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Abstract 

We consider phonon polariton states which may arise in disordered dielectrics due to a random light-phonon coupling. 
We show that these states can be described within the model of disorder-induced crossing resonance (DICR). The dispersion 
laws and relaxation rates of these states have been explored. Polaritons are shown to be good candidates for the experimental 
observation of the effects of DICR. 

fky~rds: Polariton; Disordered materials; Dispersion; Coupled waves; Random interaction; Levei repulsion 

1. Introduction 

Polaritons in disordered materials have recently 
attracted much attention [I-4]. Different types of 
potaritons, such as plasmon fl], exciton [Z] and 
phonon [3,4] polaritons, were considered. In spite of 
the differences between these investigations, they 
share one common feature. The dielectric function 
used in the Maxwell equations was chosen in a form 
that was derived for bulk ordered materials. A ran- 

dom parameter appeared either in the Maxwell equa- 
tions or in the boundary conditions. Such an ap- 
proach does not take into account the influence of 
disorder on the second participating system: phonons, 
plasmons, or excitons. 

Disorder, however, affects both interacting sub- 

systems. Moreover, fluctuations of the coupling pa- 
rameter itself could be very important, particularly in 
the vicinity of the crossing point. At this point 
original dispersion curves of interacting waves cross 
each other and even small perturbations of the inter- 

action may cause a significant effect. As far as we 

know, these questions have not been addressed. In 
this paper we consider effects caused by fluctuations 
of the coupling parameter. In order to emphasize 
their role we consider a phonon ~l~ton model, in 
which the mean value of the coupling parameter is 
equal to zero. This model describes the interaction 
between light and optical phonons, which would be 
inactive in an ideal structure. A random distortion of 
the structure could lead to the appearance of a local 
random coupling parameter, even though its mean 
remains zero. 

We show that this situation may be described 
within the model of disorder-induced crossing reso- 
nance (DICR) introduced in Ref. [5]. The phe- 
nomenon of DICR reveals new challenges in the old 
field of wave propagation in random materials. Find- 

ing the best candidates for an experimental observa- 
tion of DICR related effects is currently one of the 
main goals in this area. A magnetoelastic resonance 
in amorphous zero-mean magnetostrictive alloys was 
considered in Refs. [6,7]. Magnet~lastic interaction. 
however, is rather weak. Therefore. one needs to 
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construct a special material to observe DICR. The 
interaction between light and phonons is much 
stronger. The LO-TO splitting, which is a direct 

measure of the interaction, is of the same order of 

magnitude as the frequency itself in ionic crystals. 
Even if we assume that the local dipole moment, 

which arises in a random material due to structural 

distortion, is two orders of magnitude smaller, it will 
still be strong enough to result in observable effects. 

In this paper we show how the Maxwell equations 

along with the general equations of lattice dynamics 

can be turned into equations describing DICR. Then, 

we apply the results obtained in Refs. [5,8] to the 
particular case of polaritons and discuss the possibil- 

ity to observe the effects of interest. 

2. Polaritons in disordered dielectrics. General 

equations 

Let us consider an ensemble of ions arranged in a 
way allowing for optical vibrations. These kinds of 

vibrations may exist even in a random structure, 
where Voronoi’s polyhedrons play the role of primi- 
tive cells in an ideal lattice [9]. The general equations 
of motion for such an ensemble interacting with an 
electromagnetic field read 

m,tii(r) f CDi$(r, r’)f_$(#) =e,E’(r). 
P.1’ 

(1) 

Here the indexes (Y, p numerate atoms within a cell, 
the vector r indicates the position of a cell, and the 
upper indexes i, j refer to the Cartesian components 
of the vector quantities, such as the displacement 
vector U, the dynamical matrix D(r, r’> and the 
electric field E. The parameters rnL1 and e, are the 
mass and charge of the cvth atom in a primitive cell. 

Let us introduce the matrix ca,(r>, which diago- 
nalizes the dynamical matrix with respect to the cell 
indexes (Y, p, and let W, be the corresponding 
eigenvector. Then, the displacement vector may be 
written as 

W,(r) 
l/L”= Cct,(r)-F=_. (2) 

Eq. (1) can be reformulated in terms of the variables 
W, as 

G:(r) + Cfi’(r, r’)WL(r’) =dLE’(r), (3) 
# 

A 

where 0:’ is the dynamics matrix diagonalized with 

respect to the cell indexes. The vector di, which 
appears in Eq. (3j, plays the role of the coupling 
parameter between the electromagnetic waves and 

the lattice vibrations. This vector is defined accord- 

ing to the equation 

(4) 

Being multiplied by a normal coordinate W, the 
vector d,(r) gives a dipole moment of the corre- 
sponding mode. 

