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Abstract 

We consider propagation of coupled waves (polaritons) formed by a scalar electromagnetic wave and excitations of a 
finite one-dimensional chain of dipoles. It is shown that a microscopic defect (an impurity dipole) embedded in the chain 
causes resonance tunneling of the electromagnetic wave with a macroscopic wavelength through the forbidden band between 
two polariton branches. We demonstrate that the resonance tunneling occurs due to local polar&on states caused by the 
defect. @ 1998 Published by Elsevier Science B.V. 
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In this Letter we demonstrate that a dipole-active 

defect (impurity atom without internal degrees of free- 
dom) embedded in an otherwise ideal structure causes 
resonance tunneling of electromagnetic waves through 

the stop-band between different polariton branches of 
the host crystal. Though resonance tunneling of elec- 
tromagnetic waves has been discussed in different sit- 
uations (see, for example, Ref. [ 1 ] ) it always required 
a “transmitter” of a size comparable with electromag- 
netic wavelengths, A (assuming that it does not have 
internal degrees of freedom). In our Letter we dis- 
cuss a principally new situation, when tunneling res- 
onance occurs at wavelengths much greater than the 
characteristic scale of the defect. This result seems to 
be in contradiction with well-known facts that scat- 
tering of electromagnetic waves is ineffective if the 
size of scatterers is small comparing to electromag- 
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netic wavelength and that individual atoms do not have 
enough polarizability to cause strong scattering. The 
resolution of this contradiction lies in the fact that 

the resonance in the considered situation occurs due 
to local polariton states discussed recently in our pa- 
pers [ 2,3]. Local polaritons are states that occur in- 
side the gap between different polariton branches (“re- 
strahlen” region) when a dipole active defect is em- 

bedded in a regular ionic crystal. They are coupled 
states of transverse electromagnetic waves and exci- 
tations of a crystal such as phonons or excitons with 
both components localized in the vicinity of the de- 
fect. It is important that, though local polaritons are 
induced by a single defect, they are collective excita- 
tions, and electromagnetic radiation actually interacts 
with macroscopic amount of atoms. The efficiency of 
this interaction is determined by the polarizability of 
the entire mode rather than that of a single atom. In 
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the case of local phonons or excitons with frequen- 

cies within a transparent for electromagnetic radiation 
region this interaction results in strong absorbtion or 
Raman scattering of light. What is actually new in the 
situation considered in the present Letter is that our 
local states arise in a frequency region that is forbid- 
den for light propagation. As a result not only intrin- 

sic phonon or exciton degrees of freedom, but also 

transversal electromagnetic field, coupled to them, be- 
come localized. Therefore, usual optical phenomena 
like absorbtion or scattering cannot occur, and local 

polariton states manifest themselves by means of the 
resonant tunneling. 

Local polariton states were also considered indepen- 
dently by Rupasov and Singh [ 41. However, there is an 
important physical difference between states consid- 

ered in Ref. [ 41 and in our papers [ 2,3]. The former 

authors considered states of a two-level atom coupled 
with elementary excitations of a medium. A two-level 

atom considered in Ref. [4] introduces new modes 
(transitions between levels of the atom), which were 
absent in the pure system. The local states associated 
with such a defect are the original states of an atom 

modified by the interaction with its surroundings. In 
our papers [2,3] we considered a defect ion with no 

internal degrees of freedom embedded in a regular 
ionic crystal. The local states arising due to this kind 
of defect occur because of a fundamental reconstruc- 

tion of the spectrum of a pure system. As a result 
of such a reconstruction, a discrete eigenfrequency 
splits off the continuous spectrum giving rise to a local 
state. This phenomenon is well known in systems of 
phonons or excitons and was originally discovered by 
Lifshitz. [ 51 Similar effects were also found for elec- 
tromagnetic waves in photonic crystals [ 1,8,9] due to 
macroscopic defects embedded in their structure. The 
important general result obtained in Refs. [ 2,3] is that 
a microscopic defect is able to rebuild the spectrum 
of electromagnetic excitations in the medium in the 
region of wavelengths much greater than the size of 
the defect. One of the unusual properties of local po- 

laritons found in Ref. [2] is that even in 3D systems 
the local states arise due to the defect of an arbitrary 
small “strength.” For all previously known local states 
this property was an attribute of the 1D situation. We 
showed in Refs. [2,3] that this peculiar behavior of 
local polaritons is due to the spatial dispersion of the 
polariton branches of a host crystal. 

