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Abstract: In 1954, Dicke predicted that a system of quantum emitters confined to a 
subwavelength volume would produce a superradiant burst. For such a burst to occur, the 
emitters must be in the special Dicke state with zero dipole moment. We show that a 
superradiant burst may also arise for non-Dicke initial states with a nonzero dipole moment. 
Both for Dicke and non-Dicke initial states, superradiance arises due to a decrease in the 
dispersion of the quantum phase of the emitter state. For non-Dicke states, the quantum phase 
is related to the phase of long-period envelopes which modulate the oscillations of the dipole 
moments. A decrease in the dispersion of the quantum phase causes a decrease in the 
dispersion of envelope phases that results in constructive interference of the envelopes and 
the superradiant burst. 
© 2017 Optical Society of America 
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1. Introduction 

Superradiance (SR) is a sharp enhancement of the spontaneous radiation rate of an ensemble 
of N independent emitters (two-level atoms) compared to the radiation rate of a single emitter 

0γ . This phenomenon was predicted by Dicke [1] for a subwavelength collection of N 
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quantum emitters that are coupled by their own radiation field. Various aspects of this 
phenomenon are reviewed in [2–9]. 

Dicke assumed that all emitters are indistinguishable and their wave function is symmetric 
with respect to permutations of any two emitters. In a general form, the Dicke state of N two-
level atoms, n of which are excited, has the form 

 
1

, ,.., , ,.., , ,D n
P n N nN

N n e e g g
C

ψ
−

≡ =    (1) 

where P denotes all possible permutations. As an initial state, Dicke considered a state in 
which all N emitters are excited [3, 4]. The dipole moment of such a system is equal to zero. 
Dicke took into account only one channel of the system’s evolution in which at each time step 
only one of the emitters relaxes to the ground state and the system proceeds to another pure 
Dicke state , 1N n − . Thus, at any time, the dipole moment remains equal to zero. In the 

Dicke model, the probability of the transition from the state with n  to n –1 excited emitters 
per unit time (the radiation rate), ( )nγ , depends on n. In the initial moment, when all emitters 

are excited and there are no photons, ( )nγ  is at a minimum, 0( )N Nγ γ=  [1, 2, 4] similar to a 

linear system. It reaches a maximum value of 2
0 / 4Nγ  when / 2n N= . Thus, when half of 

the emitters are excited, the radiation rate depends quadratically on the number of emitters, 
while initially, this dependence is linear. This increase in the radiation rate of two-level atoms 
is characteristic to SR. Dicke showed that the peak in the radiation intensity is reached in a 
time ~ log /N N , while the duration of the SR burst is smaller than the radiation time of a 

single emitter by a factor of 1/ N . 
SR may arise for any Dicke state with n N≤  excited atoms. For example, an SR state can 

be a state with a single excited atom, which is symmetric with respect to all possible 
permutations [10–12]. However, SR depends strongly on the initial state. When the initial 
state is antisymmetric with respect to atomic permutations, instead of SR, radiation is 
suppressed. It becomes even smaller than radiation of independent emitters. This 
phenomenon is called subradiance [4]. 

The Dicke explanation of SR is based on a strong assumption about the time evolution 
from one Dicke state to another (only in this case can one use the Fermi’s golden rule) and on 
an ability of a quantum system with zero dipole moment to radiate a photon. There is no 
rigorous proof that these conditions are either necessary or sufficient for SR. Moreover, it has 
been shown that both of these conditions are not quite correct. 

First, a more rigorous description of SR in terms of the master equation shows that the 
system evolution does not go through pure Dicke states but rather through mixed states with a 
density matrix which is a linear combination of density matrices of various pure Dicke states

mixed n D D
n

cρ ψ ψ=  [4]. These mixed states still have a zero dipole moment. Second, SR 

is not the sole prerogative of quantum systems. It can also occur in an ensemble of nonlinear 
classical oscillators, which surely has a nonzero dipole moment [13, 14]. In such a system, SR 
results from the constructive interference of long-period envelopes of rapidly oscillating 
dipoles [13]. For this reason, it is interesting to investigate whether SR may occur from 
quantum states with nonzero dipole moments, which are not Dicke states. 

