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Abstract: We suggest a quantum description of Rayleigh light scattering on atoms. We show
that an entangled state of the excited atom and the incident photon is formed during the scattering.
Due to entanglement, a photon is never completely absorbed by the atom. The formation of the
scattering spectrum is considered as a relaxation of incident photons to the reservoir of free space
modes that are in thermal equilibrium. Additional excitations of the reservoir modes occurring
during scattering are treated as scattered light. We show that even if the frequency of incident
photons is incommensurate with an atomic transition frequency, the scattered light spectrum has
a maximum at the frequency of incident photons. In addition, the linewidth of the scattered light
is much smaller than that of the spontaneous emission of a single atom. Therefore, the process
can be considered as elastic.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The internal structure of various materials is probed with a beam of particles (electrons, neutrons,
ions, and photons). Photons are most commonly used to determine the structure of atoms and
molecules.

The history of this method dates back to 1869 when Tyndall [1] observed light scattered by very
small particles. The theory for Tyndall’s observations was developed by Rayleigh [2], who treated
the problem of elastic scattering of an electromagnetic (EM) wave by a subwavelength particle
as forced oscillations of the polarization of the subwavelength particle. The theory predicted
symmetry in forward and backward scattering of light from a single particle, the polarization of
the scattered light, and successfully explained the blue color of the sky.

However, experimental data on the observation of bright lines in the solar spectrum [3,4]
could not explained by this theory. Such lines indicated that the phenomenon is of resonant
nature. Since the atoms are of subwavelength sizes, classical Rayleigh’s theory predicted no
resonant phenomena. The nature of these lines was only understood with the development of
quantum mechanics [4], in which the lines were associated with the resonant transitions between
the eigenstates of the electronic subsystems of atoms or molecules accompanied by emission of
photons. The quantum-mechanical study of the eigenstates of atoms and transitions between
them resulted in the development of optical spectroscopy. In contrast to Rayleigh’s theory, the
optical spectroscopy deals with resonance phenomena.

The adaptation of the theory of optical spectroscopy, which deals with resonances, to the
nonresonant scattering problem inevitably requires phenomenological assumptions. Indeed, the
scattering problem implies that the initial atomic state coincides with its final state; therefore,
according to Fermi’s golden rule, in the first order of the perturbation theory over the photon-atom
interaction, the probability of a transition between identical initial and final states is zero. This is
why to calculate the scattering cross section, the pioneering Placzek’s theory [5] employs the
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second order of the perturbation theory, in the form of the Kramers-Heisenberg formula [6] (see
also [7] and [8]). The formula can be interpreted as a sequence of photon absorption and emission
[9,10]. In particular, Placzek’s theory implies that during the scattering process, the incident
photon and a multilevel atom are in a superposition state, at which the excited atomic levels are
populated with some probability amplitude. There is a finite probability that the incident photon
is completely absorbed. Then, the dipole moment of the atom is nonzero, and the atom radiates
without delay. However, due to transitions between different superposition states, the radiation
line would be broad, which does not correspond to elastic scattering. To use this model for elastic
scattering, one has to postulate (see [5]) that the emitted photon has the same frequency as the
absorbed one. To avoid such an assumption and to apply the Kramers-Heisenberg formula, an
existence of the resonant condition between incident photon and some level is assumed [5,9].

The reduction of the multilevel Placzek’s model of an atom to a two-level system (TLS) makes
Placzek’s conclusions less obvious. Indeed, Placzek’s theory implies that absorption/emission of
photons is resonant. It is described by the resonant term of the Kramers-Heisenberg formula.
On the other hand, Rayleigh scattering assumes that the photon frequency is incommensurate
with atomic excitation frequencies. To reconcile this, one has to introduce the hypothesis of
a virtual state – an intermediate state that is excited by an incident photon. However, since
the linewidth of Rayleigh scattering coincides with the linewidth of the incident light, and the
absorption-emission process includes spontaneous emission from the virtual state, the latter must
have a very narrow linewidth or a very long lifetime. Experiments, on the contrary, show that
the lifetime of the process is very short. To resolve this, it is often assumed that the virtual state
is never populated. Consequently, there should be neither spontaneous decay, no broadening
of the line of incident light. The virtual state approach is still used for describing Rayleigh
scattering [11–14]. However, mainly, instead of the Kramers-Heisenberg formula, one uses either
Lindblad or Heisenberg-Langevin equations [15–17]. Thanks to the clarity of the picture of the
phenomenon created by the virtual state hypothesis, it is often used to explain the mechanisms of
some phenomena in quantum optics, in particular, in the theory of the Raman effect (e.g., see
[18–20]).

Recently, the problem of resonant scattering of photons on a quantum scatter placed in a
waveguide has attracted considerable attention [15–17,21–29]. This problem is important in the
context of quantum information and quantum communications systems. In [15–17,21–29], the
main attention is devoted to calculation of probabilities of occupation of the final state. However,
the formation of coherence of Rayleigh scattering has not been discussed.

The progress in the theory of Rayleigh scattering was mainly based on the following works.
First, Rabi [4] considered the precession of a magnetic dipole moment in a magnetic field and
showed that the probability of changing the spin direction of an atom to the opposite oscillates.
Thus, for a quantum system, there appears an alternative for the evolution under the influence
of an external force: not only can it transition between the eigenstates but also be driven by an
external force.

Second, Jaynes and Cummings (JC) [30] considered the interaction of an atom with a single
mode of an EM field found eigenstates of this system, referred to as dressed atom states. JC
showed that not the transitions between the atomic eigenstates, but the transitions of the whole
system between the found eigenstates were responsible for radiation.

In this paper, we develop a quantum theory of Rayleigh scattering of light by an atom. Our
approach is based on the JC-Hamiltonian [12] that describes an atom interacting with incident
photons from a mode of the EM field of free space. We call this mode selected. In the
JC-eigenstates, the atomic state and state of the incident photon are entangled but the photon
is never completely absorbed by the atom. During the scattering, an atomic level is excited
nonresonantly. We show that the probability amplitudes of the excited atomic state oscillate
with the frequency of the incident photon. Dealing with JC-eigenstates requires introduction
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of an external force that can cause the transitions between them. As such an external force, we
consider the interaction of the exited atom with the reservoir of free space modes. The excitations
arising in the reservoir due to this interaction are treated as scattered photons. The spectrum of
these photons has a maximum at the frequency of the selected mode, and the linewidth of the
maximum is much narrower than the linewidth of the spontaneous emission from a single atom.
We apply our results to the problems with various initial conditions for photons.

2. Rayleigh scattering as relaxation of the Jaynes-Cummings system into free
space modes

In further consideration, we assume that the frequency of the incident photon is incommensurable
with any frequency of inter-level atomic transitions. This allows us to represent an atom as a TLS.
This assumption is correct if the difference between the photon frequency and the frequency of
the nearest eigenstate of the atom is greater than the linewidth of the eigenstate (see Appendix A
for details).

Consider an atom placed in free space. Following the traditional scheme of quantization of
the EM field, we assume that the volume V of the space in which quantization occurs is large
but finite. We represent the atom by a TLS with the ground state |g⟩, the excited state |e⟩, and
the transition frequency ωTLS. We assume that the EM modes of this volume are in thermal
equilibrium with a given temperature T. The eigenstates of the modes are described by Fock
states |n⟩ with a given number of photons in the mode.

The object of our investigation is a quantum atom interacting with a selected free space mode,
to which n0 incident photons belong at the initial moment of time. The rest of the free space
modes are considered as a reservoir. The number of photons n0 in this selected mode determines
the energy of the incident wave as ℏωSMn0. Other EM field modes are assumed to be empty.
The scattering process is considered as the relaxation of photons in the selected mode into the
reservoir. Additional excitations of the reservoir modes, which appear during the relaxation, are
treated as scattered light.

We solve the scattering problem in two steps. First, we focus on the subsystem consisting of
the atom and a selected mode with the wave vector kSM, the polarization λSM, and the frequency
ωSM = c|kSM |. Suppose that this selected mode is excited, and there are n0 photons in it.
Eigenfrequencies of this mode, ωSM(n + 1/2), n = 0, 1, 2, . . ., form an equidistant spectrum.
Thus, initially, the selected mode is not in thermal equilibrium with the other free space modes.
This mode plays the role of incident radiation. At this stage, we neglect the interaction of the
atom with empty modes.

In the absence of the interaction between the modes and the atom, the system eigenstates
are direct products of the eigenstates of the modes and the atom, |n, e⟩ and |n, g⟩. When the
interaction is taken into account, the atom and photon states are entangled. Following JC, we
refer to them as |+, n⟩ and |−, n⟩ (see for detail [30]).