So far we have diagonalized the dynamical matrix 
with respect to the cell indexes only. This means that 

the normal coordinates, W,(r), as well as the matrix 
cb,(r) retain dependence upon a position, r, and 
reflect only the local structure of a particular cell, 
which can fluctuate from cell to cell. 

The local symmetry of a cell actually determines 
the coupling parameter defined by Eq. (4) through 

the matrix c:,(r). If the symmetry allows for a 
central symmetry mode, this parameter is equal to 
zero for this mode. If the local symmetry is ran- 

domly distorted, a coupling parameter, which is dif- 
ferent in its value and its direction for different cells, 
arises. By this means we can consider components of 
the vector d as random functions. We assume that 
these functions have the following properties, 

(di) = 0, 

(di(r)dj(r’)) = (d2)SijK(r-r’). (5) 

The first of these equations reflects the assumption 
that we are dealing with a mode which would be 
inactive in an ideal structure. The second one sup- 
pose that the local distortions of the structure are 
isotropic on average and may be described by one 
correlation function K(r - r’). This function can be 
characterized by a correlation radius, r,, which de- 
termines the distance scale at which correlations 
between two points exist. The value ((d*))‘/* oc- 
curring in Eq. (5) is the r.m.s. of the fluctuations and 
may be considered as an effective coupling parame- 
ter. 
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Eq. (3) must be complemented by the Maxwell 
equation for an electromagnetic field. It may be 
written as 

1 a2E 4rr a2P 
c?T+V(V.E)-AE=--pa,2, (6) 

where P is the density of the polarization. It can be 

presented in the form 

G-1 
P(r) = -$ &$( r)W, + --&-El, 

(T 

(7) 

where a is the mean size of a cell. The first term in 

this equation describes the ionic contribution to the 

polarization expressed in terms of the normal coordi- 

nates, W,. The second term takes into account the 

electronic part of the polarization, where 5, is the 

high-frequency dielectric permeability. Using Eq. (7) 
and the Maxwell equation (6) we arrive at a system 

of equations describing coupled states of an electro- 
magnetic field and lattice vibrations 

PE’ 
af2+T2V(vEi)-P2AEi= - 

(9) 
where c’ = C/G. These equations implicitly describe 
the interaction between electromagnetic waves and 
phonons. Unlike previous studies we take into ac- 
count the possible randomness of both the coupling 
parameter and the phonon dynamical matrix, but we 
neglect the fluctuations of the electronic part of the 
dielectric constant. 

3. Dispersion laws, attenuation rates, and suscep- 
tibility 

In this section we briefly discuss the characteris- 

tics that describe the properties of the average ampli- 
tude of the waves. Doing so we only allow for 
randomness of the coupling parameter and neglect 
the fluctuations of the parameters, which describe the 
inner properties of the phonon and photon subsys- 
tems. 

We assume that only one phonon mode is coupled 
with an electromagnetic wave, and its coupling pa- 
rameter satisfies conditions (5). Therefore, we omit 

the mode index for phonon variables. Under these 

assumptions in the first essential order of the pertur- 
bation theory one can obtain the following expres- 

sions for the averaged Green functions of transversal 

photons, Ge,(k, o), and phonons, G,,,(k, o), 

G,,(k, w) 

i 

S(k-k,) 1 
-I 

= co2 - w; - 
A2m21 wz _ c2( k,) d’kl ’ 

(10) 

Gvib(‘, 0) 

SW&) 
-I 

= co2 - c’(k) - A’w’j- w2 _ w k2J d3k, 
( 1 

. 

(‘1) 
The poles of these Green functions determine the 
corresponding dispersion laws and damping coeffi- 

cients. In the case of usual polaritons with a deter- 
ministic interaction the dispersion equations derived 
from Green functions (10) and (11) coincide. The 

situation changes when the coupling parameter fluc- 
tuates. Due to fluctuations Eq. (10) and Eq. (11) 

refer to different physical systems. The first of them 
describes a coherent electromagnetic wave coupled 
with scattered phonons. At the same time Eq. (11) 
describes states of a coherent phonon coupled with a 
scattered electromagnetic field. 

From the experimental point of view this means 
that different results will be obtained depending on 
the method used to explore the system. If one uses 
electromagnetic waves to excite coupled excitations, 
Eq. (10) is to be used. However, if the vibrational 

subsystem is originally excited (by means of a neu- 
tron, for instance), then a dispersion equation follow- 

ing from a phonon averaged Green function will 
describe the situation adequately. 