There are several phenomena discussed in the literature which one way or another are 
similar to SR. These are superfluorescence [15, 16], superluminescence [17, 18], and 
amplified spontaneous emission (ASE) [19–21]. Some of the conditions required for the 
observation of these phenomena are the same as for SR. We want to emphasize that we 
consider a subwavelength system of quantum emitters that are initially excited non-
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coherently. We refer here to superradiance as an increase of the emission rate as 2~ N , with 
the appearance of a time delay in the emission burst. The focus of our study is the effect of 
the initial dipole moment of the system dynamics. 

In this paper, we study the possibility of SR in an ensemble of two-level atoms in the 
general case, in which the system is not initially in a Dicke state. We show that for a quantum 
system, there is a unified mechanism for SR for both Dicke states with zero dipole moment 
and non-Dicke states for which the total dipole moment is not zero. We introduce a phase 
operator for a quantum state and show that this mechanism is related to a decrease in the 
dispersion of the state phase. The SR burst occurs when the dispersion reaches its minimum 
value. The expectation value of the initial dipole moment only affects the time delay. The 
greater the expected value, the smaller the time delay. We also show that nonlinearity is 
essential for SR to arise. 

2. The Dicke model of superradiance 

Let us first briefly consider the Dicke theory (see for details [3, 4]). For an ensemble of N 
two-level atoms we introduce the lowering and raising operators that describe the relaxation 

and excitation of the j-th atom 
1

ˆ ˆ ˆˆ ˆ... ...j
j N j

E E Eσ σ
− −

= ⊗ ⊗ ⊗ ⊗ ⊗   and 

1

ˆ ˆ ˆˆ ˆ... ...j
j N j

E E Eσ σ+ +

− −

= ⊗ ⊗ ⊗ ⊗ ⊗  , where ˆ g eσ =  and ˆ e gσ + =  are transition operators 

from excited e  and ground g  states, respectively, and Ê  is the 2 2×  identity matrix. The 

corresponding Hamiltonian of the Jaynes-Cummings type for the interaction between free-
space field modes and two-level atoms in the rotating wave approximation is: 

 ( )ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ,z
k k k k k k

k k

H a a J a J J aω ω+ + − += + + Ω +     (2) 

where ˆka+  and ˆka  are creation and annihilation operators of a photon in a mode with the 

frequency kω , ω  is the transition frequency of two-level atoms, kΩ  is the interaction 

constant between photons and atoms, ˆ ˆ jj
J σ− =  is the collective atomic operator of the 

complex dipole moment, ( )ˆ ˆ ˆ jj
J J σ

++ − += = , and ˆ ˆz z
jj

J σ=  stands for the collective 

inversion, where 
1

ˆ ˆ ˆˆ ˆ... ...z z
j

j N j

E E Eσ σ
− −

= ⊗ ⊗ ⊗ ⊗ ⊗   and z e e g gσ = −  [4]. 

Using the Heisenberg approach and the integral of motion, ( ) ( )2ˆ ˆ ˆ ˆ ˆ/ 2 / 4zJ J J J J+ − − ++ + , 

one can eliminate the variable Ĵ − . The remaining equation for ˆ zJ  is an operator equation 

which should be converted into an equation for the expectation value ˆ zJ , where ...  

denotes an average value of an operator calculated as ( )ˆ ˆTr ( )z zJ t Jρ= , where ( )tρ  is the 

density matrix. The Markovian approximation allows for the elimination of the field variables 
ˆka+  and ˆka  [3, 4]. At this stage, the rate 0γ  of the spontaneous radiation into free-space 

modes is introduced. This parameter sets the characteristic time-scale 1
0γ − . After exclusion of 

the field variables, only one variable, ˆ zJ , remains. For the Dicke state 
ˆ ( ) 2zJ n N n n N= − − = − . At this point, the second approximation, ˆ ˆ ˆ ˆz z z zJ J J J= , 

should be made. This is correct when 1N >> . As a result, one obtains that the dynamics of 
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the collective inversion ˆ ˆz z
ii