We suppose that the atom size is much smaller than the wavelength of the selected mode such
that the interaction between the atom and the mode is considered in the dipole approximation.
Then, the Hamiltonian of this subsystem in the rotating wave approximations has the form of the
Jaynes-Cummings (JC)-Hamiltonian [31,32]:

ĤS = ℏωTLSσ̂
†σ̂ + ℏωSMâ†â + ℏΩR(â†σ̂ + σ̂†â), (1)

whereΩR = −E0 ·d/ℏ = −
√︁

2πℏωSM/Vek0,λ0 ·d/ℏ is the interaction constant (the Rabi frequency),
ek0,λ0 is the unit polarization vector of the selected mode, d is the matrix element of the dipole
transition of the TLS, σ = |g⟩ ⟨e| and σ† = |e⟩ ⟨g| are lowering and raising operators for the
TLS, respectively, and â and â† are photon annihilation and creation operators, respectively.

The eigenstates of the Hamiltonian (1) are well-known [30] (see also [32,33]), this is basis of
eigenstate of JC-model. Among them, there is the ground state that does not contain photons
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(n =
⟨︁
â†â

⟩︁
= 0)

|g, 0⟩. (2)

We assume that the energy of this state is zero. Excited eigenstates can be combined in pairs:

|+, n⟩ = cos φn |e, n − 1⟩ + sin φn |g, n⟩,
|−, n⟩ = − sin φn |e, n − 1⟩ + cos φn |g, n⟩, n = 1, 2, . . . ;

(3)

where φn = tan−1 (︁
2ΩR

√
n/|∆|

)︁
/2. The eigenfrequencies of these states are

ω±,n = (n − 1)ωSM + (ωSM + ωTLS)/2 ±

√︂
Ω2

Rn + (∆/2)2, n = 1, 2, . . . , (4)

where ∆ = ωSM − ωTLS is the frequency detuning. The value 2
√︂
Ω2

Rn + (∆/2)2 is the frequency
difference between the states |+, n⟩ and |−, n⟩.

We assume that the selected mode initially contains n0 photons, and the atom is in the ground
state so that the system initial state is |n0, g⟩. This state is not the JC-eigenstate. Therefore, as we
show below (Sec. 3.1), the Rabi oscillations of the atom population begin. After damping of
these oscillations, the system is in-JC eigenstate. It should be emphasized that the mean value of
the atomic dipole moment between JC-eigenstates is non-zero. As a consequence, the dipole
transition occurs even in the first order of the perturbation over the interaction between the atom
and the free-space mode reservoir (see also Appendix B).

In the second step, we consider the scattering process. In the formalism described above, this
process is reduced to the evolution of the JC- system, which interacts with other free space modes.
We emphasize that the relaxation of the system occurs due to the interaction of the atom with the
free space modes, while the selected mode does not interact directly with the other free space
modes. The excitation of free space modes is treated as scattering.

The Hamiltonian of the free space modes has the form [9,32]:

ĤR =
∑︂
k,λ

ℏωk,λâ†k,λâk,λ, (5)

where ωk,λ is the frequency of the free space mode with the wave vector k and the polarization λ,
âk,λ and â†k,λ are annihilation and creation operators, respectively. The atomic dipole moment
interacts with these modes. The corresponding interaction Hamiltonian has the form

ĤSR =
∑︂
k,λ

ℏγk,λ(â†k,λσ̂ + σ̂
†âk,λ), (6)

where γk,λ = −|d|
√︁

2πℏωk,λ/V/ℏ is the interaction constant of the atomic dipole moment with the
electric field of the free space mode. The form of Hamiltonian (6) indicates that the interactions
of an atom with each mode are independent. Further, it is convenient to rewrite the operator of
the interaction of the system with reservoir (6) in the basis of the eigenstates of the JC- system,
i.e. in basis (2)-(3). One can show that in this basis, the Hamiltonian ĤSR of the interaction of
the system with the reservoir can be written as

ĤSR =
∑︂
k,λ

ℏγk,λa†k,λ(cos φ1Ŝ(g,0)(+,1) − sin φ1Ŝ(g,0)(−,1)

+
∞

Σ
n=1

(cos φn sin φn−1Ŝ(+,n−1)(+,n) − sin φn sin φn−1Ŝ(+,n−1)(−,n)

+ cos φn cos φn−1Ŝ(−,n−1)(+,n) − sin φn cos φn−1Ŝ(−,n−1)(−,n))) + h.c.

(7)
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where we introduce the notations for the operators of possible transitions between the JC-
eigenstates:

Ŝ(+,n−1)(+,n) = |+, n − 1⟩ ⟨+, n| , Ŝ(+,n−1)(−,n) = |+, n − 1⟩ ⟨−, n| ,
Ŝ(−,n−1)(+,n) = |−, n − 1⟩ ⟨+, n| , Ŝ(−,n−1)(−,n) = |−, n − 1⟩ ⟨−, n| ,

Ŝ(g,0)(−,1) = |g, 0⟩ ⟨−, 1|
(8)

Following our two-step procedure, first, we find the dynamics of the JC-system supposing
that the state of the free-space mode reservoir is not changed. At this step we obtain the master
equation and find its quasi-stationary solution.

Knowing the JC-eigenstates we exclude the free space mode variables with the exception of
the selected mode. For this, we have to assume that the reservoir of free space modes is in a state
of thermal equilibrium at a given temperature. Neglecting relativistic effects, we can assume
that the frequencies are limited to the optical range. Further, we assume that T = 0, i.e., the
free space modes are empty. Following the standard procedure, we obtain the density matrix in
basis (3), which obeys the master equation of the Lindblad form (the explicit form the Lindblad
supperoperator is given in Appendix C) [32,34,35]:

∂ρ̂/∂t =
i
ℏ
[ρ̂, ĤS] +

∑︂
n

γn

2
(2Ŝn ρ̂Ŝ†n − Ŝ†nŜn ρ̂ − ρ̂Ŝ†nŜn). (9)

Here Sn is the transition operators between the JC-eigenstates determined by Eq. (8); γn is the
characteristic rate of the transition between eigenstates obtained by averaging over the free space
modes (for a detailed derivation, see [32,34–36]).

Each term in Eq. (9) having 2Ŝρ̂Ŝ† − Ŝ†Ŝρ̂ − ρ̂Ŝ†Ŝ as a factor describes the transitions of the
system between the JC-eigenstates {|g, 0⟩, |+, n⟩, |−, n⟩}, n = 1, 2, . . .. We emphasize that it is
the interaction of the JC- system with the reservoir of free space modes that leads to a transition
between the eigenstates of this subsystem.

Rayleigh scattering is non-resonant; therefore, for simplicity, we consider the limiting
case of a large detuning, |∆| ≫ ΩR

√
n, and a large volume of the resonator, V → ∞. To

be specific, we assume ωSM<ωTLS. Then, using φn = tan−1 (︁
2ΩR

√
n/|∆|

)︁
/2 ≃ ΩR

√
n/|∆|,

sin φn ≃ φn ≃ ΩR
√

n/|∆|, and cos φn ≃ 1, the expression for eigenfrequencies (4) and states (3)
can be expanded in a small parameter ΩR

√
n/∆:

ωn,− ≈ nωSM −Ω2
Rn/|∆|, |−, n⟩ ≈ −

ΩRn
|∆|

|e, n − 1⟩ + |g, n⟩, (10)

ωn,+ ≈ (n − 1)ωSM + ωTLS +Ω
2
Rn/|∆|, |+, n⟩ ≈ |e, n − 1⟩ +

ΩR
√

n
|∆|

|g, n⟩. (11)

One can see that in the limit ∆ ≫ ΩR
√

n, the eigenfrequencies ωn,−, Eq. (10), for the eigenstates
|n,−⟩ coincide with the eigenfrequencies nωSM of the selected mode with the accuracyΩ2

Rn/|∆| ≪
1, and the difference between the frequencies of the levels |n,−⟩ with different n is equal to
ωCM − Ω2

R/|∆|, i.e., with the accuracy Ω2
R/|∆| it coincides with the frequency of the selected

mode ωSM. Thus, we can expect that a photon with a frequency ωSM is emitted during the
transition between eigenstates |n,−⟩. Note that in this consideration, states with the transition
frequency ωSM arise naturally, and we do not have to introduce an additional virtual level.