An important question about properties of the local 

polaritons that has still remained open is if the electro- 
magnetic component of the local polaritons plays any 
significant role (and, therefore, if the local polaritons 
actually deserve their name). The question arises be- 
cause the energy of the electromagnetic component of 
the states appears to be rather small compared to the 

energy of polarization component (phonons, excitons, 
etc.). The common wisdom based upon properties of 
regular propagating polaritons tells us that in such a 
situation the propagation of an external electromag- 

netic wave cannot be affected by the states in any sig- 
nificant way. In the case of local states the situation 
is different. In order to show this we consider propa- 

gation of an external electromagnetic wave through a 
slab containing the local polaritons. Since we deal in 
this case with frequencies from a stopband, the inci- 

dent electromagnetic wave would exponentially decay 
inside the slab and could emerge from the opposite 

side of the slab only in the form of a weak exponential 
tail. The experimental significance of the electromag- 
netic component of the local polaritons is determined 

by the degree of the enhancement of the transmission 

coefficient due to resonance tunneling at the frequency 
of the local polaritons. 

In order to shed light on principle aspeats of the 

problem, we study light propagation through a one- 
dimensional finite chain of dipoles with the nearest 
neighbor interaction. We assume that this chain is 
placed within a single-mode waveguide so that we 

can consider only one mode of the electromagnetic 
field propagating along the chain. As we mentioned 
above local polariton states arise at an arbitrary small 
“strength” of defect in any dimension. Therefore, the 
results obtained from the 1D model in the case of local 
polaritons can be more relevant to the realistic 3D case 
than in other situations. On the other hand, the choice 
of 1 D model makes it feasible to treat electromagnetic 
waves in the system microscopically. This is an im- 
portant feature of a model since local polaritons arise 
as a superposition of modes from the entire Brillouin 

band. Excitations with wave numbers at the edge of 
the band are pure phonons and electromagnetic waves, 
which in general cannot be treated macroscopically 
within the concept of the dielectric function. Our mi- 
croscopical treatment ensures that high-energy short- 
wavelength components of the electromagnetic field 
do not prevent local polaritons, and hence, resonance 
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tunneling, from occurring. 
Polaritons in the system under consideration arise 

as coupled states of collective excitations of dipoles 

(polarization waves) and electromagnetic waves. Ac- 

counting for the interaction between dipoles at differ- 
ent sites leads to a spatial dispersion of the polariza- 

tion waves. Taking into account the spatial dispersion 

makes the exact analytical consideration of the prob- 
lem unfeasible even in the case of a pure system due 

to a cumbersome algebra. Therefore, we carry out nu- 
merical simulations by means of the transfer-matrix 
method. The model can be described by the following 

equations written in the frequency domain, 

(4 - w2)P, + @(Pn+l + Pn-1) = aE(x,), (‘1 

-47r$ c P,S(na - x), (2) 
n 

where the first equation describes the dynamics of site 

dipole moments, P,,, and the second one is the equa- 
tion for the electric field E. Here fin is the diagonal 

part of the force matrix responsible for the short-range 
interaction between dipoles, and Q, is its off-diagonal 
component. We assume that the defect, which occu- 
pies the site no affects only the diagonal part of the 

force matrix, so that 0,, = 0 for all n except for n = 
no, where &, = a&f. The coordinate x in Eq. (2) 

goes along the chain with the interatomic distance ~1, 
and the right-hand side of this equation is the micro- 

scopic polarization density. Parameter cy is responsible 
for coupling between polarization and electromagnetic 
waves. Eqs. ( 1 ), (2) present a microscopic descrip- 
tion of the transverse electromagnetic waves propa- 
gating along the chain. These equations are subject to 
the boundary conditions for the electromagnetic and 
polarization subsystems. We assume that incident and 

transmitted electromagnetic waves propagate in vac- 
uum so that the boundary conditions for EQ. (2) take 
the usual form 