For electromagnetic waves Eq. (10) leads to the 
dispersion equation, 

co2 - 0; - A2w21 S(k-k,) 
w2 - &‘( k,) 

d’k, = 0. (12) 

The function S(k) is a Fourier transform of the 
correlation function (5), I is the initial phonon 
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dispersion law that we need in the long-wave limit 

only, 

&Z(k) = 00’ - u2k2. (13) 

The function w(k) = iTk describes the initial disper- 
sion law of electromagnetic waves and 

A2 = 4rrd2/.s,a3. 

We are primarily interested in the properties of 

electromagnetic waves. Therefore, we do not discuss 

the dispersion equations for phonons and for the 

longitudinal component of the electromagnetic field. 

These equations will be discussed in full elsewhere. 
According the results obtained in Ref. [5] a criti- 

cal value, A,,, of the coupling parameter, A, exists. 

A_ separates different kinds of solutions of the 

dispersion equation (12). For A < Acr one can only 
find one solution corresponding to a well-defined 
extended mode. This solution remains continuous at 

the resonant point and it approaches the dispersion 
law of initial light far away from resonance. In the 
case when A > A,, the dispersion curve breaks down 
at the resonance point to form a gap, 

In addition, a new branch of well-defined excitations 
appears in the vicinity of the crossing point. Both 
branches correspond to the same mode: a coherent 

electromagnetic wave coupled with scattered 
phonons. The dispersion curve for A > A,,, shown 
in Fig. 1, describes new kinds of compounded excita- 
tions, which may be called “disorder-induced polari- 
tons”. A more detailed general description of these 
excitations is given in Ref. [5]. 

The critical value of the coupling parameter can 
be obtained in the form 

v2k2 
Acr= 2, 

Zkk, (14) 

-I where k, N rc is the correlation wave number of 

the inhomogeneities of the coupling parameter, k, is 
the wave number corresponding to the crossing point. 
When deriving Eq. (14) we have used the fact that 
the correlation radius r, is usually much smaller 
than the polariton wave lengths. In order to obtain a 

wave number 

Fig. 1. Dispersion curve of a disorder-induced polariton. The solid 

line shows the branch that approaches the original dispersion 

curve of the electromagnetic wave far from the crossing point. 

The dotted line shows a new branch that arises due to the 

interaction between coherent electromagnetic waves and scattered 

phonons. This branch becomes ill defmed in the off-resonance 

region. Values of the frequencies and wave numbers are. nonnal- 

ized by oO and wn /Z, respectively. 

numerical estimate of the critical parameter one can 
notice that the parameter u in the phonon initial 

dispersion law is of the same order of magnitude as 
the velocity of acoustic phonons, - 10’ cm/c, the 
parameters k, and k, may be taken to be equal to 

lo3 cm-’ and lo7 cm-‘, respectively. The latter 
value corresponds to the correlation radius - 10 A. 
For these values of the parameters the value of Acr 
is of the order of 10”~-‘. The order of magnitude of 
the coupling parameter in ideal ionic crystals is 

43 _ 10’3c-‘. This value may be obtained from a 

simple estimate, 

(see, for example, Ref. [lo]). eeff in this expression 
is the effective charge of the corresponding mode. In 
the case under consideration this effective charge 
should vanish for an ideal configuration of a cell. 
However, in the presence of distortion eeff can be 
estimated as eeff - eAa/a, where As/a measures 
the degree of the distortion. In this case the parame- 

ter A is of the order of II (( As/a) > Aid. The value 

of (( As/a) ) is the r.m.s. of the fluctuations of d 
the structure. From diffraction experiments this value 
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is known to be - 10-l (see, for example, Ref. [9]>. 
Therefore, the value of the coupling parameter is of 
one order of magnitude larger than the critical value 
Acr. This estimate justifies some optimism regarding 
the possibility of the obse~ation the disorder-in- 
duced polariton states. 

To be more certain about this conclusion we have 
to compare the effectiveness of other scattering and 
absorption channels that may be present in the sys- 
tem with the considered one. The critical value of the 
coupling parameter, Acr , is obtained by comparison 
of the strength of the interaction with the strength of 
the relaxation. In fact, Acr is exactly equal to the 
relaxation rate due to scattering at the crossing point. 
The disorder-induced polaritons appear when the 
interaction dominates over the relaxation. The corre- 
sponding absorption and scattering rates are to be 
added to A, to give the total value of the relaxation 
rate and, hence, the critical value of the coupling 
parameters. Among other relaxation mech~isms 
phonon absorption and scattering are the most impor- 
tant ones. 

