashed line). 

Thus, according to our calculations, for ~ 5η , above the compensation threshold, 

coherence properties of ASE are still characterized by ( )2 ( ,0) 2g ω ≈ . 

It is interesting to study the value of ( )2 (0)g  for EM waves amplified by stimulated 

emission in interstellar gases [32–34] and planetary atmospheres [35,36]. Such radiation 
sources are called astrophysical masers or lasers. In [34, 37], it is claimed that such sources 

operate as random lasers and should have ( )2 (0) 1g ≈  . An alternative mechanism could be the 

phenomenon of ASE [38] with ( )2 (0) 2g ≈  . An investigation of the second-order coherence 

function of radiation from an astrophysical “maser” could shed light on the mechanism of 
formation of such sources. In turn, the understanding of the mechanism of the formation of 
astrophysical masers and lasers can enable one to estimate the concentration of the molecules, 
atoms, or ions in interstellar clouds. 

In addition to its fundamental significance, the difference between ASE and laser 
radiation is of practical importance. For ghost imaging applications, light sources with super-
Poissonian distributions of photons, a narrow linewidth, and a high intensity are required [39]. 

Currently, either lasers with rotating ground glass [40–42], producing radiation with ( )2 (0)g  

between 1.25 and 1.9, or incoherent lamps with a frequency filter [43,44] with ( )2 (0)g  of 

about 1.05 are used as light sources. In this paper, we demonstrate that the second-order 
coherence function of ASE sources is about 2 that is closer to the coherence of lasers with 
rotating ground glass. However, ASE sources are much simpler and easier to manufacture 
than lasers. This makes ASE light sources promising for ghost imaging. 
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