Further, we expand the density matrix over eigenstates (2)-(3). In Appendix C, we show that in
the limit ∆ ≫ ΩR

√
n and for the initial condition ρ̂(0) = |g, n0⟩ ⟨g, n0 |, only the states |−, n⟩ are

mainly occupied. Let us denote pn(t) = ⟨−, n| ρ̂(t)|−, n⟩, γ0Ω
2
Rn/|∆| ≡ γn, and ωn,− = ωn. The

quantity pn(t) has the meaning of the probability of the occupation of the entangled state of the
selected mode and the atom |−, n⟩ = − sin φn |e, n − 1⟩ + cos φn |g, n⟩, while γn has the meaning
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of the transition rate form the state |−, n⟩ to the state |−, n − 1⟩. Equations for pn(t) take the form
(see Appendix C):

ṗn0 (t) = −γn0pn0 ,
ṗn(t) = −γnpn(t) + γn+1pn+1(t), 1 ≤ n<n0,
ṗ0(t) = γ1p1(t),

(12)

with the initial condition
pn0 (0) = 1, pn(0) = 0, 0 ≤ n<n0, (13)

In terms of the solution of system (12) with initial conditions (13), the one-time average of the
atom population can be written as

⟨︁
σ̂†(t)σ̂(t)

⟩︁
≃

1∑︂
k=n0

sin2φkpk(t) ≃
1∑︂

k=n0

(Ω2
Rk/|∆|2)pk(t), (14)

At the second step, we find the radiation spectrum. To do this, we first write the Heisenberg
equation for the operator âk,λ(t):

̇̂ak,λ(t) =
i
ℏ
[ĤS + ĤSR + ĤR, âk,λ] = −iωk,λâk,λ(t) − i

√︃
2πωk,λ

Vℏ
ek,λ · dσ̂(t) (15)

Integration of Eq. (15) gives

âk,λ(t) = âk,λ(0)exp(−iωk,λt) − i
√︃

2πωk
Vℏ

ek,λ · d
t∫

0

dτσ̂(τ)exp(−iωk,λ(t − τ)) (16)

The mean value of the photon number in each mode is (see also [34]):⟨︂
â†k,λ(t)âk,λ(t)

⟩︂
≡ nk,λ(t)

≃

|︁|︁|︁|︁|︁
√︃

2πωk
Vℏ

ek,λ · deg

|︁|︁|︁|︁|︁2tπ
∞∫

0

dτ
⟨︁
σ̂†(t + τ)σ̂(t)

⟩︁
exp(−iωk,λτ)

(17)

Note, that to calculate the radiation spectrum by using Eq. (17), we should suppose that t>tst so
that the system reaches its stationary state determined by the master Eq. (9).

According to the Wiener-Khinchin theorem [31,37,38], the scattering spectrum can be expressed
in terms of the Fourier transform of the two-time correlation function

⟨︁
σ̂†(t1)σ̂(t2)

⟩︁
, t1>t2

[32,34]. According to the general theory [31,32,34], to find
⟨︁
σ̂†(t1)σ̂(t2)

⟩︁
, t1>t2, one needs

to solve master Eq. (9) two times with two different initial conditions. First, we need to solve
Eq. (9), and find ρ̂(t2). Then, it is necessary to solve master Eq. (9) for t ≤ t1 with the initial
condition ρ̂(0) = σ̂ ρ̂(t2). The obtained value we denote as ˆ̃ρ(t1 − t2). According to the quantum
regression theorem [31,32,34],

⟨︁
σ̂†(t1)σ̂(t2)

⟩︁
is equal to Tr(σ̂† ˆ̃ρ(t1 − t2)). With the aid of master

Eq. (9), one can obtain

⟨︁
σ̂†(t + τ)σ̂(t)

⟩︁
≃

1∑︂
k=n0

(Ω2
Rk/|∆|)2pk(t)exp((iωCM − (γk + γk−1)/2)τ). (18)

A specific calculation of the radiation depends on the initial value of the number of photons n0
in the selected mode, and how we obtain the limit V → ∞. Different limits give the answers
obtained within the approaches of Placzek [5], Berestetskii-Lifshitz-Pitaevskii [9], and the
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coherent initial state [39] suggested by Glauber. The latter case, in our opinion, corresponds
most closely to the formulation of the problem in which the field is considered as classical.

Thus, we develop a theory in which scattering is considered as a relaxation of an interacting
atom and a photon from the selected mode to the reservoir of the other free space modes. We
obtain the master equation for the system dynamics, Eq. (9), and simplify this equation in the
case of large detuning between the frequency of selected mode and atomic transition frequency,
Eqs. (12). Note that all the levels in the system considered, Eq. (4), are real, and there is no
necessity to introduce a virtual level. Below, we show that the model developed reproduces the
elasticity of the Rayleigh scattering, and in the case of a coherent initial state of a photon from
the selected mode, it yields the same results as a theory in which an incident photon is described
as a classical field.

3. Different cases of photon scattering on an atom

To illustrate an application of our theory, we consider four specific cases of the scattering problem
distinguishing by initial conditions,

First, we consider the initial condition with one photon in the selected mode. This case
corresponds to the Berestetskii-Lifshitz-Pitaevskii [9] approach. We demonstrate that even in
this case, there is no absorption of a photon but only Rabi oscillations arise. This case is difficult
to realize in experiment, and it is considered only to clarify the physics of the phenomenon.

Second, we consider more realistic case with n0 incident photons and the transition to the state
with n0 − 1 photons in the selected mode. This case corresponds to Placzek’s formulation of the
problem. We show that in this case, a narrow spectral line arises. However, to solve the problem
of scattering of n0 photons, it is necessary to solve system of equations (12), which takes into
account the transitions between all eigenstates (10).

In the third example, we consider scattering of n0 photons taking into account a cascade of
transitions between the JC-states. We show that this case reproduces almost all experimental
features of Rayleigh scattering, namely, narrow spectral line and quasistationary occupancy of
the atom states. However, the dipole moment of the atom is zero.

Finally, to reproduce a coherent response of the atom with a non-zero dipole moment, we
consider the case of a coherent initial state of the selected mode. In such case, we obtain both a
narrow spectral line and a non-zero quasistationary dipole moment of the atom.

3.1. Berestetskii-Lifshitz-Pitaevskii approach of a single incident photon

First, we assume that initially in the selected mode, only one photon is present, i.e., the initial
condition is n0 = 1. Such a formulation was considered in [9].

As mentioned above, without interaction with the reservoir, in the system consisting of the
atom and photon, the atom’s probability of being excited,

⟨︁
σ̂†(t)σ̂(t)

⟩︁
≡ pe(t), and the mean

number of photons,
⟨︁
â†(t)â(t)

⟩︁
≡ nph(t), should exhibit Rabi oscillations. The interaction of the

system with the free space mode reservoir leads to vanishing with the rate γ1 from the Eq. (12)
of both pe(t) and nph(t) against the background of damping of the Rabi oscillations. Indeed,
numerical simulation of Eq. (9) demonstrates such behavior (see Fig. 1). From this numerical
simulation, we conclude that there are two characteristic times in the system dynamics, γ−1

0 and
(γ0Ω

2
R/|∆|

2)−1.
We can see that at the initial time, t ≤ γ−1

0 , both pe(t) and nph(t) oscillate with the Rabi frequency

2
√︂
Ω2

R + (∆/2)
2. The Rabi oscillations of both quantities dissipate with the characteristic rate

∼γ0. The presence of the Rabi oscillations means that the photon from the selected mode does
not absorb.

After the dissipation of Rabi oscillations, the probability of the atom to be in the excited state
reaches the value (Ω2

R/|∆|
2). At the time t ≫ γ−1

0 , the system dynamics obeys Eq. (12), which
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Fig. 1. Time dependence of (a) the probability of the atom to be in the excited state and (b)
the number of photons in the selected mode.

solution has the form
p1(t) = exp(−γ0(Ω

2
R/|∆|

2)t). (19)

The solution for the atom population, Eq. (14), is⟨︁
σ̂†(t)σ̂(t)

⟩︁
≡ pe(t) ≃ (Ω2

R/|∆|
2)exp(−γ0(Ω

2
R/|∆|

2)t). (20)

Eq. (20) shows that the atom radiates with the rate γ0(Ω
2
R/|∆|

2). At the initial time, the excitation
energy is Ω2

R/|∆|
2. Usually, in problems about an atom in free space, the infinite volume limit is

considered. In this limit, the coupling constant approaches zero as ΩR ∼ 1/
√

V → 0 and the
radiation rate is infinitely small. In this formulation, two-time correlation function (18) has the
form⟨︁

σ̂†(t + τ)σ̂(t)
⟩︁
≃ exp(iωSMτ)Ω

2
R/|∆|

2exp(−γ0(Ω
2
R/|∆|

2)t)exp(−γ0(Ω
2
R/2|∆|

2)τ). (21)

Note that if we fix the time and find the spectrum as the Fourier transform of the two-time
correlation function with respect to τ, then we obtain a Lorentz line centered at the frequency
ωSM of the selected mode with the width ∼γ0(Ω

2
R/2|∆|

2) ≪ γ0. Thus, in this formulation, a
narrow emission line is reproduced. However, this narrow line corresponds to extremely slow
radiation. Further, the total detectable energy emitted by the atom is ∼Ω2

R/|∆|
2, i.e., in the limit

considered, it is also extremely small.
One can calculate the scattering cross section by dividing the total radiated energy by the

energy flux that the selected mode creates at the atom location. Since the energy flux ∼Ω2
R

[31,40], small quantities are canceled out, and the cross section becomes finite (it is given in [5]
and [9]). However, the finite value of the scattering cross section is obtained due to the division
of two infinitely small quantities: incident and radiated energies. Such problem formulation does
not correspond to an experiment in which the finite field energy flows over a finite time, and the
final radiation energy is detected.