E(0) = 1 + r, 
dE . 
dx=lk(l -r), (3) 

E(L) = texp (ikL), 
dE 
dn= ikt exp (ikL), (4) 

where k = o/c is a wave number of the electromag- 
netic wave in vacuum, ItI* and lr]* are transmission 
and reflection coefficients, respectively, and L is the 

length of the chain. The boundary conditions for dipole 
excitations can be chosen in the general form 

PO -= 
4 (5) 

where N = L/a is the number of sites in the chain, 
parameters p and y describe different states of the 
“surface” of the chain. For example, p = 0, y = 0 
correspond to the chain with fixed terminal points. 
Another set of parameters, p = 1, y = 1, describes a 

“relaxed surface” where the forces on terminal sites 
are equal to zero. We present results of calculations 

with these two choices of the boundary conditions. 
Our first goal is to convert the differential equa- 

tion (2) into the discrete form. We can do this consid- 
ering separately free propagation of electromagnetic 
waves between sites and its scattering due to the in- 
teraction with a dipole moment at the site. Let E,, and 

EA be the magnitude of the electromagnetic field and 
its derivative right after scattering at the nth site. The 
electric field E remains continuous at a scattering site, 

while its derivative undergoes the jump, which is equal 
to -4rk*P,,. Finally, one can derive the system of dif- 
ference equations, that can be written with the use of 

the transfer matrix, T, in the form 

where we introduced the column vector, v,, with com- 

ponents P,, Pn+l, E,,, D, (D, = EL/k) and the trans- 
fer matrix, T,,, that describes the propagation of the 
vector between adjacent sites, 

/o ’ 

I a*---co* Ly 
-’ _n - a! 

T, = @ 472@ 
cos ka - sin ka 

I 4a@ . 
0 0 cos ka sin ka 

0 -4mk - sin ka cos ka 

(7) 

The dynamical state of the system at the right end of 
the chain, which is represented by the vector UN, can 
be found from the initial state at the left end, ~0, by 
means of the repetitive use of the transfer matrix, T, 

v,,J = T,vo. (8) 
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Since we consider the system with a single defect, all 

but one T-matrices in Eq. (8) are the same. These 
matrices have the parameter 0” (the only parameter, 
which distinguish the defect site from the regular sites) 
equal to 0. For the matrix T,, which corresponds to 
the defect, L& = L&r. The eigenfrequencies of the pure 

system, i.e. polariton dispersion laws, can be found by 
means of the eigenvalues of the T-matrix. There exist 
four eigenvalues A, which can be grouped in pairs with 
the product of the members of each pair being equal 
to one. The eigenvalues can be found as solutions of 
the following dispersion equation, 

(A+~-‘-2cosku) A+A-‘+s ( LP - w= 1 
+ $ sin(ka) = 0. (9) 

In the band of propagating states, the solutions of 
Eq. (9) are complex valued numbers with their ab- 
solute values equal to one. In this case the expres- 
sion h + A-’ can be presented in the form 2 cos( Qu) , 
where Q is the Bloch wave number. With this re- 

placement the dispersion Eq. (9) takes the same form 
as the equation obtained from the original equations 

( 1 ), (2) by means of Fourier transformation. It is im- 
portant to emphasize that Eq. (9) takes into account 
the modes of the electromagnetic field not only from 
the first Brillouin band but also all short-wave com- 
ponents of the field. In this sense, our approach to 
the problem is truly microscopic. In the band gap of 
the polariton spectrum, the eigenvalues A become real 
valued and describe evanescent modes of the system. 
Fig. 1 presents the frequency dependence of the abso- 

lute value of one of the eigenvalues. The band gap is 
clearly seen as a region in which the absolute value of 

A is greater than 1. 