J σ=  of a system that is in a pure state (1) at any moment of 

time, can be described by the original Dicke equation 

 
2

2
0

ˆ
1 1ˆ ˆ/ 4 / 2 .
4 2

z

z z
d J

N N J J
dt

γ  = − + − + 
 

 (3) 

Solving this equation Dicke obtained the time dependence of the inversion: 

 ( ) ( )( )( )0
ˆ ( ) 1 1 tanh 1 / 4 ,z

delayJ t N N t tγ= − + + −  (4) 

where delayt  is determined from the initial condition ˆ (0)zJ N= . It is equal to 

 ( )0

2 ln
.

1delay

N
t

Nγ
=

+
 (5) 

The radiation intensity has a form of a burst 

 ( ) ( )( )( )
2

2
0 0

1
( ) / sech 1 / 4 .

2
z

delay

N
I t d J t dt N t tγ γ+ = − = + − 

 
 (6) 

From Eq. (6) one can see that the intensity maximum occurs at delayt t= . Thus, delayt  has a 

meaning of the delay time of the SR burst. Note, that at the initial moment, the system 

inversion is ˆ (0)zJ N= , while in delayt , according to Eq. (4), ˆ ( ) 1z
delayJ t = , i.e., at this 

moment / 2n N≈ . Thus, the SR burst arises when about half of the atoms are excited. 
It is worth noting that in a system of N two-level atoms, the transition rate from the state 
,N n  into the state , 1N n −  is ( ) ( )0 1 / 2n n N nγ γ= − +  [3, 4]. This rate reaches its 

maximum value ( ) ( )2 2
max 0 01 / 8 / 8n N Nγ γ γ= + ≈  for ( )1 / 2n N= + . Thus, the maximum 

of the SR peak occurs when about half of the atoms is excited. The system evolves into the 
state , / 2N N  within some time, delayt . At the initial state ,N N , the radiation intensity is 

proportional to 0 Nγ , while at the state , / 2N N , it increases to 2
0 Nγ . 

Expression (5) for the delay time for the SR burst follows from the solution of the Dicke 
Eq. (3). This time can be found by assuming that the system evolution is going through Dicke 
states. Indeed, this time is comprised of the step-by-step transition times from the state 

,N N  to the state , / 2N N . According to the Fermi’s golden rule, the probability of the 

transition from the state ,N n  to the state , 1N n −  per unit time (the radiation rate) is 

( ) ( )0 1 / 2n n N nγ γ= − +  [1, 3 ,4]. The average transition time between these states is ( ) 1
nγ −

. Then the average transition time from the initial state ,N N  to the state , / 2N N  can be 

estimated as 

 ( ) ( ) ( ) ( )
/ 2 /2 1

1

, , / 2
0 0 0

2 1 2 1 2ln
.

1 1 1

n N n N n

N N N N
n N n N n N

N
T n

n N n N n N
γ

γ γ γ

= = =
−

→
= = =

 = = ≈ ≈ − + + + 
   (7) 

This expression is identical to expression (5) obtained by solving Dicke Eq. (3). 
If the initial number of excited emitters n in the Dicke state is smaller than N, then the 

transition time to the , / 2N N  state decreases because of the decrease in the number of 
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terms in the sum in Eq. (7). As the number of excited emitters approaches N/2, the delay time 
tends to zero. This is confirmed by our computer simulations shown in Fig. 1 and is in 
agreement with the results of [10–12] in which the case 1n =  has been considered. 

 

Fig. 1. The radiation intensity in the Dicke model as a function of time for a different number 

of initially excited atoms. n N=  (the red line), 0.75n N=  (the blue line), 0.5n N=  
(the green line), 0.25n N=  (the orange line), and 0.01n N=  (the black line). 