The smallness of the radiation energy can be avoided if we consider the limit at which
the average field value at the atom location is finite. For this, we put ΩR ∼ 1/

√
V → 0 and

n0 ∼ V → ∞, then ΩR
√n0 → const, i.e., we consider a large initial value of the number of

photons in the selected mode so that for any volume, the electric field of the selected mode is
finite. We continue to assume that the detuning is so large that ΩR

√n0/∆ ≪ 1.

3.2. Placzek’s approach: the scattering of one photon from the n0 ensemble of photons

In the approach developed by Placzek [5], one considers a single transition process, in which the
number of photons is changed by unity. To reproduce the result of this approach, it is necessary,
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in system (12), to retain only one equation that describes the dynamics of the initial state |n0,−⟩.
We assume that the initial state of the system is pn0 (0) = 1. Other states are supposed to be empty
all the time, i.e. pn(0) = pn(t) = 0, 1 ≤ n<n0. After such simplification, the system of Eqs. (12)
reduces to

ṗn0 (t) = −γn0pn0 (22)
Solving this equation for the population of the excited state of the atom, we obtain⟨︁

σ̂†(t)σ̂(t)
⟩︁
≃ (Ω2

Rn0/|∆|
2)exp(−γ0(Ω

2
Rn0/|∆|

2)t). (23)

For the two-time correlation function, we have⟨︁
σ̂†(t + τ)σ̂(t)

⟩︁
≃ exp(iωSMτ)Ω

2
Rn0/|∆|

2exp

(︄
−γ0

(︄
Ω2

Rn0

|∆|2

)︄
t

)︄
exp(−γ0(Ω

2
Rn0/2|∆|2)τ). (24)

If we fix time and make the Fourier transform of Eq. (24), we obtain the Lorentzian line with the
width γ0(Ω

2
Rn0/2|∆|2) ≪ γ0. In this case, the total radiated energy is finite and equal Ω2

Rn0/|∆|
2.

Thus, in the limit ΩR ∼ 1/
√

V → 0, n0 ∼ V → ∞, and ΩR
√n0 → const, the result is close to

experiment: the spectrum is centered on the frequency of the selected mode ωSM and has a
narrow line γ0(Ω

2
Rn0/2|∆|2) ≪ γ0.

However, the important difference from experiment and from the formulation of the problem
with the classical field remains. This is the choice of the time t, after which one starts measuring
the spectrum. In experiment and in the formulation of the problem with a classical field, the
population of the excited state of an atom reaches a stationary state, and the time t can formally
be set to infinity. The system reaches dynamic equilibrium: at each moment of time, some
energy is radiated and some enters from the external field. However, in the above solution, if
t tends to infinity, the factor exp(−γ0(Ω

2
Rn0/|∆|

2)t) results in zero probability of an atom to be
in the excited state, Eq. (24). This corresponds to the fact that the system from the state with
n0 photons passes to a state with n0 − 1 photons - one photon is emitted then the process stops.
However, as indicated above, it is necessary to consider subsequent processes of transitions
between eigenstates and photon radiation. This is done in the next subsection.

3.3. Many photons in the mode, multiple transitions between the eigenstates of the JC
system: achieving dynamic equilibrium

Consider the same limit as in the previous case, ΩR ∼ 1/
√

V → 0, n0 ∼ V → ∞, and
ΩR

√n0 → const. In the previous section, we take into account only the transition between the
states |−, n0⟩ and |−, n0 − 1⟩, and only solve equations for pn0 and pn0−1 from system (12). Now
we solve full system of equations (12). In the case n0 ≫ 1, the rate of transitions between states for
which |n − n0 | ≪ n0 are approximately the same: γn = γ0(Ω

2
Rn/|∆|2) ≈ γ0(Ω

2
Rn0/|∆|

2) ≡ γeff.
System (12), in which all transition rates are the same, corresponds to the Markov-Poisson
process, which solution is well known [41]:

pn0 (t) = exp(−γefft),

pn0−1(t) = (γefft/1!)1exp(−γefft),

pn0−k(t) = (γefft/k!)kexp(−γefft).
(25)

Using solution (25) we find the average population of the excited state of the atom⟨︁
σ̂†(t)σ̂(t)

⟩︁
≃ (Ω2

Rn0/|∆|
2)exp(−γefft)

1∑︂
k=n0

(γefft)n0−k

k!
→

n0→∞
(Ω2

Rn0/|∆|
2). (26)

One can see that in the limit of a large initial number of photons in the selected mode, the
population of the upper state of the atom reaches the constant value of (Ω2

Rn0/|∆|
2). Note that
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this value is proportional to the square of the dipole moment, Ω2
R ∼ ωCMd2/ℏV which is obtained

in the problem with the classical field [34].
For a two-time correlation function, we obtain⟨︁
σ̂†(t + τ)σ̂(t)

⟩︁
≃ exp(iωSMτ)exp(−γ0(Ω

2
Rn0/|∆|

2)τ)Ω2
Rn0/|∆|

2exp(−γ0(Ω
2
Rn0/|∆|

2)t)
1∑︂

k=n0

(γefft)n0−k

k!
.

(27)

In the limit n0 ∼ V → ∞, t → ∞, and γefft/n0 → 0, we have

⟨︁
σ̂†(tst + τ)σ̂(tst)

⟩︁
≃
Ω2

Rn0

∆2 exp

(︄(︄
iωCM − γ0

Ω2
Rn0

∆2

)︄
τ

)︄
. (28)

The limit γefft/n0 → 0 reflects that during the system evolution, the time is such that the initial
number of photons in the selected mode does not deviate significantly from n0.

The two-time correlation function corresponds to the spectrum that is centered on the frequency
of the selected mode and has the width γ0(Ω

2
Rn0/∆

2) ≪ γ0. We also note that the two-time
correlation function is calculated after the time tst for which the population of the excited state
reaches the stationary value (Ω2

Rn0/∆
2). This corresponds to the spectrum that is measured in a

system that has reached dynamic equilibrium.
For the radiation spectrum, from Eq. (17) we obtain (see also [34])

⟨︂
â†k,λ(t)âk,λ(t)

⟩︂
≃

|︁|︁|︁|︁√︂ 2πωk
Vℏ eα,k · deg

|︁|︁|︁|︁2t(γ0Ω
2
Rn0/∆

2)
2

(ωk,λ − ωSM)2 + (γ0Ω
2
Rn0/∆2)

2 . (29)

Thus, we obtain the Lorentzian distribution of photons in frequencies, centered on the frequency
of the selected mode and having the width γ0Ω

2
Rn0/∆

2 ≪ γ0. The number of photons increases
with time. This reflects that the system has reached dynamic equilibrium and continuously emits
photons.

Let us compare the dynamics of the process considered here with the dynamics in Placzek’s
theory. In the latter, it was assumed the system transitions from the initial state to a given final
state. Subsequent transitions were not considered. In the approach developed here, the system
make a cascade of transitions between the entangled states |−, n⟩, until the system reaches its
ground state |g, 0⟩.

3.4. Coherent state of the mode formation of the atomic dipole moment: coherent
Rayleigh scattering

In the previous sections, we show that when all possible transitions between the eigenstates are
taken into account, the population inversion of the atom reaches a quasistationary value that does
not change until a large number of photons remains in the selected mode. However, there is still
a discrepancy with the classical formulation of the problem. The average value of the atomic
dipole moment is also zero,

⟨σ̂(t)⟩ = cos φ1ρ(g,0)(+,1) − sin φ1ρ(g,0)(−,1) +
∞

Σ
n=2

(cos φn sin φn−1ρ(+,n−1)(+,n)

− sin φn sin φn−1ρ(+,n−1)(−,n) + cos φn cos φn−1ρ(−,n−1)(+,n) − sin φn cos φn−1ρ(−,n−1)(−,n)) = 0.
(30)

since the corresponding off-diagonal elements of the density matrix are equal to zero (see
Eqs. (49) in Appendix C), this equation differs significantly from the classical case. When the
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field is described classically, the dipole moment is nonzero, and it oscillates with the frequency
of the external field. Thus, Eq. (30) corresponds to incoherent light. An experimentally realized
situation can be described adequately by a theory in which light is described classically. Therefore,
for the field, one has to choose the initial condition in which a nonzero dipole moment is excited.