We calculated the transmission coefficient of the 
electromagnetic waves applying Eq. (8) to the vec- 

tor ua, with components {PO, PPc, 1 + r, i( 1 - r)}, 
which describes the state of electromagnetic waves 
and dipole subsystem at the left end of the chain in ac- 
cordance with boundary conditions (3) and (5). The 
resulting state at the right end of the chain UN is to 
be matched with the corresponding boundary condi- 
tions at n = N. We considered two kinds of boundary 
conditions corresponding to fixed, p = y = 0, and re- 
laxed, p = y = 1, ends of the chain. For the numeric 
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Fig. 1. Frequency dependence of the absolute value of an eigen- 
value of the transfer matrix T. In the pass baud, the absolute value 

of A is equal to 1. in the stop band it is greater than 1. 

evaluation we use the chain consisting of 30 atoms, 

with the defect placed at the 15th site. In order to 
check the computations, we calculated both transmis- 

sion and reflection coefficients and verified that the 
equality (tl2 + lr12 = 1 holds with sufficient accuracy. 

The results of the calculations are presented in 
Figs. 2 and 3, which correspond to the fixed and 
relaxed boundary conditions, respectively. The pa- 

rameter of the nearest neighbors interaction @ was 
chosen to be equal to @ = .0=/3, so that the maxi- 

mum frequency of the polarization waves is equal to 

mL?. As one can see from Fig. 1, the polariton gap 
has a lower boundary at a slightly lower frequency, 
N 1.240. It is caused by the negative dispersion of 
the polariton waves assumed in the calculations. The 
frequency in all the figures is normalized by 0. The 

wavelength of the electromagnetic waves in the re- 
gion considered is much greater than the interatomic 
distance a, the product ka is of order of lo-‘, which 

corresponds to the position of the exciton-polariton 
gap in real materials. Figs. 2a and 3a present the fre- 

quency dependence of the transmission in the pure 

system for two types of boundary conditions. One can 
easily recognize the boundary between the pass and 
stop bands in these figures. The transmission exhibits 

a rich structure, corresponding to geometrical reso- 
nances due to the finite size of the system in the pass 
band, and monotonically increases with the frequency 
in the forbidden band. The increase of the trans- 

mission is due to the frequency dependence of the 
penetration length 1 = l/ Im q(o), where CJ( o) is the 
imaginary wave number of polaritons inside the gap. 

All the other plots in Figs. 2 and 3 show the trans- 
mission in a system containing the defect for differ- 
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Fig. 3. Same as in Fig. 2 but for the chain with free ends. 

positions of the maxima was found to be independent 
of the position of the defect in the chain as it should 
be expected. We set the defect at different sites and 
found just a slight modification of the shape of the 
maxima and their heights, but not the positions. 

The value of w, depends upon the strength of the 
defect, it moves toward higher frequencies with in- 
crease of A. This behavior is in accordance with the 
results of Refs. [ 2,3] regarding the eigenfrequencies 
of local polariton states. For the model considered the 
frequency of the local polariton is determined by an 
equation similar to that obtained in Ref. [ 21, 

0.8 1 1.2 1.4 1.6 

Fig. 2. Transmission through the chain with fixed ends. (a) Pure 
system, (b) and (c) transmission through the system with the 
defect for the different strength d. 

ent values of the parameter A = (L& - &) /i12, 
which determines the strength of the defect. One can 
see that the defect induces a resonant maximum at a 
certain value of frequency, or, inside the forbidden 
gap. Though resonance tunneling takes place for both 
kinds of boundary conditions, the effect is much more 
prominent in the case of fixed ends. This fact is in 
agreement with the overall greater transmission for the 
latter situation than in the case of “relaxed” ends. The 

r 

l=A SK k2- 1 - $ZOSX 
> 

[cos(ka) -cosx)] 