The Dicke system can also be described in a different way without using the Dicke 

approximation ˆ ˆ ˆ ˆz z z zJ J J J= , which we do not use in our study. If we restrict ourselves 

to the case of 0Nγ ω<< , then the dynamics of the system can be described by the density 

matrix governed by the Lindblad master equation [4, 22, 23]: 

 ( )0

1 , 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ, 2 ,
2 2

N N
z

A j i j i j i j
j i j

i γρ ω σ ρ σ ρσ σ σ ρ ρσ σ+ + +

= =

 = − + − −    (8) 

where [,] denotes a commutator of the respective operators. Using the interaction 

representation, ( ) ( )ˆ ˆexp / 2 exp / 2z z
j jj j

i t i tρ ω σ ρ ω σ→ −  , we consider smooth 

oscillations (envelopes). Switching from single-particle operators, ˆ jσ  and ˆ jσ + , to collective 

operators, Ĵ −  and Ĵ + , we obtain the master equation in the form [4]: 

 ( )0 ˆ ˆ ˆ ˆ ˆ ˆ2 .
2

J J J J J J
γρ ρ ρ ρ− + + − + −= − −  (9) 

Computer simulation shows (see also [4]) that the solutions of Eqs. (3) and (9) are similar. 
They both predict the delay time and the short duration of radiation. Nevertheless, there are 
substantial differences in maximum values of the intensity and relaxation rates. Moreover, 
since the right-hand side of Eq. (9) contains the term describing radiation energy loss, an 
initial pure state should turn into a mixed state so that the Dicke assumption should be 

violated. The result of computer simulation of Eq. (9) (see Fig. 2) shows that ( )2Tr ( )tρ , 

which should be equal to unity for a pure state, deviates from this value indicating that the 
state becomes mixed and the time evolution goes through a non-Dicke channel. 
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Fig. 2. The dependence of ( )2Tr ( )tρ  on time. 

3. Superradiance of non-Dicke states 

In a number of works, the Dicke approach is refined [24–31]. In these papers, it was assumed 
that dipole moments for both pure and mixed states are zero. In this section, by using Eq. (9) 
we study a possibility of SR from non-Dicke states with a nonzero dipole moment of each 
atom. 

3.1 Phase operator for a two-level atom 

When quantum emitters are excited by pulse pumping, the probability that a two-level atom is 
in a ground state is nonzero, regardless of the pump power. In general, even within the 
framework of pure states, the wave function of the final state of a two-level atom is a 
superposition, s e gc e c gψ = + , where coefficients ec  and gc  are complex numbers. In 

this superposition state, an average value of the operator of complex dipole moment σ̂  is not 
zero 

 ( )( )* * *ˆ ˆ ˆTr( ) Tr ,i
e g e g e gg e c e c g c e c g c c g e e ϕσ σρ σ α = = + + = =  (10) 

where *i
e ge c cϕα =  and s sρ ψ ψ= . The quantities ϕ  and α  are analogous to the phase 

and amplitude of the dipole moment of a classical emitter. 
To characterize such a system, we can use the phase of the dipole moment. This is not 

convenient, though, because we cannot treat in such a manner the Dicke states as their dipole 
moments are equal to zero. Instead, following [32–34] in which the phase operator for the 
photon ensemble has been introduced, we define the phase operator of an M-level atom 

 ( ) ( )
2

0

ˆexp 1 1 0 .
M

m

i m m M
−

=

 Φ = + + − 
 
  (11) 

For a two-level atom, 2M = , we have 

 
0 1/ 2ˆcos .

1/ 2 0

 Φ =  
 

 (12) 

For an ensemble of N atoms, in the 2N -dimensional space, the phase operator ˆ
iΦ  of an i-th 

atom is defined as a direct product of the operator of the phase of the i-th atom, Eq. (12), and 
unit operators of the other atoms: 
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 1̂
ˆˆ ˆcos ... cos ... .i N

i

I IΦ = ⊗ ⊗ Φ ⊗ ⊗  (13) 

The consideration of the time evolution of the expected value of the operator (13) sheds 
light on the origin of SR. Obviously, an average value of the operator of the phase difference 
of any two atoms of a system in the Dike state with n excited atoms is equal to zero 

 ˆ ˆ, | cos cos | , 0.i jN n N n Φ − Φ  =  (14) 

However, the dispersion of this operator is not zero 

 ( ) ( )2 2 1ˆ ˆ ˆ ˆ, cos cos , , cos cos , .
2 ( 1)ij i j i j

n N n
D N n N n N n N n

N N

−
≡ Φ − Φ − Φ − Φ = −

−
(15) 

As follows from Eq. (15), ijD , has a minimum value for / 2n N= . This is the moment at 

which SR occurs. Thus, the time of an SR burst can be identified as the moment when the 
quantum system reaches the phase synchronism, i.e., when the dispersion, ijD , is minimal. 