For this, the coherent state of the field, |α⟩ = exp(−|α |2/2)
∞∑︁

n=0

(︂
αn/

√
n!

)︂
|n⟩, should be

considered as the initial condition, i.e., instead of ρ̂(0) = |g, n0⟩ ⟨g, n0 |, we use ρ̂(0) = |g,α⟩ ⟨g,α |
. The coherent state has a nonzero average value of electric and magnetic fields: ⟨α | Ê(r)|α⟩ =√︁

2πℏωSM/VReαexp(ikr) [32].
In the limit of a large detuning, Ω2

R |α |
2/∆2 ≪ 1, a large amplitude of the exciting field,

|α |2 ≫ 1, on the time-scale t ≫ γ−1
0 , for the mean value of atomic dipole moment, we obtain

(see Appendix D):

⟨σ̂(t)⟩ ≃
e−iωSMtΩR |α |

|∆|
exp

(︄
−
|α |2γ0Ω

2
R

|∆|2
t

)︄
. (31)

Equation (31) describes quasistationary oscillations of a dipole with the frequency of the selected
mode. The spectrum of the signal described by Eq. (31) represents the Lorentz line centered
on the frequency of the incident field ωSM and has the width Ω2

Rγ0 |α |
2/∆2 ≪ γ0. This width is

much smaller than the linewidth of the spontaneous emission of the atom. Therefore, at times
γ−1

0 ≪ t ≪ (Ω2
Rγ0 |α |

2/∆2)−1, we have harmonic oscillations of the dipole moment with the
frequency ωSM of the selected mode with the amplitude ΩR |α |/|∆| that is exactly equal to the
amplitude of the oscillations of the dipole moment of the atom in the problem in which the field
is considered classically.

4. Conclusion

In this paper, we treat the scattering process as a process of relaxation of the system consisting
of an atom and an incident field into free space modes. We model the incident field as a mode
selected from the set of free space modes of the EM field and the set of the initial number of
photons in this selected mode. The eigenstates of the system are a superposition of the excited
states of the atom and the mode. As an initial condition, we consider the state, which is realized
in experiment. In this state, the atom is in the ground state, but the selected mode is excited.
Since the initial state is not a system eigenstate, the system density matrix oscillates, and the
system periodically transitions to its eigenstates. Then, from this superposition state, the system
passes to another superposition state, emitting a photon. In contrast to Placzek’s theory, photon
emission from the superposition state occurs already in the first order of perturbation over the
atom-free-space EM interaction (details see in Appendix B). This process continues until no
photons remain in the selected mode. Due to the oscillations of the system between its eigenstates,
the consideration of the scattering process as a two-photon process is not adequate because there
is no state in which the initial photon is completely absorbed.

We carry out a comparative analysis of the various initial conditions, which are commonly
used in the literature. We demonstrate that if only one photon is initially in the selected mode
(the Berestetskii-Lifshitz-Pitaevskii approach [9]), then the radiation spectrum has an extremely
narrow line. However, the system radiation is extremely slow, and the total radiated energy is
also small. Note that this approach describes the experimental situation when only one photon
interacts with the atom. It can be achieved if the external beam is extremely attenuated.

In Placzek’s approach [5], the initial number of photons is large so that the field at the atom’s
location is measurable. The analysis of this approach shows that a cascade of transitions between
the eigenstates of the JC-system leads to dynamic equilibrium of the atom with a constant
population of the excited level. An atom in this state continuously emits photons that form a
spectrum centered on the frequency of the selected mode with a linewidth that is much smaller
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than the width of the line of the spontaneous relaxation of the atom. However, radiated light
is incoherent. This approach describes the experimental situation when an external beam is
incoherent, e.g., the beam from a mercury-vapor lamp.

To obtain a coherent response, one needs to have a coherent initial state of the mode with a
large number of photons. The latter actually means that the field can be considered to be classical.
This approach describes a common experimental situation in which coherent laser light is used.

To conclude, we develop a microscopic theory of Rayleigh scattering of light by atoms that
describes the main features observed in experiment. This includes the elasticity of the scattering
and coherence of the scattered light. The theory does not use any phenomenological assumptions,
such as an additional virtual level that has been widely used in previous theoretical approaches.

Appendix A: role of high-lying levels

To confirm the validity of our TLS-approach, we consider a three-level atom with the ground
state |g⟩ and two excited states |e1⟩ and |e2⟩. The Hamiltonian of such a system has the form

ĤS = ℏω(1)
TLSσ̂

†

1 σ̂1 + ℏω(2)
TLSσ̂

†

2 σ̂2 + ℏωSMâ†â + ℏΩ(1)
R (â†σ̂1 + σ̂

†

1 â) + ℏΩ(2)
R (â†σ̂2 + σ̂

†

2 â), (32)

where σ̂1 = |g⟩ ⟨e1 | and σ̂2 = |g⟩ ⟨e2 | are the dipole transition operators from the excited states to
the ground state. We cannot diagonalize ĤS exactly. However, because the interaction constants
are much smaller than the transition frequencies of the atom and the selected mode, Ω(1,2)

R ≪

ω
(1,2)
TLS , ωSM, we use the perturbation theory. The unperturbed eigenstates are |g, n⟩, |e1, n⟩, and

|e2, n⟩ with eigenfrequencies nωSM, (n − 1)ωSM + ω
(1)
TLS, and (n − 1)ωSM + ω

(2)
TLS, respectively.

For a perturbation that does not depend on time, we can find corrections to the unperturbed
eigenfrequencies and eigenstates:

ωn,− ≈ nωSM − (Ω
(1)
R )2n/|∆1 | − (Ω

(2)
R )2n/|∆2 |,

|−, n⟩ ≈ −
Ω

(1)
R
√

n
|∆1 |

|e1, n − 1⟩ −
Ω

(2)
R
√

n
|∆2 |

|e2, n − 1⟩ + |g, n⟩.
(33)

One can see that in the limit ∆i ≫ ΩR
√

n (i= 1,2), for the eigenstates |−, n⟩, the eigenfrequencies
ωn,−, Eq. (10), coincide with the eigenfrequencies nωSM of the selected mode with the accuracy
(Ω

(1)
R )2n/|∆1 | + (Ω

(2)
R )2n/|∆2 | ≪ 1; and the difference between the frequencies of the levels

|−, n⟩ with different n is equal to ωCM − (Ω
(1)
R )2/|∆1 | − (Ω

(2)
R )2/|∆2 |, i.e., with the accuracy

(Ω
(1)
R )2/|∆1 | + (Ω

(2)
R )2/|∆2 | it coincides with the frequency of the selected mode ωSM. Thus, the

main conclusion that there is the level, which frequency is close to the frequency of the selected
mode, remains valid.

Further, let us discuss the effect of the other excited levels on the system dynamics. Under the
influence of the system interaction with the radiative reservoir, the system transitions from the
state |−, n⟩ to the state |−, n − 1⟩, and so on. The transition rates are found as matrix elements
of the interaction Hamiltonian of the system with the reservoir of free space modes between
these states. Each excited level has the contribution to the eigenstate proportional to Ω(i)

R n/|∆i |.
Thus, all formulas for TLS remain valid for the case of several excited levels of the atom with the
replacement ΩR

√
n/|∆| → Ω(1)

R
√

n/|∆1 | +Ω
(2)
R
√

n/|∆2 |.
Finally, the contribution from each excited level is of the first order. However, these contributions

decrease with an increase in the detuning from the frequency of the selected mode.

Appendix B: why does Placzek’s theory require the second order of the pertur-
bation theory?

As pointed in the Introduction, Placzek’s theory that considers scattering as a two-step process of
absorption and emission has internal contradictions and phenomenological assumptions. Many
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works for quantitative evaluation do not use the concept of the virtual level. The concept is
rather used for a qualitative explanation of the mechanism of the phenomenon. In this approach,
photon emission arises in the second order of perturbation over the interaction of an atom with
the free-space EM. In this Appendix, we show that photon emission arises in the first order of the
perturbation theory.

Usually, the photon absorption-emission theory of scattering is considered as a special case of
the spectroscopic theory of absorption and emission of photons during the transitions of an atom
between its own states. This theory assumes that the transitions are caused by the incident field.
In the first order of the perturbation theory, according to Fermi’s golden rule, the probability of
the transition between initial and final states, which is caused by the dipole interaction V̂ = −d ·E,
is proportional to

|︁|︁⟨i| V̂ |f ⟩
|︁|︁2 [5]. Since in the case of elastic scattering, the matrix elements of

the dipole moment between the same atomic states are zero,
|︁|︁⟨i| V̂ |f ⟩

|︁|︁2 = 0, the second order of
perturbation theory is usually used. The resulted formula interprets the elastic scattering of light
as of two-steps process. In the first step, the atom absorbs an incident photon and transitions
from the ground to an excited state. The latter is a superposition of excited atomic states. In the
second step, the excited atom emits a photon and relaxes to the ground state.