-7T 

ak 
- 2 sin (ak) 1 

--I 
[cos(ka) -cosx]. (10) 

In Fig. 4 we present the dependence of the resonance 
frequency, o,, and the eigenfrequency of the local 
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Fig. 4. Solid line: relationship between eigenfrequencies of the 
local polaritons and the defect parameter A. Dashed lines: positions 
of the resonance tunneling maxima for different A. Upper dashed 
line: chain with fixed ends; lower one: chain with free ends. 

mode upon the defect parameter, A. One can see that 
these dependences are consistent with each other. The 

deviation of o, from the eigenfrequency is obviously 

due to the frequency dependence of the width of the 
resonance, 

According to Eq. ( lo), local polaritons arise only 
for positive A. Indeed, when we change the sign, the 
resonance maximum inside the stop-band disappears 

(Fig. 5) _ At the same time, one can identify in Fig. 5a 
a new peak in the pass band, which arises due to the 
defect. Though there are no new eigenstates in the 
region of the continuous spectrum, the defect, nev- 
ertheless, causes resonance scattering of propagating 
polaritons. This effect is known as quasilocal or reso- 

nance “states,” for example, in phonon physics [ 6,7], 
and was discussed for polaritons by Hopfield [ lo]. 
The defect-induced maximum observed in the pass 

band in Fig. 4a is caused by such “quasilocal states”. 
Surprisingly enough, is the absence of a quasilocal 
resonance in Fig. 4b. This represents the transmission 
in the case of a “free” surface. Instead, we observe a 

strong dip in the transmission which was not present 
in the transmission of the pure chain. This situation 

of antiresonance scattering is interesting but requires 

separate consideration. 
In conclusion, we have numerically shown that an 

electromagnetic wave with macroscopic wavelength 
can exhibit resonance tunneling through the forbidden 
polariton band (“restrahlen region”) via a microscopic 
defect, for example, an impurity atom. The tunneling 
is due to the local polariton states associated with the 
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Fig. 5. Quasilocal states in the pass band for the chain with (a) 
fixed and (b) free ends. 

defect and occurs for waves with wavelengths as much 
as three orders of magnitude greater than the inter- 
atomic distance. Electromagnetic waves were treated 

in the paper microscopically in the sense that we took 

into account the lattice structure of the medium and 
all the modes of the electromagnetic field including 
those with wave lengths shorter than n-/u. 

The results of the Letter have important implications 
for the physics of the local polaritons. They demon- 
strate that, despite the small relative contribution of the 
electromagnetic component, the electromagnetic field 
of the states plays an essential role in an interaction 
of the local states with external electromagnetic field. 

Though we have considered the one-dimensional 
single-mode model, the main result obtained in the 
Letter - the existence of resonance tunneling of elec- 
tromagnetic waves due to the local polariton states 
- can be expanded to more realistic situations. The 
one-dimensional nature of the model allowed for the 
microscopic treatment, which would not be feasible 
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otherwise. Once we have confirmed the assumption 

of Ref. [ 2 3 that shortwave component of electromag- 
netic waves do not affect the local polariton states in 

any significant way, one can treat the system in the 
framework of macroscopic methods and turn to the 
consideration of more realistic models. Though the 

resonance tunneling through a thin slab of a real 3D 

material will have more complicated properties, the 
essence of the effect will remain the same. 

The most serious difference between our single- 
mode model of electromagnetic waves and real sit- 
uations is the absence of longitudinal modes in our 

model. These modes could fill the gap between polari- 
ton branches and reduce the lifetime of local polari- 
tons. It is important to emphasize, however, that unlike 
the above mentioned quasilocal states of propagating 

modes, the transverse components of the local polari- 
ton remains localized, Therefore the tunneling nature 

of electromagnetic wave propagation through the re- 

strahlen region is preserved even in the presence of 

the longitudinal modes. 
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