3.2 Mixed states 

Below, to emphasize the difference of our approach from the Dicke model, we consider 
mixed, non-Dicke states with a nonzero dipole moment as an initial state. The phase operator 
(11)-(13) can also be applied to such states. To do this, we represent the initial density matrix 
of non-Dicke states as the direct product of density matrices of individual atoms 

1 2 ... Nρ ρ ρ ρ= ⊗ ⊗ . The initial density matrix of the i-th atom can be represented as, 

 ,
1

i

i

i
i i

i i
i i

k e

e k

ϕ

ϕ

αρ
α −

 
=  

− 
 (16) 

where ik , iα , and iϕ  are assumed to be real numbers [35]. Note that the average value of the 

complex dipole moment ˆiσ  coincides with the expression obtained for a pure state, Eq. (10): 

 
0 0

ˆˆ ˆTr( ) Tr .
1 0 1

i

i

i

i
ii i

i i ii
i i

k e
e

e k

ϕ
ϕ

ϕ

ασ σ ρ α
α −

   
= = =    −    

 (17) 

Thus, the values iα  and iϕ  have the same physical meanings as in Eq. (10). 

The phase operator (11)-(13) can be also applied to non-Dicke states with a nonzero 
dipole moment. The dynamics of the dispersion of the phase difference is studied by 
computer simulation of master Eq. (9). The dimension of the whole system is 22 N . In our 
computer simulation, 8N ≤ , i.e., the order of the system of equations is 162 1 65,535− = . 
The results are displayed in Fig. 3 where the radiation intensity, defined by Dicke as the time 

derivative of population inversion, ˆ( ) /zI t d J dt= − , as well as the dispersion ijD  are 

shown. We can see that in this case, similar to the Dicke case, the SR burst and the minimum 
of the dispersion happen at the same time. 
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Fig. 3. The dynamics of the intensity I  (the solid red line) and the dispersion of the 
difference of cosines of dipole moment phases (the dashed blue line) for a non-Dicke initial 
state with a nonzero dipole moment. At the initial moment, eight emitter phases are uniformly 

distributed in the interval ( )/ 5, / 5π π− . 

In the case of nonzero dipole moment, it is possible to obtain a relation between the state 

phase and the phase of a dipole moment. The average value of the cosine of the operator Φ̂  
[see Eq. (12)] calculated for mixed state (16) is connected with the phase of the dipole 
moment ϕ  [see Eq. (17)]: 

 
( )

( )
exp 0 1/ 2ˆcos Tr cos .

exp 1 1/ 2 0

k i

i k

α ϕ
α ϕ

α ϕ
   

Φ = =    − −    
 (18) 

Equation (18) shows that that phase of a dipole moment is uniquely related to the state phase. 
Note that the difference of cosines of phases of dipole moments is equal to average values of 
the difference of operators of cosines of phases for states of any two atoms are 

 ˆ ˆcos cos cos cos .i j i i j jα ϕ α ϕΦ − Φ = −  (19) 

Equation (19) relates classical and quantum phases. 
Thus, if absolute values of dipole moments of atoms are the same, then an average value 

of the operator of the difference of cosines of phases is proportional to the difference of 
cosines of dipole moment phases. 

Let us now consider the dynamics of phases of dipole moments. Our computer simulation 
shows that at the moment 0t , which is near delayt , emitter phases become close to each other 

as shown in Fig. 4. This time coincides with the time at which dispersions of the dipole phase, 

 
2

2cos cos / / ( 1),i i
i i

N Nϕ ϕ
  Δ = − −     
   (20) 

reach their minimum (see Fig. 5). The duration of the radiation burst is close to the prediction 
of the Dicke model. 
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Fig. 4. The dynamics of phases of eight non-Dicke emitters with nonzero dipole moments. The 

time evolutions of dipole moment phases and the total dipole moment Ĵ −
 are shown by 

solid and dashed lines, respectively. 