We show that there is no need using the second order of perturbation theory. The correct
results can be obtained in first order.

According to the theory of open quantum systems [35,42–44], for calculating the transition
probability per unit time, Fermi’s golden rule can only be applied to transitions between
eigenstates of the system, which are caused by interactions with a reservoir. The application of
Fermi’s golden rule to states that are not eigenstates of the system can lead to incorrect results.

For Rayleigh scattering, the eigenstates of an atom interacting with the mode of the scattered
field are JC states, and the reservoir is free space modes. Note that the initial state |i⟩ = |g, 1⟩, at
which the atom is in the ground state and the scattered photon is in the Fock state, is not a system
eigenstate. Thus, the quantity

|︁|︁⟨i| V̂ |f ⟩
|︁|︁2 = |︁|︁⟨g, 1| V̂ |g, 0⟩

|︁|︁2 is not the transition probability and
it cannot be used in the perturbation theory based on Fermi’s golden rule. This shows that a
description of Rayleigh scattering as a two-step absorption/emission process of a photon is not
justified. When true system eigenstates are used, Rayleigh scattering can be described in the first
order of the perturbation theory.

Only the values |⟨+, n| V |g, 0⟩|2 and |⟨−, n| V |g, 0⟩|2 have the meaning of the transition
probabilities. Recall that {|g, 0⟩, |−, n⟩, |+, n⟩ n = 1, 2, . . . } are the JC-eigenstates with n
photons, while V describes the interaction of the atom with the electric field of free space modes.
One can see that for n = 1, the transition probabilities are not zero. The substitution of the
expansion of V |g, 0⟩ over the full system of the JC-eigenfunctions into expression for ⟨+, n| V |g, 0⟩
gives ⟨+, 1| V |g, 0⟩ = b00 ⟨+, 1| g, 0⟩ +

∑︁
n
(︁
b0,−n ⟨+, 1| −, n⟩ + b0,+n ⟨+, 1| +, n⟩

)︁
= b0,+1. In a

general case, this quantity is not zero. Therefore, we have to consider the Rayleigh scattering as a
first order process.

Appendix C: master equation for the Fock initial state of the selected mode

Here, we present the explicit form of the master equation in the JC-eigenstate basis. The operator
σ̂ in this basis has the form:

σ̂ = cos φ1Ŝ(g,0)(+,1) − sin φ1Ŝ(g,0)(−,1) +
∞

Σ
n=1

(cos φn sin φn−1Ŝ(+,n−1)(+,n)

− sin φn sin φn−1Ŝ(+,n−1)(−,n) + cos φn cos φn−1Ŝ(−,n−1)(+,n) − sin φn cos φn−1Ŝ(−,n−1)(−,n),
(34)
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Substitution of this equation into Hamiltonian (6) of the interaction of the system with the
reservoir gives

ĤSR =
∑︂
k,λ

ℏγk,λa†k,λ (cos φ1 |g, 0⟩ ⟨+, 1| − sin φ1 |g, 0⟩ ⟨−, 1|

+
∞

Σ
n=1

(cos φn sin φn−1 |+, n − 1⟩ ⟨+, n| − sin φn sin φn−1 |+, n − 1⟩ ⟨−, n|

+ cos φn cos φn−1 |−, n − 1⟩ ⟨+, n| − sin φn cos φn−1 |−, n − 1⟩ ⟨−, n|)) + h.c.

=
∑︂
k,λ

ℏγk,λa†k,λ(cos φ1Ŝ(g,0)(+,1) − sin φ1Ŝ(g,0)(−,1)

+
∞

Σ
n=1

(cos φn sin φn−1Ŝ(+,n−1)(+,n) − sin φn sin φn−1Ŝ(+,n−1)(−,n)

+ cos φn cos φn−1Ŝ(−,n−1)(+,n) − sin φn cos φn−1Ŝ(−,n−1)(−,n))) + h.c.,

(35)

where we introduce the notations for the operators of possible transitions between the eigenstates
of the subsystem:

Ŝ(+,n−1)(+,n) = |+, n − 1⟩ ⟨+, n| , Ŝ(+,n−1)(−,n) = |+, n − 1⟩ ⟨−, n| ,
Ŝ(−,n−1)(+,n) = |−, n − 1⟩ ⟨+, n| , Ŝ(−,n−1)(−,n) = |−, n − 1⟩ ⟨−, n| ,
Ŝ(g,0)(−,1) = |g, 0⟩ ⟨−, 1| .

(36)

Knowing the eigenstates of the JC-system, it is possible to exclude free space mode variables
with the exception of the selected mode. For this, it is necessary to assume that the reservoir
of free space modes is in a state of thermal equilibrium at a given temperature. Neglecting
relativistic effects, we can assume that the frequencies are limited to the optical range. Further,
we assume that T = 0, i.e., the free space modes are empty. Following the standard procedure,
we obtain the density matrix in basis (3), which obeys the master equation of the Lindblad form
[32,34,35]:

∂ρ̂/∂t =
i
ℏ
[ρ̂, ĤS]+

+
γ0
2

cos2φ1(2Ŝ(g,0)(+,1) ρ̂Ŝ†(g,0)(+,1) − Ŝ†
(g,0)(+,1)Ŝ(g,0)(+,1) ρ̂ − ρ̂Ŝ†(g,0)(+,1)Ŝ(g,0)(+,1))

+
γ0
2

sin2φ1(2Ŝ(g,0)(−,1) ρ̂Ŝ†(g,0)(−,1) − Ŝ†
(g,0)(−,1)Ŝ(g,0)(−,1) ρ̂ − ρ̂Ŝ†(g,0)(−,1)Ŝ(g,0)(−,1))

+
γ0
2

∞

Σ
n=1

(cos2φnsin2φn−1

× (2Ŝ(+,n−1)(+,n) ρ̂Ŝ†(+,n−1)(+,n) − Ŝ†
(+,n−1)(+,n)Ŝ(+,n−1)(+,n) ρ̂ − ρ̂Ŝ†(+,n−1)(+,n)Ŝ(+,n−1)(+,n))

+ sin2φnsin2φn−1(2Ŝ(+,n−1)(−,n) ρ̂Ŝ†(+,n−1)(−,n) − Ŝ†
(+,n−1)(−,n)Ŝ(+,n−1)(−,n) ρ̂ − ρ̂Ŝ†(+,n−1)(−,n)Ŝ(+,n−1)(−,n))

+ cos2φncos2φn−1(2Ŝ(−,n−1)(+,n) ρ̂Ŝ†(−,n−1)(+,n) − Ŝ†
(−,n−1)(+,n)Ŝ(−,n−1)(+,n) ρ̂ − ρ̂Ŝ†(−,n−1)(+,n)Ŝ(−,n−1)(+,n))

+sin2φncos2φn−1(2Ŝ(−,n−1)(−,n) ρ̂Ŝ†(−,n−1)(−,n) − Ŝ†
(−,n−1)(−,n)Ŝ(−,n−1)(−,n) ρ̂ − ρ̂Ŝ†(−,n−1)(−,n)Ŝ(−,n−1)(−,n))).

(37)
Here γ0 = 4ω3

0 |deg |
2/3ℏc3 is the characteristic rate of the transition between eigenstates obtained

by averaging over the free space modes (for a detailed derivation, see [32,34–36]). If we were to
consider one atom in free space, then this quantity would be the rate of spontaneous emission.

Equation (37) is obtained after averaging the Hamiltonian of the interaction of the atom
with modes of free space over degrees of freedom of modes of free-space. This is rather
cumbersome but has a clear physical interpretation. Specifically, each term in Eq. (37)having
2Ŝρ̂Ŝ† − Ŝ†Ŝρ̂ − ρ̂Ŝ†Ŝ as a factor describes the transitions of the system between the eigenstates
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{|g, 0⟩, |+, n⟩, |−, n⟩}, n = 1, 2, . . .. The explicit form of the Ŝ-operators is given by Eqs. (8). We
emphasize again that it is the interaction of the JC-system with the reservoir of free space modes
that leads to a transition between the eigenstates of this subsystem.