The absorption rate for optical phonons in crystals 
is approximately two orders of magnitude smaller 
than the corresponding frequencies (see, e.g., Ref. 
[ 111). This coincides with our estimate of A,... The 
scattering of phonons in disordered materials may 
occur due to ~ucmations of the density or force 
parameters. The first mechanism is much stronger 
and the corresponding rate can be estimated as [12] 
(Au/a)*(w~/u2k~)(k/k,). The value of this rate is 
of the order of 10”~.-‘, which is of the same order 
of magnitude as the other relaxation mechanisms 
discussed above. So, we can conclude that other 
relaxation mechanisms should not considerably dis- 
turb DICR in this system. Therefore, disorder-in- 
duced polaritons can be, in principle, observed in 
disordered dielectrics. They are to be searched in the 
frequency region of phonons inactive in the corre- 
sponding ordered materials. 

We should note, however, that the dispersion 
curve, shown in Fig. 1, has been obtained under the 
assumption that the wave number is real, while the 
frequency is allowed to have an imagin~y part. 
Realization of this assumption requires a certain way 
of investigation of the system. To observe this dis- 
persion behavior one has to use an experimental 
method, which allows one to fix the wave number of 

I 

frequency 

I I 

Fig. 2. Dependence of the wave number on the frequency when 
the frequency is a real value. while the wave number is allowed to 
have an imaginary part. The graph has the same units as in Fig. I. 

the excitation. This, for instance, can be Raman 
scattering. Other methods, where the frequency of 
the wave is under control and the dependence k(w) 
is observed, could lead to different results. This 
difference is typical for systems with dispersion and 
attenuation. As applied to systems with DICR this 
was considered for the first time in Ref. [8] for 
magnetoelastic resonance in amorphous magnets. In 
the situation considered in the present paper the 
dependence k(w) for the case A > A,, is shown in 
Fig. 2. Instead of the gap one can see a region of 
anomalous dispersion. 

The coherent (average) amplitude of the disorder- 
induced polaritons exponentially decreases with time 
due to generating incoherent phonons. The relaxation 
time, which describes this decrease, is to be derived 
from the imaginary part of the dispersion curve (12). 
Both branches of the dispersion curve are character- 
ized by their own relaxation times. The relaxation 
time co~es~nding to the solid line in Fig. 1 has a 
minimum at the resonance point. The minimum value 
is equal to A, ’ . On the contrary, the relaxation time 
of the second branch (dashed line in Fig. 11 has a 
maximum at the resonance. The value of this maxi- 
mum is also equal to A;‘. Therefore, these two 
branches at the resonance cannot be distinguished 
according to their relaxation properties. When mov- 
ing away from the resonance the relaxation time of 
the first branch increases, while the relaxation time 
of the second one decreases. The second branch 
becomes eventually poor defined far enough from 
the resonance. 
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wave number 

Fig. 3. Dependence of the inverse relaxation time of the coherent 
electromagnetic component on the wave number. The left curve 
corresponds to the case of negative dispersion, the right curve 
describes the situation when the dispersion of phonons is positive. 
The units an: the same as in Fig. 1. 

In Fig. 3 the shape of the dependence of the 
inverse relaxation time on the wave number is shown 
for the branch depicted by the solid line. The reiax- 
ation occurs only for k < w&Z. It vanishes as 
/_ when k + ma/Z. The curve approaches 
the resonant point as I k - k, 1. If one compares the 
relaxation properties obtained in this paper to those 
derived in Refs. [5,6], it may be noted that these 
curves look almost like mirror images of each other. 
This sharp difference appears because of the sign in 
front of the v2k2-term in the original dispersion law 
for optical phonons. We have a negative sign in Eq. 
(131, while a positive one was assumed in Ref. 151. 
In the case of negative dispersion all scattering events 
occur at u < wg, and, in contrast, for positive dis- 
persion scattering occurs for CO> wO only. This fact 
results in the “mirror reflection” of the relaxation 
curve with respect to the line corresponding to o = 
wO, when the phonon dispersion is switched from 
positive to negative. 

4. ConeIusion 

In this paper we derive genera1 equations, which 
describe the interaction between light and optical 
phonons in disordered materials. Unlike previous 
studies of this problem we take into account the 

randomness of the interaction parameter. To empha- 
size the importance of fluctuations of the coupling 
parameter we apply the equations derived to a spe- 
cial case of a zero-mean random coupling parameter. 
This case has a principal theoretical interest because 
a new kind of excitation with unusual properties 
arises (Ref. [Sl). Besides, the developed model de- 
scribes a practically possible situation of disorder-in- 
duced interaction between light and phonons, which 
would be inactive in an ideal crystal. Estimates 
support the idea that disorder-induced polaritons can 
appear in disordered dielectrics. In order to observe 
them one shouid explore the frequency region in 
which excitations inactive in ordered materials exist. 
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