Numerical simulations show that approaching delayt  both dispersions, ijD  and Δ , 

decrease. They reach their minimum near the SR burst, i.e. near the time delayt
 (see Fig. 5). 

This is in qualitative agreement with Eq. (19). Similar to classical dipoles [13], the phase 
convergence shown in Fig. 4 indicates constructive interference in envelopes of the fast 
dipole oscillations. 

Note that the time delayt  is smaller than the time of the phase convergence 0t . This 

happens because the maximum of the total dipole moment is defined by two processes. First, 
the convergence of phases of emitters of dipole moments leads to constructive interference 
and to increase in the total dipole moment. Second, during time evolution the system radiates 
that results in a decrease in the dipole moments. The interplay of these processes leads the SR 
burst to occur before the phase convergence at time moment delayt  where the individual dipole 

moments are still large enough to form a large total moment. 
As our computer experiment shows, 0t  tends to delayt  with an increase of the number of 

emitters (see Fig. 6). The dependence ( )0 0 0/ /delayt t t t t− = Δ  on N shown in Fig. 6 indirectly 

confirms a nonlinear character of the SR phenomenon. The increase of the rate of the phase 
convergence with an increase of N indicates that the emitter phases depend on the amplitude 
of the total dipole moment. Such a dependence is typical for nonlinear systems. 
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Fig. 5. Solid red and dashed blue lines show dynamics of the dispersions Δ  and ijD
, 

respectively. The dispersions are calculated for a non-Dicke initial state with a nonzero dipole 
moment. At the initial moment, the emitter phases are uniformly distributed in the interval 

( )/ 5, / 5π π−
. The results obtained for a random distribution of emitter phases are 

practically the same as shown in the figure. 

 

Fig. 6. The dependence of 0/t tΔ
 on the number of emitters. Dashed blue and solid red lines 

correspond to intervals of the initial phase distributions of 
( )2 / 5,2 / 5π π−

 and 

( )/ 5, / 5π π−
, respectively. 

To determine the dependence of the time of the phase convergence on the initial phase 
distribution we solve master Eq. (9) for different phase distributions. Figure 6 shows that 
when the distribution width decreases, delayt  is getting closer to 0t . Thus, we may conclude 

that SR from non-Dicke states arises due to the phase convergence of emitter dipole 
moments. 

3.3 Role of dipole moment 

If a classical system of emitters initially oscillates in phase, then similar to SR, the radiation 
intensity is proportional to the square of the number of particles. However, the delay time of 
such a system is zero [36–38]. In order to have a delay time, the emitters must have a phase 
spread [13] which also results in a decrease in the initial dipole moment. This is also true for a 
quantum system: an increase in the average initial dipole moment leads to a decrease in the 
delay time. The limiting case of the zero initial dipole moment corresponds to the Dicke 
model and produces the maximum delay time. 
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In the Dicke model, for the initial state ,N n  with / 2N n N> > , as n tends to N/2, the 

delay time approaches zero. Indeed, as follows from Eq. (4), if at the initial moment
ˆ (0) 1zJ = , which corresponds to / 2n N≈ , then the delay time is zero, 0delayt = . 

For a non-Dicke state with a nonzero dipole moment, an average number avn  of excited 

atoms is smaller than N. Indeed, an atom can have a nonzero dipole moment if it is in a 
superposition state, e gc e c g+ . In this state, an atom has projections on both excited and 

ground states, and its dipole moment is 21 | |e ed c c= − . The probability to find an atom 

in the excited state is 
22| | 1 1 / 2ec d = ± − 

 
. The brunch with the sign ‘ + ’ describes 

positive population inversion, 2 / 2av en Nc N= > . For this branch, when the initial dipole 

moment increases, the initial average number of excited atoms and, therefore, the delay time 
decreases (see Fig. 1 and Fig7). The brunch with the sign ‘–’ corresponds to negative 
population inversion ( / 2avn N< ) for which the time delay is zero (orange and black lines in 

Fig. 1). This dependence of delayt  on the dipole moment is confirmed by the results of the 

numerical experiment shown in Fig. 7. 