Further, we expand the density matrix over eigenstates (2)-(3):

ρ̂ = ρ(g,0)(g,0) |g, 0⟩ ⟨g, 0| +
∞∑︂

n=1

(︁
ρ(g,0)(+,n) |g, 0⟩ ⟨+, n| + ρ(g,0)(−,n) |g, 0⟩ ⟨−, n|

+ρ(+,n)(g,0) |+, n⟩ ⟨g, 0| + ρ(−,n)(g,0) |−, n⟩ ⟨g, 0|
)︁

+

∞∑︂
n1,n2=1

(︁
ρ(+,n1)(+,n2) |+, n1⟩ ⟨+, n2 | + ρ(+,n1)(−,n2) |+, n1⟩ ⟨−, n2 |

+ρ(−,n1)(+,n2) |−, n1⟩ ⟨+, n2 | + ρ(−,n1)(−,n2) |−, n1⟩ ⟨−, n2 |
)︁
.

(38)

One of Eq. (37) features is that it defines the independent dynamics of the diagonal and
off-diagonal terms of the density matrix [45]. Specifically, from Eq. (37) for diagonal elements,
we obtain the following equations

ρ̇(+,n)(+,n) = −γ0cos2φnρ(+,n)(+,n) + γ0cos2φn+1sin2φnρ(+,n+1)(+,n+1)

+ γ0sin2φn+1sin2φnρ(−,n+1)(−,n+1),
(39)

ρ̇(−,n)(−,n) = −γ0sin2φnρ(−,n)(−,n) + γ0cos2φn+1cos2φnρ(+,n+1)(+,n+1)

+ γ0sin2φn+1cos2φnρ(−,n+1)(−,n+1),
(40)

ρ̇(g,0)(g,0) = γ0cos2φ1ρ(+,1)(+,1) + γ0sin2φ1ρ(−,1)(−,1). (41)
One can see that for the dynamics of the diagonal elements, only “down” transitions with a
decrease in energy are possible. This is a consequence of our assumption that the free space
mode reservoir is at zero temperature.

For the off-diagonal elements, we obtain [45]:

ρ̇(+,n1)(+,n2) = (−i(ω+,n2 − ω+,n1 ) − γ0(cos2φn2 + cos2φn1 )/2)ρ(+,n1)(+,n2), n1 ≠ n2. (42)

ρ̇(−,n1)(+,n2) = (−i(ω+,n2 − ω−,n1 ) − γ0(cos2φn2 + sin2φn1 )/2)ρ(−,n1)(+,n2), n1 ≠ n2. (43)
ρ̇(+,n1)(−,n2) = (−i(ω−,n2 − ω+,n1 ) − γ0(sin2φn2 + cos2φn1 )/2)ρ(+,n1)(−,n2), n1 ≠ n2. (44)
ρ̇(−,n1)(−,n2) = (−i(ω−,n2 − ω−,n1 ) − γ0(sin2φn2 + sin2φn1 )/2)ρ(−,n1)(−,n2), n1 ≠ n2. (45)

ρ̇(0,g)(+,n) = (−iω+,n − γ0cos2φn/2)ρ(0,g)(+,n). (46)
ρ̇(0,g)(−,n) = (−iω−,n − γ0sin2φn/2)ρ(0,g)(−,n). (47)

Each off-diagonal element of the density matrix oscillates and simultaneously decays exponentially
and independently of other elements.

Suppose that at the initial moment, the whole system is in the state |g, 0⟩ with the density
matrix ρ̂(0) = |g, n0⟩ ⟨g, n0 |. This state is not an eigenstate, and the expansion over eigenstates
(2)-(3) gives

ρ̂(0) = |g, n0⟩ ⟨g, n0 | = sin2φn0 |n,+⟩ ⟨n,+| + cos2φn0 |n,−⟩ ⟨n,−|
+ sin φn0 cos φn0 (|n0,+⟩ ⟨n0,−| + |n0,−⟩ ⟨n0,+|)

(48)

Thus, the initial conditions for Eqs. (39)–(47) have the form:

ρ(n0,+)(n0,+)(0) = sin2φn0 ,

ρ(n0,−)(n0,−)(0) = cos2φn0 ,
ρ(n0,−)(n0,+) = ρ(n0,+)(n0,−)(0) = sin φn0 cos φn0 ,

(49)

with all other elements of the density matrix equal to zero.
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Let us consider how the initial condition ρ̂(0) = |g, n0⟩ ⟨g, n0 | is expanded over the basis of
eigenstates in the limit ∆ ≫ ΩR

√
n. Using approximate equalities sin φn ≃ φn ≃ ΩR

√
n/|∆| and

cos φn ≃ 1, we obtain:

ρ(−,n0)(−,n0)(0) ≃ 1, ρ(+,n0,)(+,n0)(0) = Ω
2
Rn/|∆|2 ≪ 1,

ρ(−,n0)(+,n0)(0) = ρ(+,n0)(−,n0)(0) = ΩR
√

n/|∆| ≪ 1.
(50)

We, therefore, assume that ρ(n0,−)(n0,−)(0) = 1 and ρ(+,n0)(+,n0)(0) = ρ(−,n0)(+,n0)(0) = ρ(+,n0)(−,n0)(0) =
0. As noted above, with a decrease in energy, only downward transitions are realized. Therefore,
due to the initial condition ρ(±,n)(±,n)(0) = 0, n>n0, the matrix element ρ(n0,+)(n0,+) is equal to
zero all the time.

Now, using the approximations obtained above, we consider the diagonal elements of the
density matrix. We begin with ρ(n0,−)(n0,−)(t). From Eq. (40), using sin φn ≃ φn ≃ ΩR

√
n/|∆| and

cos φn ≃ 1, we have:

ρ̇(−,n0)(−,n0)(t) = −γ0
Ω2

Rn
|∆|
ρ(−,n0)(−,n0)(t). (51)

Since ρ(+,n0)(+,n0)(0) = 0, from Eq. (40) we obtain

ρ̇(−,n0−1)(−,n0−1)(t) = −γ0
Ω2

R(n − 1)
|∆|

ρ(−,n0−1)(−,n0−1)(t) + γ0
Ω2

Rn
|∆|
ρ(−,n0)(−,n0)(t). (52)

Next, we consider the equation for ρ(+,n0−1)(+,n0−1)(t). From Eq. (39), using ρ(+,n0)(+,n0)(t) = 0
we obtain

ρ̇(+,n0−1)(+,n0−1)(t) = −γ0ρ(+,n0−1)(+,n0−1)(t) + γ0
Ω4

Rn(n − 1)
|∆|4

ρ(−,n0)(−,n0)(t),

ρ(+,n0−1)(+,n0−1)(0) = 0.
(53)

The factor Ω4
Rn(n − 1)/|∆|4 is of the second order of smallness with respect to the parameter

Ω2
Rn/|∆| ≪ 1. Therefore, in Eq. (53), we neglect the term (γ0Ω

4
Rn(n − 1)/|∆|4)ρ(−,n0)(−,n0). Then,

solution (53) is ρ(+,n0−1)(+,n0−1)(t) = 0.
Repeating the above arguments for the elements ρ(+,n)(+,n), n<n0 − 1, of the density matrix, we

obtain that ρ(+,n)(+,n)(t) = 0. At the same time, for ρ(−,n)(−,n)(t), n<n0 − 1 we obtain the equation
of the same form as Eq. (52). For brevity, let us denote ρ(n,−)(n,−)(t) ≡ pn(t), γ0Ω

2
Rn/|∆| ≡ γn,

and ωn,− = ωn. The quantity pn(t) has the meaning of the probability of the occupation of the
entangled state of the selected mode and the atom |−, n⟩ = − sin φn |e, n − 1⟩ + cos φn |g, n⟩, while
γn has the meaning of the transition rate form the state |−, n⟩ to the state |−, n − 1⟩. From Eq. (51)
we obtain equations for pn(t):

ṗn0 (t) = −γn0pn0

ṗn(t) = −γnpn(t) + γn+1pn+1(t), 1 ≤ n<n0

ṗ0(t) = γ1p1(t)
(54)

with the initial condition
pn0 (0) = 1, pn(0) = 0, 0 ≤ n<n0. (55)

This are Eqs. (25) of the main text.

Appendix D: master equation for the coherent initial state of the selected mode

In this Appendix, we obtain Eq. (31) that gives the mean value of atomic dipole moment. We con-
sider the case of the coherent initial state, ρ̂(0) = |g,α⟩ ⟨g,α |, where |α⟩ = exp(−|α |2/2)

∞∑︁
n=0

(︂
αn/

√
n!

)︂
|n⟩
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is the coherent state of the field. The expansion of such an initial state over eigenstates (3) has
the form:

ρ̂(0) = exp(−|α |2) [|g, 0⟩ ⟨g, 0| +

+
∞

Σ
n1=1

(︃
sin φn1

αn1

√
n1!

|+, n1⟩ ⟨g, 0| + cos φn1

αn1

√
n1!

|−, n1⟩ ⟨g, 0|
)︃

+
∞

Σ
n2=1

(︃
sin φn2

α∗n2

√
n2!

|g, 0⟩ ⟨+, n2 | + cos φn2

α∗n2

√
n2!

|g, 0⟩ ⟨−, n2 |

)︃
+

∞

Σ
n1,n2=1

(︃
sin φn1 sin φn2

αn1

√
n1!
α∗n2

√
n2!

|+, n1⟩ ⟨+, n2 | + sin φn1 cos φn2

αn1

√
n1!
α∗n2

√
n2!

|+, n1⟩ ⟨−, n2 |

+ cos φn1 sin φn2

αn1

√
n1!
α∗n2

√
n2!

|−, n1⟩ ⟨+, n2 | + cos φn1 cos φn2

αn1

√
n1!
α∗n2

√
n2!

|−, n1⟩ ⟨−, n2 |

)︃]︃
.

(56)
In expansion (56) of the density matrix over eigenstates, in contrast to expansion (48), there
are all kind of off-diagonal elements. Equation (30) shows that to calculate the average dipole
moment, we need to know the dynamics of not all off-diagonal matrix elements, but only ρ(g,0)(+,1),
ρ(+,n−1)(+,n), ρ(−,n−1)(+,n), and ρ(−,n−1)(−,n). According to Eqs. (42)–(47), these matrix elements
obey the equations

ρ̇(+,n−1)(+,n) =
(︂
−i(ω+,n − ω+,n−1) −

γ0
2
(cos2φn + cos2φn−1)

)︂
ρ(+,n−1)(+,n), (57)

ρ̇(−,n−1)(+,n) =
(︂
−i(ω+,n − ω−,n−1) −

γ0
2
(cos2φn + sin2φn−1)

)︂
ρ(−,n−1)(+,n), (58)

ρ̇(+,n−1)(−,n) =
(︂
−i(ω−,n − ω+,n−1) −

γ0
2
(sin2φn + cos2φn−1)

)︂
ρ(+,n−1)(−,n), (59)

ρ̇(−,n−1)(−,n) =
(︂
−i(ω−,n − ω−,n−1) −

γ0
2
(sin2φn + sin2φn−1)

)︂
ρ(−,n−1)(−,n), (60)

ρ̇(0,g)(+,1) = (−iω+,1 − γ0cos2φ1/2)ρ(0,g)(+,1), (61)

ρ̇(0,g)(−,1) = (−iω−,1 − γ0sin2φ1/2)ρ(0,g)(−,1), (62)

and in accordance with Eq. (56), the initial conditions of these matrix elements have the form

ρ(+,n−1)(+,n)(0) = exp(−|α |2) sin φn sin φn−1
αn−1√︁
(n − 1)!

α∗n
√

n!
, (63)

ρ(−,n−1)(+,n)(0) = exp(−|α |2) cos φn sin φn−1
αn−1√︁
(n − 1)!

α∗n
√

n!
, (64)

ρ(+,n−1)(−,n)(0) = exp(−|α |2) sin φn cos φn−1
αn−1√︁
(n − 1)!

α∗n
√

n!
, (65)

ρ(−,n−1)(−,n)(0) = exp(−|α |2) cos φn cos φn−1
αn−1√︁
(n − 1)!

α∗n
√

n!
, (66)

ρ(0,g)(+,1)(0) = exp(−|α |2) sin φ1
α∗
√

1!
, (67)

ρ(0,g)(−,1)(0) = exp(−|α |2) cos φ1
α∗
√

1!
. (68)
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Solutions (57)-(62) with initial conditions (63)-(68) are

ρ(+,n−1)(+,n)(t) = e−|α |2 sin φn sin φn−1
αn−1√︁
(n − 1)!

α∗n
√

n!
e(−i(ω+,n−ω+,n−1)−

γ0
2 (cos2ϕn+cos2ϕn−1))t, (69)

ρ(−,n−1)(+,n)(t) = e−|α |2 cos φn sin φn−1
αn−1√︁
(n − 1)!

α∗n
√

n!
e(−i(ω+,n−ω−,n−1)−

γ0
2 (cos2ϕn+sin2ϕn−1))t, (70)

ρ(+,n−1)(−,n)(t) = e−|α |2 sin φn cos φn−1
αn−1√︁
(n − 1)!

α∗n
√

n!
e(−i(ω−,n−ω+,n−1)−

γ0
2 (sin2ϕn+cos2ϕn−1))t, (71)

ρ(−,n−1)(−,n)(t) = e−|α |2 cos φn cos φn−1
αn−1√︁
(n − 1)!

α∗n
√

n!
e(−i(ω−,n−ω−,n−1)−

γ0
2 (sin2ϕn+sin2ϕn−1))t, (72)

ρ(0,g)(+,1)(t) = e−|α |2 sin φ1
α∗
√

1!
e(−iω+,1−γ0cos2ϕ1/2)t, (73)

ρ(0,g)(−,1)(t) = e−|α |2 cos φ1
α∗
√

1!
e(−iω−,1−γ0sin2ϕ1/2)t. (74)

Substituting Eqs. (69)–(74) into the expression for the dipole moment, Eq. (30), we obtain

⟨σ̂(t)⟩ = e−|α |2
(︃
cos φ1 sin φ1

α∗
√

1!
e(−iω+,1−γ0cos2ϕ1/2)t − sin φ1 cos φ1

α∗
√

1!
e(−iω−,1−γ0sin2ϕ1/2)t

+
∞

Σ
n=2

αn−1√︁
(n − 1)!

α∗n
√

n!

(︂
cos φnsin2φn−1 sin φne(−i(ω+,n−ω+,n−1)−

γ0
2 (cos2ϕn+cos2ϕn−1))t

− sin2φn sin φn−1 cos φn−1e(−i(ω−,n−ω+,n−1)−
γ0
2 (sin2ϕn+cos2ϕn−1))t

+ cos2φn cos φn−1 sin φn−1e(−i(ω+,n−ω−,n−1)−
γ0
2 (cos2ϕn+sin2ϕn−1))t

− sin φncos2φn−1 cos φne(−i(ω−,n−ω−,n−1)−
γ0
2 (sin2ϕn+sin2ϕn−1))t

)︂)︂
.

(75)
In the limit of large detuning, Ω2

R |α |
2/∆2 ≪ 1, the quantities Ω2

R |α |
2/∆2 and sin φn ≃ ΩR

√
n/|∆|

are small parameters, while cos φn ≃ 1. Therefore, the main contribution to sum (75) is made
by the first, second, fifth, and sixth terms, which are proportional to the first power of the
small parameter. Further, the decay rate of the first and fifth terms are γ0cos2φ1/2 ≃ γ0/2
and γ0(cos2φn + sin2φn−1)/2 ≃ γ0/2, respectively. Thus, on the time-scale t ≫ γ−1

0 , these
terms are equal to zero. In turn, the decay rate of the second and six terms are γ0sin2φ1/2 ≃

γ0Ω
2
Rn/2|∆|2 ≪ γ0 and γ0(sin2φn + sin2φn−1)/2 ≃ γ0Ω

2
Rn/|∆|2 ≪ γ0, respectively. Thus, we

conclude that on the time-scale t ≫ γ−1
0 , the second and sixth terms give the main contribution

to Eq. (75):

⟨σ̂(t)⟩ = −
e−iωSMtΩR

|∆|
e−|α |2

(︄
α∗
√

1!
e−(γ0Ω

2
Rn/2 |∆ |2)t +

∞

Σ
n=2

√
n
αn−1√︁
(n − 1)!

α∗n
√

n!
e−(γ0Ω

2
Rn/ |∆ |2)t

)︄
, (76)

where expression (10) is used for eigenfrequencies.
Now, assuming that the condition for the non-resonant excitation Ω2

R |α |
2/∆2 ≪ 1 remains

true, we consider the limit of a large amplitude of the exciting field, |α |2 ≫ 1. Since in this case,
the main contribution to sum (76) is made by the terms for which n ≃ |α |2, we can calculate this
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sum approximately. Assuming that inside the sum, the value
√

n is slowly changing and replacing
it with the value

√
n ≃ |α |, we obtain:

⟨σ̂(t)⟩ ≃ −
e−iωSMtΩR |α |

|∆|
e−|α |2

∞

Σ
n=0

|α |2n

n!
e−(γ0Ω

2
Rn/ |∆ |2)t = e |α |2(e−(γ0Ω

2
R/|∆|2)t

−1) e−iωSMtΩR |α |

|∆|
. (77)

Next, we consider times at which the field amplitude in the selected mode remains almost
unchanged, i.e., times t ≪ (γ0Ω

2
R/|∆|

2)−1. Then, expression (77) is simplified to give Eq. (31)

⟨σ̂(t)⟩ ≃
e−iωSMtΩR |α |

|∆|
exp

(︄
−
|α |2γ0Ω

2
R

|∆|2
t

)︄
. (78)
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