 

Fig. 7. The dependence of the SR delay time on the average value of the dipole moment per 
atom. 

We can conclude that there is a close connection between SR in systems of nonlinear 
classical emitters and two-level atoms. Both systems have convergence points for emitter 
phases and the delay times decrease when both classical and quantum dipole moments 
decreases. Since nonlinearity of the classical system is critical for SR, below we show that the 
same is true for the quantum system. 

3.4 Role of nonlinearity 

Even though the Lindblad Eq. (8) is linear with respect to the density matrix, the SR 
phenomenon results from the nonlinear interaction of light with two-level atoms. This is due 
to the effect of the saturation of the population inversion of a two-level emitter, which makes 
it a nonlinear system [39, 40]. In a quasiclassical description, this results in a dependence of 
the dielectric permittivity on the amplitude of the electric field [39, 41]. In a non-saturated 
system, such as a quantum oscillator, this type of nonlinearity does not arise. In a 
quasiclassical approximation, the dielectric permittivity of a system of oscillators is described 
by the linear Lorentz function [42]. 
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As we have shown, the system of two-level atoms exhibits the phase conversion of 
emitters and a decrease in the dispersion of the phase of the emitter state. For a classical 
system of emitters, it has been shown that in the phase evolution, convergence points arise 
due to the dependence of the phase on the amplitude of the total dipole moment [13, 14]. In a 
quantum system, we could not obtain a direct proof of this. We show below, however, that a 
many-level system, e.g., a harmonic oscillator, does not superradiate. This is similar to a 
system of classical oscillators, which does not superradiate for a random uniform distribution 
of phases. 

Let us consider whether an SR burst can arise in a system of identical quantum linear 
harmonic oscillators. We assume that as a system of two-level atoms, oscillators are in a 
subwavelength volume, and they interact with modes of the electromagnetic field of the free 

space. This interaction has a form i−d E , where ( )0 ˆ ˆi i ia a+= +d d . The dynamics of the 

density matrix is described by the Lindblad equation 

 ( )0 ˆ ˆ ˆ ˆ ˆ ˆ2 ,
2

A A A A A A
γρ ρ ρ ρ+ + += − −  (21) 

where ˆ ˆii
A a=  is the operator of the collective dipole moment of oscillators, ˆia  is the 

annihilation operator of the i-th oscillator. This equation is derived in a similar way as master 
Eq. (9) for a system of two-level atoms. 

Equation (21) allows one to obtain dynamics equations for a dipole moment of each 
oscillator: 

 

( ) 0 0

0 0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
2 2
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i i i i i i i i j i k i j k
j i k i j i k i
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a Tr a a a a a a a a a a a a a

a a a a a a a a a a a a

γ γρ

γ γ

+ + + +

≠ ≠ ≠ ≠

+ + + +

≠ ≠ ≠ ≠

      = = − + −      
      

       + − + −       
      

   

   

 

(22) 

Let us estimate each average at the right-hand side of Eq. (22). The first one determines an 
attenuation of a harmonic oscillator in vacuum: 

 0 0ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,
2 2i i i i i i ia a a a a a a
γ γ+ +− = −  (23) 

where we use that for a harmonic oscillator the commutator ˆˆ ˆ, 1i ia a+  =  . The second term is 

zero because the operators corresponding to different oscillators commute. The third and the 
fourth terms determine attenuation due to collective interaction of oscillators with the modes 
of free space: 

 

0 0

0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
2 2

ˆ ˆ ˆ, .
2

j i i i j i i i k i i k
j i j i k i k i

i i k
k i

a a a a a a a a a a a a

a a a

γ γ
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+ + + +
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 = −  

   


 (24) 

Combining Eqs. (23) and (24) and using ˆˆ ˆ, 1i ia a+  =   we obtain: 

 0ˆ ˆ .
2i k

k

a a
γ

= −   (25) 
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Thus, the final system of equations that describes the dynamics of harmonic oscillators is 
closed with respect to variables ˆka . This is a linear system of differential equations for 

oscillator amplitudes ˆka . Since in system (25), all oscillator velocities are the same, any 

solution of this system attenuates with exactly this velocity. Therefore, there is no SR burst in 
this system. 

For a random initial phase distribution of emitters, the effective rate of change in the 

amplitudes is proportional to ( )0 ~ii
a N  and the radiation intensity 

( ) ( ) ( ) ( )2

0 0
ˆ / 0 exp ~ii

I t d H t dt a Nt Nωγ γ= − = − . This is qualitatively different 

from SR for which 2
0~N Nγ γ  and ( ) 2~I t N . 

Note that if initially all the oscillators are in phase, then ( )0 ~ii
a N  and 2~I N . 

This is a well-known result of the antenna theory: the system radiates as one big dipole, the 
time delay is equal to zero and there is no burst. 

Recently, the so-called single-photon SR has been actively studied [43, 44]. This 
phenomenon occurs when at the initial moment at the system there is only one quantum of 
energy and the initial state is the Dicke state ,1N . Even though in this case, the system is in 

a linear optical regime, it exhibits an increase of the radiation rates which is 0 / 2Nγ . This is 

greater than that of a single atom by the factor of / 2N . However, the increase is 
substantially smaller than that for the Dicke SR. 

Thus, quantum SR, analogously to classical systems, SR occurs in nonlinear system only. 

4. Conclusions 

In a subwavelength ensemble of N indistinguishable emitters interacting via their own 
radiation field, the rate of radiation and its intensity increase compared to one emitter. For a 
system of linear oscillators, the radiation rate does not depend on time. If in such a system 
initially emitters are in phase, the radiation rate is proportional to 2N , for a randomly 
distributed phases, the increase is proportional to N. Dicke considered a special initial state of 
a system of quantum two-level atoms. He showed that in this system, the radiation rate 
depends on time. It reaches its maximum in the delay time delayt  that forms the burst of 

radiation. The rate increases from the initial factor of N to 2N  at the burst of radiation. This is 
the main property of SR. We show that nonlinearity plays a critical role for SR in both 
classical and quantum systems. As shown in [14], in a linear classical system, SR does not 
occur. Nonlinearity of a quantum system of two-level atoms is due to their saturation at 
excitation [39, 40]. A system of linear quantum oscillators, which has no saturation, does not 
superradiate. We demonstrate that there is an analogy between SR in quantum and nonlinear 
classical systems [13, 45, 46]. This analogy can be recognized by considering SR from non-
Dicke states. In both systems, at the moment of the phase convergence, all dipole moments of 
the emitters are in phase resulting in an SR burst. The convergence of emitter phases for a 
system of nonlinear classical emitters arises due to the formation of a special point for the 
phase evolution of the dipole moments of emitters [13]. The existence of a convergence point 
is a consequence of the nonlinear nature of the process. Our numerical simulations show that 
a convergence point of phases exists for a system of quantum emitters as well (see Fig. 4). 
This is likely caused by a nonlinear response of two-level atoms on the electromagnetic field 
due to the effect of saturation [41]. 

The behavior of the delay time in a quantum system is also similar to that in a classical 
system. If the dipole moment of a quantum system initially has its maximum value, then the 
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delay time is zero. In a nonlinear classical system, a system has maximum dipole moment 
when all emitters are initially in phase. In this case, SR starts without any time delay. 

To conclude, we have studied the dynamics of quantum emitters interacting via their 
radiation field. In contrast to the Dicke model, in which all emitters are assumed to be in a 
state with zero dipole moment, the new SR regime arises in a more realistic system in which 
the initial state may have a nonzero dipole moment. We demonstrate that the Dicke state is 
not necessary for SR. Since the Dicke state can be realized only in a limited number of 
physical systems we expect that our study will stimulate the search for SR which we have 
shown may be observed in simpler and more realistic systems. 
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